Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Normal-inverse-gamma distribution

From Wikipedia, the free encyclopedia
Family of multivariate continuous probability distributions
normal-inverse-gamma
Probability density function
Probability density function of normal-inverse-gamma distribution for α = 1.0, 2.0 and 4.0, plotted in shifted and scaled coordinates.
Parametersμ{\displaystyle \mu \,}location (real)
λ>0{\displaystyle \lambda >0\,} (real)
α>0{\displaystyle \alpha >0\,} (real)
β>0{\displaystyle \beta >0\,} (real)
Supportx(,),σ2(0,){\displaystyle x\in (-\infty ,\infty )\,\!,\;\sigma ^{2}\in (0,\infty )}
PDFλ2πσ2βαΓ(α)(1σ2)α+1exp(2β+λ(xμ)22σ2){\displaystyle {\frac {\sqrt {\lambda }}{\sqrt {2\pi \sigma ^{2}}}}{\frac {\beta ^{\alpha }}{\Gamma (\alpha )}}\left({\frac {1}{\sigma ^{2}}}\right)^{\alpha +1}\exp \left(-{\frac {2\beta +\lambda (x-\mu )^{2}}{2\sigma ^{2}}}\right)}
Mean

E[x]=μ{\displaystyle \operatorname {E} [x]=\mu }

E[σ2]=βα1{\displaystyle \operatorname {E} [\sigma ^{2}]={\frac {\beta }{\alpha -1}}}, forα>1{\displaystyle \alpha >1}
Mode

x=μ(univariate),x=μ(multivariate){\displaystyle x=\mu \;{\textrm {(univariate)}},x={\boldsymbol {\mu }}\;{\textrm {(multivariate)}}}

σ2=βα+1+1/2(univariate),σ2=βα+1+k/2(multivariate){\displaystyle \sigma ^{2}={\frac {\beta }{\alpha +1+1/2}}\;{\textrm {(univariate)}},\sigma ^{2}={\frac {\beta }{\alpha +1+k/2}}\;{\textrm {(multivariate)}}}
Variance

Var[x]=β(α1)λ{\displaystyle \operatorname {Var} [x]={\frac {\beta }{(\alpha -1)\lambda }}}, forα>1{\displaystyle \alpha >1}
Var[σ2]=β2(α1)2(α2){\displaystyle \operatorname {Var} [\sigma ^{2}]={\frac {\beta ^{2}}{(\alpha -1)^{2}(\alpha -2)}}}, forα>2{\displaystyle \alpha >2}

Cov[x,σ2]=0{\displaystyle \operatorname {Cov} [x,\sigma ^{2}]=0}, forα>1{\displaystyle \alpha >1}

Inprobability theory andstatistics, thenormal-inverse-gamma distribution (orGaussian-inverse-gamma distribution) is a four-parameter family of multivariate continuousprobability distributions. It is theconjugate prior of anormal distribution with unknownmean andvariance.

Definition

[edit]

Suppose

xσ2,μ,λN(μ,σ2/λ){\displaystyle x\mid \sigma ^{2},\mu ,\lambda \sim \mathrm {N} (\mu ,\sigma ^{2}/\lambda )\,\!}

has anormal distribution withmeanμ{\displaystyle \mu } andvarianceσ2/λ{\displaystyle \sigma ^{2}/\lambda }, where

σ2α,βΓ1(α,β){\displaystyle \sigma ^{2}\mid \alpha ,\beta \sim \Gamma ^{-1}(\alpha ,\beta )\!}

has aninverse-gamma distribution. Then(x,σ2){\displaystyle (x,\sigma ^{2})} has a normal-inverse-gamma distribution, denoted as

(x,σ2)N-Γ1(μ,λ,α,β).{\displaystyle (x,\sigma ^{2})\sim {\text{N-}}\Gamma ^{-1}(\mu ,\lambda ,\alpha ,\beta )\!.}

(NIG{\displaystyle {\text{NIG}}} is also used instead ofN-Γ1.{\displaystyle {\text{N-}}\Gamma ^{-1}.})

Thenormal-inverse-Wishart distribution is a generalization of the normal-inverse-gamma distribution that is defined over multivariate random variables.

Characterization

[edit]

Probability density function

[edit]
f(x,σ2μ,λ,α,β)=λσ2πβαΓ(α)(1σ2)α+1exp(2β+λ(xμ)22σ2){\displaystyle f(x,\sigma ^{2}\mid \mu ,\lambda ,\alpha ,\beta )={\frac {\sqrt {\lambda }}{\sigma {\sqrt {2\pi }}}}\,{\frac {\beta ^{\alpha }}{\Gamma (\alpha )}}\,\left({\frac {1}{\sigma ^{2}}}\right)^{\alpha +1}\exp \left(-{\frac {2\beta +\lambda (x-\mu )^{2}}{2\sigma ^{2}}}\right)}

For the multivariate form wherex{\displaystyle \mathbf {x} } is ak×1{\displaystyle k\times 1} random vector,

f(x,σ2μ,V1,α,β)=|V|1/2(2π)k/2βαΓ(α)(1σ2)α+1+k/2exp(2β+(xμ)TV1(xμ)2σ2).{\displaystyle f(\mathbf {x} ,\sigma ^{2}\mid \mu ,\mathbf {V} ^{-1},\alpha ,\beta )=|\mathbf {V} |^{-1/2}{(2\pi )^{-k/2}}\,{\frac {\beta ^{\alpha }}{\Gamma (\alpha )}}\,\left({\frac {1}{\sigma ^{2}}}\right)^{\alpha +1+k/2}\exp \left(-{\frac {2\beta +(\mathbf {x} -{\boldsymbol {\mu }})^{T}\mathbf {V} ^{-1}(\mathbf {x} -{\boldsymbol {\mu }})}{2\sigma ^{2}}}\right).}

where|V|{\displaystyle |\mathbf {V} |} is thedeterminant of thek×k{\displaystyle k\times k}matrixV{\displaystyle \mathbf {V} }. Note how this last equation reduces to the first form ifk=1{\displaystyle k=1} so thatx,V,μ{\displaystyle \mathbf {x} ,\mathbf {V} ,{\boldsymbol {\mu }}} arescalars.

Alternative parameterization

[edit]

It is also possible to letγ=1/λ{\displaystyle \gamma =1/\lambda } in which case the pdf becomes

f(x,σ2μ,γ,α,β)=1σ2πγβαΓ(α)(1σ2)α+1exp(2γβ+(xμ)22γσ2){\displaystyle f(x,\sigma ^{2}\mid \mu ,\gamma ,\alpha ,\beta )={\frac {1}{\sigma {\sqrt {2\pi \gamma }}}}\,{\frac {\beta ^{\alpha }}{\Gamma (\alpha )}}\,\left({\frac {1}{\sigma ^{2}}}\right)^{\alpha +1}\exp \left(-{\frac {2\gamma \beta +(x-\mu )^{2}}{2\gamma \sigma ^{2}}}\right)}

In the multivariate form, the corresponding change would be to regard the covariance matrixV{\displaystyle \mathbf {V} } instead of itsinverseV1{\displaystyle \mathbf {V} ^{-1}} as a parameter.

Cumulative distribution function

[edit]
F(x,σ2μ,λ,α,β)=eβσ2(βσ2)α(erf(λ(xμ)2σ)+1)2σ2Γ(α){\displaystyle F(x,\sigma ^{2}\mid \mu ,\lambda ,\alpha ,\beta )={\frac {e^{-{\frac {\beta }{\sigma ^{2}}}}\left({\frac {\beta }{\sigma ^{2}}}\right)^{\alpha }\left(\operatorname {erf} \left({\frac {{\sqrt {\lambda }}(x-\mu )}{{\sqrt {2}}\sigma }}\right)+1\right)}{2\sigma ^{2}\Gamma (\alpha )}}}

Properties

[edit]

Marginal distributions

[edit]

Given(x,σ2)N-Γ1(μ,λ,α,β).{\displaystyle (x,\sigma ^{2})\sim {\text{N-}}\Gamma ^{-1}(\mu ,\lambda ,\alpha ,\beta )\!.} as above,σ2{\displaystyle \sigma ^{2}} by itself follows aninverse gamma distribution:

σ2Γ1(α,β){\displaystyle \sigma ^{2}\sim \Gamma ^{-1}(\alpha ,\beta )\!}

whileαλβ(xμ){\displaystyle {\sqrt {\frac {\alpha \lambda }{\beta }}}(x-\mu )} follows at distribution with2α{\displaystyle 2\alpha } degrees of freedom.[1]

Proof forλ=1{\displaystyle \lambda =1}

Forλ=1{\displaystyle \lambda =1} probability density function is

f(x,σ2μ,α,β)=1σ2πβαΓ(α)(1σ2)α+1exp(2β+(xμ)22σ2){\displaystyle f(x,\sigma ^{2}\mid \mu ,\alpha ,\beta )={\frac {1}{\sigma {\sqrt {2\pi }}}}\,{\frac {\beta ^{\alpha }}{\Gamma (\alpha )}}\,\left({\frac {1}{\sigma ^{2}}}\right)^{\alpha +1}\exp \left(-{\frac {2\beta +(x-\mu )^{2}}{2\sigma ^{2}}}\right)}

Marginal distribution overx{\displaystyle x} is

f(xμ,α,β)=0dσ2f(x,σ2μ,α,β)=12πβαΓ(α)0dσ2(1σ2)α+1/2+1exp(2β+(xμ)22σ2){\displaystyle {\begin{aligned}f(x\mid \mu ,\alpha ,\beta )&=\int _{0}^{\infty }d\sigma ^{2}f(x,\sigma ^{2}\mid \mu ,\alpha ,\beta )\\&={\frac {1}{\sqrt {2\pi }}}\,{\frac {\beta ^{\alpha }}{\Gamma (\alpha )}}\int _{0}^{\infty }d\sigma ^{2}\left({\frac {1}{\sigma ^{2}}}\right)^{\alpha +1/2+1}\exp \left(-{\frac {2\beta +(x-\mu )^{2}}{2\sigma ^{2}}}\right)\end{aligned}}}

Except for normalization factor, expression under the integral coincides withInverse-gamma distribution

Γ1(x;a,b)=baΓ(a)eb/xxa+1,{\displaystyle \Gamma ^{-1}(x;a,b)={\frac {b^{a}}{\Gamma (a)}}{\frac {e^{-b/x}}{{x}^{a+1}}},}

withx=σ2{\displaystyle x=\sigma ^{2}},a=α+1/2{\displaystyle a=\alpha +1/2},b=2β+(xμ)22{\displaystyle b={\frac {2\beta +(x-\mu )^{2}}{2}}}.

Since0dxΓ1(x;a,b)=1,0dxx(a+1)eb/x=Γ(a)ba{\displaystyle \int _{0}^{\infty }dx\Gamma ^{-1}(x;a,b)=1,\quad \int _{0}^{\infty }dxx^{-(a+1)}e^{-b/x}=\Gamma (a)b^{-a}}, and

0dσ2(1σ2)α+1/2+1exp(2β+(xμ)22σ2)=Γ(α+1/2)(2β+(xμ)22)(α+1/2){\displaystyle \int _{0}^{\infty }d\sigma ^{2}\left({\frac {1}{\sigma ^{2}}}\right)^{\alpha +1/2+1}\exp \left(-{\frac {2\beta +(x-\mu )^{2}}{2\sigma ^{2}}}\right)=\Gamma (\alpha +1/2)\left({\frac {2\beta +(x-\mu )^{2}}{2}}\right)^{-(\alpha +1/2)}}

Substituting this expression and factoring dependence onx{\displaystyle x},

f(xμ,α,β)x(1+(xμ)22β)(α+1/2).{\displaystyle f(x\mid \mu ,\alpha ,\beta )\propto _{x}\left(1+{\frac {(x-\mu )^{2}}{2\beta }}\right)^{-(\alpha +1/2)}.}

Shape ofgeneralized Student's t-distribution is

t(x|ν,μ^,σ^2)x(1+1ν(xμ^)2σ^2)(ν+1)/2{\displaystyle t(x|\nu ,{\hat {\mu }},{\hat {\sigma }}^{2})\propto _{x}\left(1+{\frac {1}{\nu }}{\frac {(x-{\hat {\mu }})^{2}}{{\hat {\sigma }}^{2}}}\right)^{-(\nu +1)/2}}.

Marginal distributionf(xμ,α,β){\displaystyle f(x\mid \mu ,\alpha ,\beta )} follows t-distribution with2α{\displaystyle 2\alpha } degrees of freedom

f(xμ,α,β)=t(x|ν=2α,μ^=μ,σ^2=β/α){\displaystyle f(x\mid \mu ,\alpha ,\beta )=t(x|\nu =2\alpha ,{\hat {\mu }}=\mu ,{\hat {\sigma }}^{2}=\beta /\alpha )}.

In the multivariate case, the marginal distribution ofx{\displaystyle \mathbf {x} } is amultivariate t distribution:

xt2α(μ,βαV){\displaystyle \mathbf {x} \sim t_{2\alpha }({\boldsymbol {\mu }},{\frac {\beta }{\alpha }}\mathbf {V} )\!}

Summation

[edit]

Scaling

[edit]

Suppose

(x,σ2)N-Γ1(μ,λ,α,β).{\displaystyle (x,\sigma ^{2})\sim {\text{N-}}\Gamma ^{-1}(\mu ,\lambda ,\alpha ,\beta )\!.}

Then forc>0{\displaystyle c>0},

(cx,cσ2)N-Γ1(cμ,λ/c,α,cβ).{\displaystyle (cx,c\sigma ^{2})\sim {\text{N-}}\Gamma ^{-1}(c\mu ,\lambda /c,\alpha ,c\beta )\!.}

Proof: To prove this let(x,σ2)N-Γ1(μ,λ,α,β){\displaystyle (x,\sigma ^{2})\sim {\text{N-}}\Gamma ^{-1}(\mu ,\lambda ,\alpha ,\beta )} and fixc>0{\displaystyle c>0}. DefiningY=(Y1,Y2)=(cx,cσ2){\displaystyle Y=(Y_{1},Y_{2})=(cx,c\sigma ^{2})}, observe that the PDF of the random variableY{\displaystyle Y} evaluated at(y1,y2){\displaystyle (y_{1},y_{2})} is given by1/c2{\displaystyle 1/c^{2}} times the PDF of aN-Γ1(μ,λ,α,β){\displaystyle {\text{N-}}\Gamma ^{-1}(\mu ,\lambda ,\alpha ,\beta )} random variable evaluated at(y1/c,y2/c){\displaystyle (y_{1}/c,y_{2}/c)}. Hence the PDF ofY{\displaystyle Y} evaluated at(y1,y2){\displaystyle (y_{1},y_{2})} is given by :fY(y1,y2)=1c2λ2πy2/cβαΓ(α)(1y2/c)α+1exp(2β+λ(y1/cμ)22y2/c)=λ/c2πy2(cβ)αΓ(α)(1y2)α+1exp(2cβ+(λ/c)(y1cμ)22y2).{\displaystyle f_{Y}(y_{1},y_{2})={\frac {1}{c^{2}}}{\frac {\sqrt {\lambda }}{\sqrt {2\pi y_{2}/c}}}\,{\frac {\beta ^{\alpha }}{\Gamma (\alpha )}}\,\left({\frac {1}{y_{2}/c}}\right)^{\alpha +1}\exp \left(-{\frac {2\beta +\lambda (y_{1}/c-\mu )^{2}}{2y_{2}/c}}\right)={\frac {\sqrt {\lambda /c}}{\sqrt {2\pi y_{2}}}}\,{\frac {(c\beta )^{\alpha }}{\Gamma (\alpha )}}\,\left({\frac {1}{y_{2}}}\right)^{\alpha +1}\exp \left(-{\frac {2c\beta +(\lambda /c)\,(y_{1}-c\mu )^{2}}{2y_{2}}}\right).\!}

The right hand expression is the PDF for aN-Γ1(cμ,λ/c,α,cβ){\displaystyle {\text{N-}}\Gamma ^{-1}(c\mu ,\lambda /c,\alpha ,c\beta )} random variable evaluated at(y1,y2){\displaystyle (y_{1},y_{2})}, which completes the proof.

Exponential family

[edit]

Normal-inverse-gamma distributions form anexponential family withnatural parametersθ1=λ2{\displaystyle \textstyle \theta _{1}={\frac {-\lambda }{2}}},θ2=λμ{\displaystyle \textstyle \theta _{2}=\lambda \mu },θ3=α{\displaystyle \textstyle \theta _{3}=\alpha }, andθ4=β+λμ22{\displaystyle \textstyle \theta _{4}=-\beta +{\frac {-\lambda \mu ^{2}}{2}}} and sufficient statisticsT1=x2σ2{\displaystyle \textstyle T_{1}={\frac {x^{2}}{\sigma ^{2}}}},T2=xσ2{\displaystyle \textstyle T_{2}={\frac {x}{\sigma ^{2}}}},T3=log(1σ2){\displaystyle \textstyle T_{3}=\log {\big (}{\frac {1}{\sigma ^{2}}}{\big )}}, andT4=1σ2{\displaystyle \textstyle T_{4}={\frac {1}{\sigma ^{2}}}}.

Information entropy

[edit]

Kullback–Leibler divergence

[edit]

Measures difference between two distributions.

Maximum likelihood estimation

[edit]
[icon]
This section is empty. You can help byadding to it.(July 2010)

Posterior distribution of the parameters

[edit]

See the articles onnormal-gamma distribution andconjugate prior.

Interpretation of the parameters

[edit]

See the articles onnormal-gamma distribution andconjugate prior.

Generating normal-inverse-gamma random variates

[edit]

Generation of random variates is straightforward:

  1. Sampleσ2{\displaystyle \sigma ^{2}} from an inverse gamma distribution with parametersα{\displaystyle \alpha } andβ{\displaystyle \beta }
  2. Samplex{\displaystyle x} from a normal distribution with meanμ{\displaystyle \mu } and varianceσ2/λ{\displaystyle \sigma ^{2}/\lambda }

Related distributions

[edit]

See also

[edit]

References

[edit]
  1. ^Ramírez-Hassan, Andrés.4.2 Conjugate prior to exponential family | Introduction to Bayesian Econometrics.
  • Denison, David G. T.; et al. (2002).Bayesian Methods for Nonlinear Classification and Regression. Wiley.ISBN 0471490369.
  • Koch, Karl-Rudolf (2007).Introduction to Bayesian Statistics (2nd ed.). Springer.ISBN 354072723X.
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Normal-inverse-gamma_distribution&oldid=1309039514"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp