Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Nuclear operator

From Wikipedia, the free encyclopedia
This article is about the mathematical operator; it is not to be confused withReactor operator.
Linear operator related to topological vector spaces
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Nuclear operator" – news ·newspapers ·books ·scholar ·JSTOR
(June 2020) (Learn how and when to remove this message)

In mathematics,nuclear operators are an important class of linear operators introduced byAlexander Grothendieck in his doctoral dissertation. Nuclear operators are intimately tied to theprojective tensor product of twotopological vector spaces (TVSs).

Preliminaries and notation

[edit]

Throughout letX,Y, andZ betopological vector spaces (TVSs) andL :XY be a linear operator (no assumption of continuity is made unless otherwise stated).

In a Hilbert space, positive compact linear operators, sayL :HH have a simple spectral decomposition discovered at the beginning of the 20th century by Fredholm and F. Riesz:[3]

There is a sequence of positive numbers, decreasing and either finite or else converging to 0,r1>r2>>rk>{\displaystyle r_{1}>r_{2}>\cdots >r_{k}>\cdots } and a sequence of nonzero finite dimensional subspacesVi{\displaystyle V_{i}} ofH (i = 1, 2,{\displaystyle \ldots }) with the following properties: (1) the subspacesVi{\displaystyle V_{i}} are pairwise orthogonal; (2) for everyi and everyxVi{\displaystyle x\in V_{i}},L(x)=rix{\displaystyle L(x)=r_{i}x}; and (3) the orthogonal of the subspace spanned byiVi{\textstyle \bigcup _{i}V_{i}} is equal to the kernel ofL.[3]

Notation for topologies

[edit]
Main articles:Topology of uniform convergence andMackey topology

A canonical tensor product as a subspace of the dual of Bi(X,Y)

[edit]

LetX andY be vector spaces (no topology is needed yet) and let Bi(X,Y) be the space of allbilinear maps defined onX×Y{\displaystyle X\times Y} and going into the underlying scalar field.

For every(x,y)X×Y{\displaystyle (x,y)\in X\times Y}, letχ(x,y){\displaystyle \chi _{(x,y)}} be the canonicallinear form on Bi(X,Y) defined byχ(x,y)(u):=u(x,y){\displaystyle \chi _{(x,y)}(u):=u(x,y)} for everyu ∈ Bi(X,Y). This induces a canonical mapχ:X×YBi(X,Y)#{\displaystyle \chi :X\times Y\to \mathrm {Bi} (X,Y)^{\#}} defined byχ(x,y):=χ(x,y){\displaystyle \chi (x,y):=\chi _{(x,y)}}, whereBi(X,Y)#{\displaystyle \mathrm {Bi} (X,Y)^{\#}} denotes thealgebraic dual of Bi(X,Y). If we denote the span of the range of𝜒 byXY then it can be shown thatXY together with𝜒 forms atensor product ofX andY (wherexy :=𝜒(x,y)). This gives us a canonical tensor product ofX andY.

IfZ is any other vector space then the mapping Li(XY;Z) → Bi(X,Y;Z) given byuu𝜒 is an isomorphism of vector spaces. In particular, this allows us to identify thealgebraic dual ofXY with the space of bilinear forms onX ×Y.[4] Moreover, ifX andY are locally convextopological vector spaces (TVSs) and ifXY is given theπ-topology then for every locally convex TVSZ, this map restricts to a vector space isomorphismL(XπY;Z)B(X,Y;Z){\displaystyle L(X\otimes _{\pi }Y;Z)\to B(X,Y;Z)} from the space ofcontinuous linear mappings onto the space ofcontinuous bilinear mappings.[5] In particular, the continuous dual ofXY can be canonically identified with the space B(X,Y) of continuous bilinear forms onX ×Y; furthermore, under this identification theequicontinuous subsets of B(X,Y) are the same as the equicontinuous subsets of(XπY){\displaystyle (X\otimes _{\pi }Y)'}.[5]

Nuclear operators between Banach spaces

[edit]
Main articles:Nuclear operators between Banach spaces andProjective tensor product

There is a canonical vector space embeddingI:XYL(X;Y){\displaystyle I:X'\otimes Y\to L(X;Y)} defined by sendingz:=inxiyi{\textstyle z:=\sum _{i}^{n}x_{i}'\otimes y_{i}} to the map

xinxi(x)yi.{\displaystyle x\mapsto \sum _{i}^{n}x_{i}'(x)y_{i}.}

Assuming thatX andY are Banach spaces, then the mapI:XbπYLb(X;Y){\displaystyle I:X'_{b}\otimes _{\pi }Y\to L_{b}(X;Y)} has norm1{\displaystyle 1} (to see that the norm is1{\displaystyle \leq 1}, note thatI(z)=supx1I(z)(x)=supx1i=1nxi(x)yisupx1i=1nxixyii=1nxiyi{\textstyle \|I(z)\|=\sup _{\|x\|\leq 1}\|I(z)(x)\|=\sup _{\|x\|\leq 1}\left\|\sum _{i=1}^{n}x_{i}'(x)y_{i}\right\|\leq \sup _{\|x\|\leq 1}\sum _{i=1}^{n}\left\|x_{i}'\right\|\|x\|\left\|y_{i}\right\|\leq \sum _{i=1}^{n}\left\|x_{i}'\right\|\left\|y_{i}\right\|} so thatI(z)zπ{\displaystyle \left\|I(z)\right\|\leq \left\|z\right\|_{\pi }}). Thus it has a continuous extension to a mapI^:Xb^πYLb(X;Y){\displaystyle {\hat {I}}:X'_{b}{\widehat {\otimes }}_{\pi }Y\to L_{b}(X;Y)}, where it is known that this map is not necessarily injective.[6] The range of this map is denoted byL1(X;Y){\displaystyle L^{1}(X;Y)} and its elements are callednuclear operators.[7]L1(X;Y){\displaystyle L^{1}(X;Y)} is TVS-isomorphic to(Xb^πY)/kerI^{\displaystyle \left(X'_{b}{\widehat {\otimes }}_{\pi }Y\right)/\ker {\hat {I}}} and the norm on this quotient space, when transferred to elements ofL1(X;Y){\displaystyle L^{1}(X;Y)} via the induced mapI^:(Xb^πY)/kerI^L1(X;Y){\displaystyle {\hat {I}}:\left(X'_{b}{\widehat {\otimes }}_{\pi }Y\right)/\ker {\hat {I}}\to L^{1}(X;Y)}, is called thetrace-norm and is denoted byTr{\displaystyle \|\cdot \|_{\operatorname {Tr} }}. Explicitly,[clarification needed explicitly or especially?] ifT:XY{\displaystyle T:X\to Y} is a nuclear operator thenTTr:=infzI^1(T)zπ{\textstyle \left\|T\right\|_{\operatorname {Tr} }:=\inf _{z\in {\hat {I}}^{-1}\left(T\right)}\left\|z\right\|_{\pi }}.

Characterization

[edit]

Suppose thatX andY are Banach spaces and thatN:XY{\displaystyle N:X\to Y} is a continuous linear operator.

Properties

[edit]

LetX andY be Banach spaces and letN:XY{\displaystyle N:X\to Y} be a continuous linear operator.

Nuclear operators between Hilbert spaces

[edit]
See also:Trace class

Nuclearautomorphisms of aHilbert space are calledtrace class operators.

LetX andY be Hilbert spaces and letN :XY be a continuous linear map. Suppose thatN=UR{\displaystyle N=UR} whereR :XX is the square-root ofNN{\displaystyle N^{*}N} andU :XY is such thatU|ImR:ImRImN{\displaystyle U{\big \vert }_{\operatorname {Im} R}:\operatorname {Im} R\to \operatorname {Im} N} is a surjective isometry. ThenN is a nuclear map if and only ifR is a nuclear map; hence, to study nuclear maps between Hilbert spaces it suffices to restrict one's attention to positive self-adjoint operatorsR.[11]

Characterizations

[edit]

LetX andY be Hilbert spaces and letN :XY be a continuous linear map whose absolute value isR :XX. The following are equivalent:

  1. N :XY is nuclear.
  2. R :XX is nuclear.[12]
  3. R :XX is compact andTrR{\displaystyle \operatorname {Tr} R} is finite, in which caseTrR=NTr{\displaystyle \operatorname {Tr} R=\|N\|_{\operatorname {Tr} }}.[12]
  4. tN:YbXb{\displaystyle {}^{t}N:Y'_{b}\to X'_{b}} is nuclear, in which casetNTr=NTr{\displaystyle \|{}^{t}N\|_{\operatorname {Tr} }=\|N\|_{\operatorname {Tr} }}.[9]
  5. There are two orthogonal sequences(xi)i=1{\displaystyle (x_{i})_{i=1}^{\infty }} inX and(yi)i=1{\displaystyle (y_{i})_{i=1}^{\infty }} inY, and a sequence(λi)i=1{\displaystyle \left(\lambda _{i}\right)_{i=1}^{\infty }} in1{\displaystyle \ell ^{1}} such that for allxX{\displaystyle x\in X},N(x)=iλix,xiyi{\textstyle N(x)=\sum _{i}\lambda _{i}\langle x,x_{i}\rangle y_{i}}.[12]
  6. N :XY is anintegral map.[13]

Nuclear operators between locally convex spaces

[edit]
See also:Auxiliary normed spaces

Suppose thatU is a convex balanced closed neighborhood of the origin inX andB is a convex balanced boundedBanach disk inY with bothX andY locally convex spaces. LetpU(x)=infr>0,xrUr{\textstyle p_{U}(x)=\inf _{r>0,x\in rU}r} and letπ:XX/pU1(0){\displaystyle \pi :X\to X/p_{U}^{-1}(0)} be the canonical projection. One can define theauxiliary Banach spaceX^U{\displaystyle {\hat {X}}_{U}} with the canonical mapπ^U:XX^U{\displaystyle {\hat {\pi }}_{U}:X\to {\hat {X}}_{U}} whose image,X/pU1(0){\displaystyle X/p_{U}^{-1}(0)}, is dense inX^U{\displaystyle {\hat {X}}_{U}} as well as the auxiliary spaceFB=spanB{\displaystyle F_{B}=\operatorname {span} B} normed bypB(y)=infr>0,yrBr{\textstyle p_{B}(y)=\inf _{r>0,y\in rB}r} and with a canonical mapι:FBF{\displaystyle \iota :F_{B}\to F} being the (continuous) canonical injection. Given any continuous linear mapT:X^UYB{\displaystyle T:{\hat {X}}_{U}\to Y_{B}} one obtains through composition the continuous linear mapπ^UTι:XY{\displaystyle {\hat {\pi }}_{U}\circ T\circ \iota :X\to Y}; thus we have an injectionL(X^U;YB)L(X;Y){\textstyle L\left({\hat {X}}_{U};Y_{B}\right)\to L(X;Y)} and we henceforth use this map to identifyL(X^U;YB){\textstyle L\left({\hat {X}}_{U};Y_{B}\right)} as a subspace ofL(X;Y){\displaystyle L(X;Y)}.[7]

Definition: LetX andY be Hausdorff locally convex spaces. The union of allL1(X^U;YB){\textstyle L^{1}\left({\hat {X}}_{U};Y_{B}\right)} asU ranges over all closed convex balanced neighborhoods of the origin inX andB ranges over all boundedBanach disks inY, is denoted byL1(X;Y){\displaystyle L^{1}(X;Y)} and its elements are callnuclear mappings ofX intoY.[7]

WhenX andY are Banach spaces, then this new definition ofnuclear mapping is consistent with the original one given for the special case whereX andY are Banach spaces.

Sufficient conditions for nuclearity

[edit]

Characterizations

[edit]

LetX andY be Hausdorff locally convex spaces and letN:XY{\displaystyle N:X\to Y} be a continuous linear operator.

Properties

[edit]

The following is a type ofHahn-Banach theorem for extending nuclear maps:

LetX andY be Hausdorff locally convex spaces and letN:XY{\displaystyle N:X\to Y} be a continuous linear operator.

See also

[edit]

References

[edit]
  1. ^Trèves 2006, p. 488.
  2. ^abcTrèves 2006, p. 483.
  3. ^abTrèves 2006, p. 490.
  4. ^Schaefer & Wolff 1999, p. 92.
  5. ^abSchaefer & Wolff 1999, p. 93.
  6. ^abcSchaefer & Wolff 1999, p. 98.
  7. ^abcTrèves 2006, pp. 478–479.
  8. ^abcdeTrèves 2006, pp. 481–483.
  9. ^abcTrèves 2006, p. 484.
  10. ^Trèves 2006, pp. 483–484.
  11. ^Trèves 2006, pp. 488–492.
  12. ^abcTrèves 2006, pp. 492–494.
  13. ^Trèves 2006, pp. 502–508.
  14. ^Trèves 2006, pp. 479–481.
  15. ^abSchaefer & Wolff 1999, p. 100.
  16. ^abTrèves 2006, p. 485.

Bibliography

[edit]

External links

[edit]
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Basic concepts
Topologies
Operators/Maps
Theorems
Retrieved from "https://en.wikipedia.org/w/index.php?title=Nuclear_operator&oldid=1296928184"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp