Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Normal bundle

From Wikipedia, the free encyclopedia
Concept in mathematics
For normal bundles in algebraic geometry, seenormal cone.

Indifferential geometry, a field ofmathematics, anormal bundle is a particular kind ofvector bundle,complementary to thetangent bundle, and coming from anembedding (orimmersion).

Definition

[edit]

Riemannian manifold

[edit]

Let(M,g){\displaystyle (M,g)} be aRiemannian manifold, andSM{\displaystyle S\subset M} aRiemannian submanifold. Define, for a givenpS{\displaystyle p\in S}, a vectornTpM{\displaystyle n\in \mathrm {T} _{p}M} to benormal toS{\displaystyle S} wheneverg(n,v)=0{\displaystyle g(n,v)=0} for allvTpS{\displaystyle v\in \mathrm {T} _{p}S} (so thatn{\displaystyle n} isorthogonal toTpS{\displaystyle \mathrm {T} _{p}S}). The setNpS{\displaystyle \mathrm {N} _{p}S} of all suchn{\displaystyle n} is then called thenormal space toS{\displaystyle S} atp{\displaystyle p}.

Just as the total space of thetangent bundle to a manifold is constructed from alltangent spaces to the manifold, the total space of thenormal bundle[1]NS{\displaystyle \mathrm {N} S} toS{\displaystyle S} is defined as

NS:=pSNpS{\displaystyle \mathrm {N} S:=\coprod _{p\in S}\mathrm {N} _{p}S}.

Theconormal bundle is defined as thedual bundle to the normal bundle. It can be realised naturally as a sub-bundle of thecotangent bundle.

General definition

[edit]

More abstractly, given animmersioni:NM{\displaystyle i:N\to M} (for instance an embedding), one can define a normal bundle ofN{\displaystyle N} inM{\displaystyle M}, by at each point ofN{\displaystyle N}, taking thequotient space of the tangent space onM{\displaystyle M} by the tangent space onN{\displaystyle N}. For a Riemannian manifold one can identify this quotient with the orthogonal complement, but in general one cannot (such a choice is equivalent to asection of the projectionp:VV/W{\displaystyle p:V\to V/W}).

Thus the normal bundle is in general aquotient of the tangent bundle of the ambient spaceM{\displaystyle M} restricted to the subspaceN{\displaystyle N}.

Formally, thenormal bundle[2] toN{\displaystyle N} inM{\displaystyle M} is a quotient bundle of the tangent bundle onM{\displaystyle M}: one has theshort exact sequence of vector bundles onN{\displaystyle N}:

0TNTM|i(N)TM/N:=TM|i(N)/TN0{\displaystyle 0\to \mathrm {T} N\to \mathrm {T} M\vert _{i(N)}\to \mathrm {T} _{M/N}:=\mathrm {T} M\vert _{i(N)}/\mathrm {T} N\to 0}

whereTM|i(N){\displaystyle \mathrm {T} M\vert _{i(N)}} is the restriction of the tangent bundle onM{\displaystyle M} toN{\displaystyle N} (properly, the pullbackiTM{\displaystyle i^{*}\mathrm {T} M} of the tangent bundle onM{\displaystyle M} to a vector bundle onN{\displaystyle N} via the mapi{\displaystyle i}). The fiber of the normal bundleTM/NπN{\displaystyle \mathrm {T} _{M/N}{\overset {\pi }{\twoheadrightarrow }}N} inpN{\displaystyle p\in N} is referred to as thenormal space atp{\displaystyle p} (ofN{\displaystyle N} inM{\displaystyle M}).

Conormal bundle

[edit]

IfYX{\displaystyle Y\subseteq X} is a smooth submanifold of a manifoldX{\displaystyle X}, we can pick local coordinates(x1,,xn){\displaystyle (x_{1},\dots ,x_{n})} aroundpY{\displaystyle p\in Y} such thatY{\displaystyle Y} is locally defined byxk+1==xn=0{\displaystyle x_{k+1}=\dots =x_{n}=0}; then with this choice of coordinates

TpX=R{x1|p,,xk|p,,xn|p}TpY=R{x1|p,,xk|p}TX/Yp=R{xk+1|p,,xn|p}{\displaystyle {\begin{aligned}\mathrm {T} _{p}X&=\mathbb {R} {\Big \lbrace }{\frac {\partial }{\partial x_{1}}}{\Big |}_{p},\dots ,{\frac {\partial }{\partial x_{k}}}{\Big |}_{p},\dots ,{\frac {\partial }{\partial x_{n}}}{\Big |}_{p}{\Big \rbrace }\\\mathrm {T} _{p}Y&=\mathbb {R} {\Big \lbrace }{\frac {\partial }{\partial x_{1}}}{\Big |}_{p},\dots ,{\frac {\partial }{\partial x_{k}}}{\Big |}_{p}{\Big \rbrace }\\{\mathrm {T} _{X/Y}}_{p}&=\mathbb {R} {\Big \lbrace }{\frac {\partial }{\partial x_{k+1}}}{\Big |}_{p},\dots ,{\frac {\partial }{\partial x_{n}}}{\Big |}_{p}{\Big \rbrace }\\\end{aligned}}}

and theideal sheaf is locally generated byxk+1,,xn{\displaystyle x_{k+1},\dots ,x_{n}}. Therefore we can define a non-degenerate pairing

(IY/IY 2)p×TX/YpR{\displaystyle (I_{Y}/I_{Y}^{\ 2})_{p}\times {\mathrm {T} _{X/Y}}_{p}\longrightarrow \mathbb {R} }

that induces an isomorphism of sheavesTX/Y(IY/IY 2){\displaystyle \mathrm {T} _{X/Y}\simeq (I_{Y}/I_{Y}^{\ 2})^{\vee }}. We can rephrase this fact by introducing theconormal bundleTX/Y{\displaystyle \mathrm {T} _{X/Y}^{*}} defined via theconormal exact sequence

0TX/YΩX1|YΩY10{\displaystyle 0\to \mathrm {T} _{X/Y}^{*}\rightarrowtail \Omega _{X}^{1}|_{Y}\twoheadrightarrow \Omega _{Y}^{1}\to 0},

thenTX/Y(IY/IY 2){\displaystyle \mathrm {T} _{X/Y}^{*}\simeq (I_{Y}/I_{Y}^{\ 2})}, viz. the sections of the conormal bundle are the cotangent vectors toX{\displaystyle X} vanishing onTY{\displaystyle \mathrm {T} Y}.

WhenY={p}{\displaystyle Y=\lbrace p\rbrace } is a point, then the ideal sheaf is the sheaf of smooth germs vanishing atp{\displaystyle p} and the isomorphism reduces to thedefinition of the tangent space in terms of germs of smooth functions onX{\displaystyle X}

TX/{p}(TpX)mpmp 2{\displaystyle \mathrm {T} _{X/\lbrace p\rbrace }^{*}\simeq (\mathrm {T} _{p}X)^{\vee }\simeq {\frac {{\mathfrak {m}}_{p}}{{\mathfrak {m}}_{p}^{\ 2}}}}.

Stable normal bundle

[edit]

Abstract manifolds have acanonical tangent bundle, but do not have a normal bundle: only an embedding (or immersion) of a manifold in another yields a normal bundle.However, since every manifold can be embedded inRN{\displaystyle \mathbf {R} ^{N}}, by theWhitney embedding theorem, every manifold admits a normal bundle, given such an embedding.

There is in general no natural choice of embedding, but for a given manifoldX{\displaystyle X}, any two embeddings inRN{\displaystyle \mathbf {R} ^{N}} for sufficiently largeN{\displaystyle N} areregular homotopic, and hence induce the same normal bundle. The resulting class of normal bundles (it is a class of bundles and not a specific bundle because the integerN{\displaystyle {N}} could vary) is called thestable normal bundle.

Dual to tangent bundle

[edit]

The normal bundle is dual to the tangent bundle in the sense ofK-theory: by the above short exact sequence,

[TN]+[TM/N]=[TM]{\displaystyle [\mathrm {T} N]+[\mathrm {T} _{M/N}]=[\mathrm {T} M]}

in theGrothendieck group.In case of an immersion inRN{\displaystyle \mathbf {R} ^{N}}, the tangent bundle of the ambient space is trivial (sinceRN{\displaystyle \mathbf {R} ^{N}} is contractible, henceparallelizable), so[TN]+[TM/N]=0{\displaystyle [\mathrm {T} N]+[\mathrm {T} _{M/N}]=0}, and thus[TM/N]=[TN]{\displaystyle [\mathrm {T} _{M/N}]=-[\mathrm {T} N]}.

This is useful in the computation ofcharacteristic classes, and allows one to prove lower bounds on immersibility and embeddability of manifolds inEuclidean space.

For symplectic manifolds

[edit]

Suppose a manifoldX{\displaystyle X} is embedded in to asymplectic manifold(M,ω){\displaystyle (M,\omega )}, such that the pullback of the symplectic form has constant rank onX{\displaystyle X}. Then one can define the symplectic normal bundle toX{\displaystyle X} as the vector bundle overX{\displaystyle X} with fibres

(Ti(x)X)ω/(Ti(x)X(Ti(x)X)ω),xX,{\displaystyle (\mathrm {T} _{i(x)}X)^{\omega }/(\mathrm {T} _{i(x)}X\cap (\mathrm {T} _{i(x)}X)^{\omega }),\quad x\in X,}

wherei:XM{\displaystyle i:X\rightarrow M} denotes the embedding and(TX)ω{\displaystyle (\mathrm {T} X)^{\omega }} is thesymplectic orthogonal ofTX{\displaystyle \mathrm {T} X} inTM{\displaystyle \mathrm {T} M}. Notice that the constant rank condition ensures that these normal spaces fit together to form a bundle. Furthermore, any fibre inherits the structure of a symplectic vector space.[3]

ByDarboux's theorem, the constant rank embedding is locally determined byi(TM){\displaystyle i^{*}(\mathrm {T} M)}. The isomorphism

i(TM)TX/ν(TX)ω/ν(νν){\displaystyle i^{*}(\mathrm {T} M)\cong \mathrm {T} X/\nu \oplus (\mathrm {T} X)^{\omega }/\nu \oplus (\nu \oplus \nu ^{*})}

(whereν=TX(TX)ω{\displaystyle \nu =\mathrm {T} X\cap (\mathrm {T} X)^{\omega }} andν{\displaystyle \nu ^{*}} is the dual underω{\displaystyle \omega },)of symplectic vector bundles overX{\displaystyle X} implies that the symplectic normal bundle already determines the constant rank embedding locally. This feature is similar to the Riemannian case.

References

[edit]
  1. ^John M. Lee,Riemannian Manifolds, An Introduction to Curvature, (1997) Springer-Verlag New York, Graduate Texts in Mathematics 176ISBN 978-0-387-98271-7
  2. ^Tammo tom Dieck,Algebraic Topology, (2010) EMS Textbooks in MathematicsISBN 978-3-03719-048-7
  3. ^Ralph Abraham andJerrold E. Marsden,Foundations of Mechanics, (1978) Benjamin-Cummings, LondonISBN 0-8053-0102-X
Basic concepts
Main theorems(list)
Maps
Types of
manifolds
Tensors
Vectors
Covectors
Bundles
Connections
Related
Generalizations
Retrieved from "https://en.wikipedia.org/w/index.php?title=Normal_bundle&oldid=1288576696"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp