Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Numerical method

From Wikipedia, the free encyclopedia
Mathematical tool to algorithmically solve equations
This article includes a list ofgeneral references, butit lacks sufficient correspondinginline citations. Please help toimprove this article byintroducing more precise citations.(September 2016) (Learn how and when to remove this message)

Innumerical analysis, anumerical method is a mathematical tool designed to solve numerical problems. The implementation of a numerical method with an appropriate convergence check in aprogramming language is called a numerical algorithm.

Mathematical definition

[edit]

LetF(x,y)=0{\displaystyle F(x,y)=0} be awell-posed problem, i.e.F:X×YR{\displaystyle F:X\times Y\rightarrow \mathbb {R} } is areal orcomplex functional relationship, defined on theCartesian product of an input data setX{\displaystyle X} and an output data setY{\displaystyle Y}, such that exists alocally lipschitz functiong:XY{\displaystyle g:X\rightarrow Y} calledresolvent, which has the property that for every root(x,y){\displaystyle (x,y)} ofF{\displaystyle F},y=g(x){\displaystyle y=g(x)}. We definenumerical method for the approximation ofF(x,y)=0{\displaystyle F(x,y)=0}, thesequence of problems

{Mn}nN={Fn(xn,yn)=0}nN,{\displaystyle \left\{M_{n}\right\}_{n\in \mathbb {N} }=\left\{F_{n}(x_{n},y_{n})=0\right\}_{n\in \mathbb {N} },}

withFn:Xn×YnR{\displaystyle F_{n}:X_{n}\times Y_{n}\rightarrow \mathbb {R} },xnXn{\displaystyle x_{n}\in X_{n}} andynYn{\displaystyle y_{n}\in Y_{n}} for everynN{\displaystyle n\in \mathbb {N} }. The problems of which the method consists need not be well-posed. If they are, the method is said to bestable orwell-posed.[1]

Consistency

[edit]

Necessary conditions for a numerical method to effectively approximateF(x,y)=0{\displaystyle F(x,y)=0} are thatxnx{\displaystyle x_{n}\rightarrow x} and thatFn{\displaystyle F_{n}} behaves likeF{\displaystyle F} whenn{\displaystyle n\rightarrow \infty }. So, a numerical method is calledconsistent if and only if the sequence of functions{Fn}nN{\displaystyle \left\{F_{n}\right\}_{n\in \mathbb {N} }} pointwise converges toF{\displaystyle F} on the setS{\displaystyle S} of its solutions:

limFn(x,y+t)=F(x,y,t)=0,(x,y,t)S.{\displaystyle \lim F_{n}(x,y+t)=F(x,y,t)=0,\quad \quad \forall (x,y,t)\in S.}

WhenFn=F,nN{\displaystyle F_{n}=F,\forall n\in \mathbb {N} } onS{\displaystyle S} the method is said to bestrictly consistent.[1]

Convergence

[edit]

Denote byn{\displaystyle \ell _{n}} a sequence ofadmissible perturbations ofxX{\displaystyle x\in X} for some numerical methodM{\displaystyle M} (i.e.x+nXnnN{\displaystyle x+\ell _{n}\in X_{n}\forall n\in \mathbb {N} }) and withyn(x+n)Yn{\displaystyle y_{n}(x+\ell _{n})\in Y_{n}} the value such thatFn(x+n,yn(x+n))=0{\displaystyle F_{n}(x+\ell _{n},y_{n}(x+\ell _{n}))=0}. A condition which the method has to satisfy to be a meaningful tool for solving the problemF(x,y)=0{\displaystyle F(x,y)=0} isconvergence:

ε>0,n0(ε)>0,δε,n0 such thatn>n0,n:n<δε,n0yn(x+n)yε.{\displaystyle {\begin{aligned}&\forall \varepsilon >0,\exists n_{0}(\varepsilon )>0,\exists \delta _{\varepsilon ,n_{0}}{\text{ such that}}\\&\forall n>n_{0},\forall \ell _{n}:\|\ell _{n}\|<\delta _{\varepsilon ,n_{0}}\Rightarrow \|y_{n}(x+\ell _{n})-y\|\leq \varepsilon .\end{aligned}}}

One can easily prove that the point-wise convergence of{yn}nN{\displaystyle \{y_{n}\}_{n\in \mathbb {N} }} toy{\displaystyle y} implies the convergence of the associated method.[1]

See also

[edit]

References

[edit]
  1. ^abcQuarteroni, Sacco, Saleri (2000).Numerical Mathematics(PDF). Milano: Springer. p. 33. Archived fromthe original(PDF) on 2017-11-14. Retrieved2016-09-27.{{cite book}}: CS1 maint: multiple names: authors list (link)
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Numerical_method&oldid=1304942310"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp