Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Noncentralt-distribution

From Wikipedia, the free encyclopedia
Probability distribution
Noncentral Student'st
Probability density function
Parametersν > 0 degrees of freedom
μ{\displaystyle \mu \in \Re \,\!} noncentrality parameter
Supportx(;+){\displaystyle x\in (-\infty ;+\infty )\,\!}
PDFsee text
CDFsee text
Meansee text
Modesee text
Variancesee text
Skewnesssee text
Excess kurtosissee text

Thenoncentralt-distribution generalizesStudent'st-distribution using anoncentrality parameter. Whereas the centralprobability distribution describes how a test statistict is distributed when the difference tested is null, the noncentral distribution describes howt is distributed when the null is false. This leads to its use in statistics, especially calculatingstatistical power. The noncentralt-distribution is also known as the singly noncentralt-distribution, and in addition to its primary use instatistical inference, is also used inrobust modeling fordata.

Definitions

[edit]

IfZ is a standardnormal random variable, andV is achi-squared distributed random variable with νdegrees of freedom that is independent ofZ, then

T=Z+μV/ν{\displaystyle T={\frac {Z+\mu }{\sqrt {V/\nu }}}}

is a noncentralt-distributed random variable with ν degrees of freedom andnoncentrality parameter μ ≠ 0. Note that the noncentrality parameter may be negative.

Cumulative distribution function

[edit]

Thecumulative distribution function of noncentralt-distribution with ν degrees of freedom and noncentrality parameter μ can be expressed as[1]

Fν,μ(x)={F~ν,μ(x),if x0;1F~ν,μ(x),if x<0,{\displaystyle F_{\nu ,\mu }(x)={\begin{cases}{\tilde {F}}_{\nu ,\mu }(x),&{\mbox{if }}x\geq 0;\\1-{\tilde {F}}_{\nu ,-\mu }(x),&{\mbox{if }}x<0,\end{cases}}}

where

F~ν,μ(x)=Φ(μ)+12j=0[pjIy(j+12,ν2)+qjIy(j+1,ν2)],{\displaystyle {\tilde {F}}_{\nu ,\mu }(x)=\Phi (-\mu )+{\frac {1}{2}}\sum _{j=0}^{\infty }\left[p_{j}I_{y}\left(j+{\frac {1}{2}},{\frac {\nu }{2}}\right)+q_{j}I_{y}\left(j+1,{\frac {\nu }{2}}\right)\right],}
Iy(a,b){\displaystyle I_{y}\,\!(a,b)} is theregularized incomplete beta function,
y=x2x2+ν,{\displaystyle y={\frac {x^{2}}{x^{2}+\nu }},}
pj=1j!exp{μ22}(μ22)j,{\displaystyle p_{j}={\frac {1}{j!}}\exp \left\{-{\frac {\mu ^{2}}{2}}\right\}\left({\frac {\mu ^{2}}{2}}\right)^{j},}
qj=μ2Γ(j+3/2)exp{μ22}(μ22)j,{\displaystyle q_{j}={\frac {\mu }{{\sqrt {2}}\Gamma (j+3/2)}}\exp \left\{-{\frac {\mu ^{2}}{2}}\right\}\left({\frac {\mu ^{2}}{2}}\right)^{j},}

and Φ is the cumulative distribution function of thestandard normal distribution.

Alternatively, the noncentralt-distribution CDF can be expressed as[citation needed]:

Fv,μ(x)={12j=01j!(μ2)jeμ22Γ(j+12)πI(vv+x2;v2,j+12),x0112j=01j!(μ2)jeμ22Γ(j+12)πI(vv+x2;v2,j+12),x<0{\displaystyle F_{v,\mu }(x)={\begin{cases}{\frac {1}{2}}\sum _{j=0}^{\infty }{\frac {1}{j!}}(-\mu {\sqrt {2}})^{j}e^{\frac {-\mu ^{2}}{2}}{\frac {\Gamma ({\frac {j+1}{2}})}{\sqrt {\pi }}}I\left({\frac {v}{v+x^{2}}};{\frac {v}{2}},{\frac {j+1}{2}}\right),&x\geq 0\\1-{\frac {1}{2}}\sum _{j=0}^{\infty }{\frac {1}{j!}}(-\mu {\sqrt {2}})^{j}e^{\frac {-\mu ^{2}}{2}}{\frac {\Gamma ({\frac {j+1}{2}})}{\sqrt {\pi }}}I\left({\frac {v}{v+x^{2}}};{\frac {v}{2}},{\frac {j+1}{2}}\right),&x<0\end{cases}}}

where Γ is thegamma function andI is theregularized incomplete beta function.

Although there are other forms of the cumulative distribution function, the first form presented above is very easy to evaluate throughrecursive computing.[1] In statistical softwareR, the cumulative distribution function is implemented aspt.

Probability density function

[edit]

Theprobability density function (pdf) for the noncentralt-distribution with ν > 0 degrees of freedom and noncentrality parameter μ can be expressed in several forms.

Theconfluent hypergeometric function form of the density function is

f(x)=Γ(ν+12)νπΓ(ν2)(1+x2ν)ν+12StudentT(x;μ=0)exp(μ22){Aν(x;μ)+Bν(x;μ)},{\displaystyle f(x)=\underbrace {{\frac {\Gamma ({\frac {\nu +1}{2}})}{{\sqrt {\nu \pi }}\Gamma ({\frac {\nu }{2}})}}\left(1+{\frac {x^{2}}{\nu }}\right)^{-{\tfrac {\nu +1}{2}}}} _{{\text{StudentT}}(x\,;\,\mu =0)}\exp {\big (}-{\tfrac {\mu ^{2}}{2}}{\big )}{\Big \{}A_{\nu }(x\,;\,\mu )+B_{\nu }(x\,;\,\mu ){\Big \}},}

where

Aν(x;μ)=1F1(ν+12;12;μ2x22(x2+ν)),Bν(x;μ)=2μxx2+νΓ(ν2+1)Γ(ν+12)1F1(ν2+1;32;μ2x22(x2+ν)),{\displaystyle {\begin{aligned}A_{\nu }(x\,;\,\mu )&={_{1}F}_{1}\left({\frac {\nu +1}{2}}\,;\,{\frac {1}{2}}\,;\,{\frac {\mu ^{2}x^{2}}{2(x^{2}+\nu )}}\right),\\B_{\nu }(x\,;\,\mu )&={\frac {{\sqrt {2}}\mu x}{\sqrt {x^{2}+\nu }}}{\frac {\Gamma ({\frac {\nu }{2}}+1)}{\Gamma ({\frac {\nu +1}{2}})}}{_{1}F}_{1}\left({\frac {\nu }{2}}+1\,;\,{\frac {3}{2}}\,;\,{\frac {\mu ^{2}x^{2}}{2(x^{2}+\nu )}}\right),\end{aligned}}}

and where1F1 is aconfluent hypergeometric function.

An alternative integral form is[2]

f(x)=νν2exp(νμ22(x2+ν))πΓ(ν2)2ν12(x2+ν)ν+120yνexp(12(yμxx2+ν)2)dy.{\displaystyle f(x)={\frac {\nu ^{\frac {\nu }{2}}\exp \left(-{\frac {\nu \mu ^{2}}{2(x^{2}+\nu )}}\right)}{{\sqrt {\pi }}\Gamma ({\frac {\nu }{2}})2^{\frac {\nu -1}{2}}(x^{2}+\nu )^{\frac {\nu +1}{2}}}}\int _{0}^{\infty }y^{\nu }\exp \left(-{\frac {1}{2}}\left(y-{\frac {\mu x}{\sqrt {x^{2}+\nu }}}\right)^{2}\right)dy.}

A third form of the density is obtained using its cumulative distribution functions, as follows.

f(x)={νx{Fν+2,μ(x1+2ν)Fν,μ(x)},if x0;Γ(ν+12)πνΓ(ν2)exp(μ22),if x=0.{\displaystyle f(x)={\begin{cases}{\frac {\nu }{x}}\left\{F_{\nu +2,\mu }\left(x{\sqrt {1+{\frac {2}{\nu }}}}\right)-F_{\nu ,\mu }(x)\right\},&{\mbox{if }}x\neq 0;\\{\frac {\Gamma ({\frac {\nu +1}{2}})}{{\sqrt {\pi \nu }}\Gamma ({\frac {\nu }{2}})}}\exp \left(-{\frac {\mu ^{2}}{2}}\right),&{\mbox{if }}x=0.\end{cases}}}

This is the approach implemented by thedt function inR.

Properties

[edit]

Moments of the noncentralt-distribution

[edit]

In general, thekth raw moment of the noncentralt-distribution is[3]

E[Tk]={(ν2)k2Γ(νk2)Γ(ν2)exp(μ22)dkdμkexp(μ22),if ν>k;Does not exist,if νk.{\displaystyle {\mbox{E}}\left[T^{k}\right]={\begin{cases}\left({\frac {\nu }{2}}\right)^{\frac {k}{2}}{\frac {\Gamma \left({\frac {\nu -k}{2}}\right)}{\Gamma \left({\frac {\nu }{2}}\right)}}{\mbox{exp}}\left(-{\frac {\mu ^{2}}{2}}\right){\frac {d^{k}}{d\mu ^{k}}}{\mbox{exp}}\left({\frac {\mu ^{2}}{2}}\right),&{\mbox{if }}\nu >k;\\{\mbox{Does not exist}},&{\mbox{if }}\nu \leq k.\\\end{cases}}}

In particular, the mean and variance of the noncentralt-distribution are

E[T]={μν2Γ((ν1)/2)Γ(ν/2),if ν>1;Does not exist,if ν1,Var[T]={ν(1+μ2)ν2μ2ν2(Γ((ν1)/2)Γ(ν/2))2,if ν>2;Does not exist,if ν2.{\displaystyle {\begin{aligned}{\mbox{E}}\left[T\right]&={\begin{cases}\mu {\sqrt {\frac {\nu }{2}}}{\frac {\Gamma ((\nu -1)/2)}{\Gamma (\nu /2)}},&{\mbox{if }}\nu >1;\\{\mbox{Does not exist}},&{\mbox{if }}\nu \leq 1,\\\end{cases}}\\{\mbox{Var}}\left[T\right]&={\begin{cases}{\frac {\nu (1+\mu ^{2})}{\nu -2}}-{\frac {\mu ^{2}\nu }{2}}\left({\frac {\Gamma ((\nu -1)/2)}{\Gamma (\nu /2)}}\right)^{2},&{\mbox{if }}\nu >2;\\{\mbox{Does not exist}},&{\mbox{if }}\nu \leq 2.\\\end{cases}}\end{aligned}}}

An excellent approximation toν2Γ((ν1)/2)Γ(ν/2){\displaystyle {\sqrt {\frac {\nu }{2}}}{\frac {\Gamma ((\nu -1)/2)}{\Gamma (\nu /2)}}} is(134ν1)1{\displaystyle \left(1-{\frac {3}{4\nu -1}}\right)^{-1}}, which can be used in both formulas.[4][5]

Asymmetry

[edit]

The non-centralt-distribution is asymmetric unless μ is zero, i.e., a centralt-distribution. In addition, the asymmetry becomes smaller the larger degree of freedom. The right tail will be heavier than the left when μ > 0, and vice versa. However, the usual skewness is not generally a good measure of asymmetry for this distribution, because if the degrees of freedom is not larger than 3, the third moment does not exist at all. Even if the degrees of freedom is greater than 3, the sample estimate of the skewness is still very unstable unless the sample size is very large.


Mode

[edit]

The noncentralt-distribution is always unimodal and bell shaped, but the mode is not analytically available, although for μ ≠ 0 we have[6]

νν+(5/2)<modeμ<νν+1{\displaystyle {\sqrt {\frac {\nu }{\nu +(5/2)}}}<{\frac {\mathrm {mode} }{\mu }}<{\sqrt {\frac {\nu }{\nu +1}}}}

In particular, the mode always has the same sign as the noncentrality parameter μ. Moreover, the negative of the mode is exactly the mode for a noncentralt-distribution with the same number of degrees of freedom ν but noncentrality parameter −μ.

The mode is strictly increasing with μ (it always moves in the same direction as μ is adjusted in). In the limit, when μ → 0, the mode is approximated by

ν2Γ(ν+22)Γ(ν+32)μ;{\displaystyle {\sqrt {\frac {\nu }{2}}}{\frac {\Gamma \left({\frac {\nu +2}{2}}\right)}{\Gamma \left({\frac {\nu +3}{2}}\right)}}\mu ;\,}

and when μ → ∞, the mode is approximated by

νν+1μ.{\displaystyle {\sqrt {\frac {\nu }{\nu +1}}}\mu .}

Related distributions

[edit]
  • Centralt-distribution: the centralt-distribution can be converted into alocation/scale family. This family of distributions is used in data modeling to capture various tail behaviors. The location/scale generalization of the centralt-distribution is a different distribution from the noncentralt-distribution discussed in this article. In particular, this approximation does not respect the asymmetry of the noncentralt-distribution. However, the centralt-distribution can be used as an approximation to the noncentralt-distribution.[7]
  • IfT is noncentralt-distributed with ν degrees of freedom and noncentrality parameter μ andF =T2, thenF has anoncentralF-distribution with 1 numerator degree of freedom, ν denominator degrees of freedom, and noncentrality parameter μ2.
  • IfT is noncentralt-distributed with ν degrees of freedom and noncentrality parameter μ andZ=limνT{\displaystyle Z=\lim _{\nu \rightarrow \infty }T}, thenZ has a normal distribution with mean μ and unit variance.
  • When thedenominator noncentrality parameter of adoubly noncentralt-distribution is zero, then it becomes a noncentralt-distribution.

Special cases

[edit]

Occurrence and applications

[edit]

Use in power analysis

[edit]

Suppose we have an independent and identically distributed sampleX1, ...,Xn each of which is normally distributed with mean θ and variance σ2, and we are interested in testing thenull hypothesis θ = 0 vs. thealternative hypothesis θ ≠ 0. We can perform aone samplet-test using thetest statistic

T=X¯σ^/n=X¯θ(σ/n)+θ(σ/n)(σ^2σ2/(n1))/(n1){\displaystyle T={\frac {\bar {X}}{{\hat {\sigma }}/{\sqrt {n}}}}={\frac {{\frac {{\bar {X}}-\theta }{(\sigma /{\sqrt {n}})}}+{\frac {\theta }{(\sigma /{\sqrt {n}})}}}{\sqrt {\left.\left({\frac {{\hat {\sigma }}^{2}}{\sigma ^{2}/(n-1)}}\right)\right/(n-1)}}}}

whereX¯{\displaystyle {\bar {X}}} is the sample mean andσ^2{\displaystyle {\hat {\sigma }}^{2}\,\!} is the unbiasedsample variance. Since the right hand side of the second equality exactly matches the characterization of a noncentralt-distribution as described above,T has a noncentralt-distribution withn−1 degrees of freedom and noncentrality parameternθ/σ{\displaystyle {\sqrt {n}}\theta /\sigma \,\!}.

If the test procedure rejects the null hypothesis whenever|T|>t1α/2{\displaystyle |T|>t_{1-\alpha /2}\,\!}, wheret1α/2{\displaystyle t_{1-\alpha /2}\,\!} is the upper α/2 quantile of the(central) Student'st-distribution for a pre-specified α ∈ (0, 1), then the power of this test is given by

1Fn1,nθ/σ(t1α/2)+Fn1,nθ/σ(t1α/2).{\displaystyle 1-F_{n-1,{\sqrt {n}}\theta /\sigma }(t_{1-\alpha /2})+F_{n-1,{\sqrt {n}}\theta /\sigma }(-t_{1-\alpha /2}).}

Similar applications of the noncentralt-distribution can be found in thepower analysis of the general normal-theorylinear models, which includes the aboveone samplet-test as a special case.

Use in tolerance intervals

[edit]

One-sided normaltolerance intervals have an exact solution in terms of the sample mean and sample variance based on the noncentralt-distribution.[8] This enables the calculation of a statistical interval within which, with some confidence level, a specified proportion of a sampled population falls.

See also

[edit]

References

[edit]
  1. ^abLenth, Russell V (1989). "Algorithm AS 243: Cumulative Distribution Function of the Non-centralt Distribution".Journal of the Royal Statistical Society, Series C.38 (1):185–189.JSTOR 2347693.
  2. ^Scharf, L. (1991).Statistical Signal Processing. Reading: Addison-Wesley. p. 177.ISBN 0-201-19038-9.
  3. ^Hogben, D; Pinkham, RS; Wilk, MB (1961). "The moments of the non-centralt-distribution".Biometrika.48 (3–4):465–468.doi:10.1093/biomet/48.3-4.465.hdl:2027/coo.31924001119068.JSTOR 2332772.
  4. ^Hedges, Larry V. (June 1981). "Distribution Theory for Glass's Estimator of Effect size and Related Estimators".Journal of Educational Statistics.6 (2):107–128.doi:10.3102/2F10769986006002107.
  5. ^Tothfalusi, Laszlo; Endrenyi, Laszlo (1 March 2016)."An Exact Procedure for the Evaluation of Reference-Scaled Average Bioequivalence".The AAPS Journal.18 (2):476–489.doi:10.1208/s12248-016-9873-6.PMC 4779113.
  6. ^van Aubel, A; Gawronski, W (2003). "Analytic properties of noncentral distributions".Applied Mathematics and Computation.141:3–12.doi:10.1016/S0096-3003(02)00316-8.
  7. ^Helena Chmura Kraemer; Minja Paik (1979). "A Central t Approximation to the Noncentral t Distribution".Technometrics.21 (3):357–360.doi:10.1080/00401706.1979.10489781.JSTOR 1267759.
  8. ^Derek S. Young (August 2010)."tolerance: An R Package for Estimating Tolerance Intervals".Journal of Statistical Software.36 (5):1–39.ISSN 1548-7660. Retrieved19 February 2013., p.23

External links

[edit]
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Continuous data
Center
Dispersion
Shape
Count data
Summary tables
Dependence
Graphics
Study design
Survey methodology
Controlled experiments
Adaptive designs
Observational studies
Statistical theory
Frequentist inference
Point estimation
Interval estimation
Testing hypotheses
Parametric tests
Specific tests
Goodness of fit
Rank statistics
Bayesian inference
Correlation
Regression analysis
Linear regression
Non-standard predictors
Generalized linear model
Partition of variance
Categorical
Multivariate
Time-series
General
Specific tests
Time domain
Frequency domain
Survival
Survival function
Hazard function
Test
Biostatistics
Engineering statistics
Social statistics
Spatial statistics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Noncentral_t-distribution&oldid=1251317434"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp