
Inmathematics, anonhypotenuse number is anatural number whose squarecannot be written as the sum of two nonzero squares. The name stems from the fact that an edge of length equal to a nonhypotenuse numbercannot form thehypotenuse of aright angle triangle with integer sides.
The numbers 1, 2, 3, and 4 are all nonhypotenuse numbers. The number 5, however, isnot a nonhypotenuse number as.
The first fifty nonhypotenuse numbers are:
Although nonhypotenuse numbers are common among small integers, they become more-and-more sparse for larger numbers. Yet, there are infinitely many nonhypotenuse numbers, and the number of nonhypotenuse numbers not exceeding a valuex scales asymptotically withx/√logx.[1]
The nonhypotenuse numbers are those numbers that have noprime factors ofthe form 4k+1.[2] Equivalently, they are the number that cannot be expressed in the form whereK,m, andn are all positive integers. A number whose prime factors are notall of the form 4k+1 cannot be the hypotenuse of aprimitive integer right triangle (one for which the sides do not have a nontrivial common divisor), but may still be the hypotenuse of a non-primitive triangle.[3]
The nonhypotenuse numbers have been applied to prove the existence ofaddition chains that compute the first square numbers using only additions.[4]