Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Nitro compound

From Wikipedia, the free encyclopedia
Organic compound containing an –NO2 group
Not to be confused withNitrate ester.
See also:Transition metal nitrite complex

The structure of an organic nitro compound

Inorganic chemistry,nitro compounds areorganic compounds that contain one or morenitrofunctional groups (−NO2). The nitro group is one of the most commonexplosophores (functional group that makes a compound explosive) used globally. The nitro group is also stronglyelectron-withdrawing. Because of this property,C−H bonds alpha (adjacent) to the nitro group can be acidic. For similar reasons, the presence of nitro groups in aromatic compounds retardselectrophilic aromatic substitution but facilitatesnucleophilic aromatic substitution. Nitro groups are rarely found in nature. They are almost invariably produced by nitration reactions starting withnitric acid.[1]

Synthesis

[edit]

Preparation of aromatic nitro compounds

[edit]
Structural details ofnitrobenzene, distances in picometers.[2]

Aromatic nitro compounds are typically synthesized by nitration. Nitration is achieved using a mixture ofnitric acid andsulfuric acid, which produce thenitronium ion (NO+2), which is the electrophile:

 Benzene +Nitronium ion
 
H+
Rightward reaction arrow with minor product(s) to top right
Nitrobenzene

The nitration product produced on the largest scale, by far, isnitrobenzene. Many explosives are produced by nitration includingtrinitrophenol (picric acid),trinitrotoluene (TNT), andtrinitroresorcinol (styphnic acid).[3]Another but more specialized method for making aryl–NO2 group starts from halogenated phenols, is theZinke nitration.

Preparation of aliphatic nitro compounds

[edit]

Aliphatic nitro compounds can be synthesized by various methods; notable examples include:

Ter Meer Reaction

[edit]

Innucleophilic aliphatic substitution,sodium nitrite (NaNO2) replaces analkyl halide. In the so-called Ter Meer reaction (1876) named afterEdmund ter Meer,[15] the reactant is a 1,1-halonitroalkane:

The ter Meer reaction

Thereaction mechanism is proposed in which in the first slow step aproton is abstracted from nitroalkane1 to acarbanion2 followed byprotonation to an aci-nitro3 and finallynucleophilic displacement of chlorine based on an experimentally observed hydrogenkinetic isotope effect of 3.3.[16] When the same reactant is reacted withpotassium hydroxide the reaction product is the 1,2-dinitro dimer.[17]

Occurrence

[edit]

In nature

[edit]

Chloramphenicol is a rare example of anaturally occurring nitro compound. At least some naturally occurring nitro groups arose by the oxidation of amino groups.[18]2-Nitrophenol is an aggregationpheromone ofticks.

Examples of nitro compounds are rare in nature.3-Nitropropionic acid found infungi and plants (Indigofera).Nitropentadecene is a defense compound found intermites.Aristolochic acids are found in the flowering plant familyAristolochiaceae. Nitrophenylethane is found inAniba canelilla.[19] Nitrophenylethane is also found in members of theAnnonaceae,Lauraceae andPapaveraceae.[20]

In pharmaceuticals

[edit]

Despite the occasional use in pharmaceuticals, the nitro group is associated withmutagenicity andgenotoxicity and therefore is often regarded as a liability in thedrug discovery process.[21]

Reactions

[edit]

Nitro compounds participate in severalorganic reactions, the most important beingreduction of nitro compounds to the corresponding amines:

RNO2 + 3 H2 → RNH2 + 2 H2O

Virtually allaromatic amines (e.g.aniline) are derived from nitroaromatics through suchcatalytic hydrogenation. A variation is formation of a dimethylaminoarene withpalladium on carbon andformaldehyde:[22]

Nitro compound hydrogenation
Nitro compound hydrogenation

Theα-carbon of nitroalkanes is somewhat acidic. The pKa values ofnitromethane and2-nitropropane are respectively 17.2 and 16.9 indimethyl sulfoxide (DMSO) solution, suggesting an aqueous pKa of around 11.[23] In other words, thesecarbon acids can be deprotonated in aqueous solution. The conjugate base is called anitronate, and behaves similar to anenolate. In thenitroaldol reaction, itadds directly toaldehydes, and, withenones, can serve as aMichael donor. Conversely, anitroalkene reacts with enols as a Michael acceptor.[24][25]Nitrosating a nitronate gives anitrolic acid.[26]

Nitronates are also key intermediates in theNef reaction: when exposed to acids or oxidants, a nitronate hydrolyzes to acarbonyl and (respectively)azanone ornitric acid.[27]

Grignard reagents combine with nitro compounds to give anitrone; but a Grignard reagent with an α hydrogen will then add again to the nitrone to give ahydroxylamine salt.[28]

Dye syntheses

[edit]

TheLeimgruber–Batcho,Bartoli andBaeyer–Emmerling indole syntheses begin with aromatic nitro compounds.Indigo can be synthesized in a condensation reaction fromortho-nitrobenzaldehyde andacetone in strongly basic conditions in a reaction known as theBaeyer–Drewson indigo synthesis.

Biochemical reactions

[edit]

Manyflavin-dependentenzymes are capable of oxidizing aliphatic nitro compounds to less-toxic aldehydes and ketones.Nitroalkane oxidase and 3-nitropropionate oxidase oxidize aliphatic nitro compounds exclusively, whereas other enzymes such asglucose oxidase have other physiological substrates.[29]

Explosions

[edit]

Explosive decomposition of organo nitro compounds are redox reactions, wherein both the oxidant (nitro group) and the fuel (hydrocarbon substituent) are bound within the same molecule. The explosion process generates heat by forming highly stable products including molecularnitrogen (N2), carbon dioxide, and water. The explosive power of this redox reaction is enhanced because these stable products are gases at mild temperatures. Manycontact explosives contain the nitro group.

See also

[edit]

References

[edit]
  1. ^Henry Feuer, ed. (1970).Nitro and Nitroso Groups: Part 2, Volume 2. PATAI'S Chemistry of Functional Groups. Vol. 2. John Wiley & Sons Ltd.doi:10.1002/9780470771174.ISBN 978-0-470-77117-4.Saul Patai, ed. (1982).Nitro and Nitroso Groups: Supplement F: Part 2, Volume 2. PATAI'S Chemistry of Functional Groups. John Wiley & Sons Ltd.doi:10.1002/9780470771679.ISBN 978-0-470-77167-9.Saul Patai, ed. (1982).Amino, Nitroso and Nitro Compounds and Their Derivatives: Supplement F: Part 1, Volume 1. PATAI'S Chemistry of Functional Groups. John Wiley & Sons Ltd.doi:10.1002/9780470771662.ISBN 978-0-470-77166-2.
  2. ^Olga V. Dorofeeva; Yuriy V. Vishnevskiy; Natalja Vogt; Jürgen Vogt; Lyudmila V. Khristenko; Sergey V. Krasnoshchekov; Igor F. Shishkov; István Hargittai; Lev V. Vilkov (2007). "Molecular Structure and Conformation of Nitrobenzene Reinvestigated by Combined Analysis of Gas-Phase Electron Diffraction, Rotational Constants, and Theoretical Calculations".Structural Chemistry.18 (6):739–753.doi:10.1007/s11224-007-9186-6.S2CID 98746905.
  3. ^Gerald, Booth. "Nitro Compounds, Aromatic".Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.doi:10.1002/14356007.a17_411.ISBN 978-3-527-30673-2.
  4. ^Markofsky, Sheldon; Grace, W.G. (2000). "Nitro Compounds, Aliphatic".Ullmann's Encyclopedia of Industrial Chemistry.doi:10.1002/14356007.a17_401.ISBN 978-3-527-30673-2.
  5. ^N. Kornblum, R. A. Smiley, H. E. Ungnade, A. M. White, B. Taub, S. A. Herbert, Jr.,J. Am. Chem. Soc. 1955, 77, 5528 – 5533;
  6. ^Kornblum, N.; Ungnade, H. E. (1963). "1-Nitroöctane".Organic Syntheses.4: 724.doi:10.15227/orgsyn.038.0075.
  7. ^Walden, P. (1907)."Zur Darstellung aliphatischer Sulfocyanide, Cyanide und Nitrokörper".Berichte der Deutschen Chemischen Gesellschaft.40 (3):3214–3217.doi:10.1002/cber.19070400383.
  8. ^Olah, George A.; Ramaiah, Pichika; Chang-Soo, Lee; Prakash, Surya (1992). "Convenient Oxidation of Oximes to Nitro Compounds with Sodium Perborate in Glacial Acetic Acid".Synlett.1992 (4):337–339.doi:10.1055/s-1992-22006.
  9. ^Ehud, Keinan; Yehuda, Mazur (1977). "Dry ozonation of amines. Conversion of primary amines to nitro compounds".The Journal of Organic Chemistry.42 (5):844–847.doi:10.1021/jo00425a017.
  10. ^Chandrasekhar, S.; Shrinidhi, A. (2014)."Useful Extensions of the Henry Reaction: Expeditious Routes to Nitroalkanes and Nitroalkenes in Aqueous Media".Synthetic Communications.44 (20):3008–3018.doi:10.1080/00397911.2014.926373.S2CID 98439096.
  11. ^Shrinidhi, A. (2015)."Microwave-assisted chemoselective reduction of conjugated nitroalkenes to nitroalkanes with aqueous tri-n-butyltin hydride".Cogent Chemistry.1 (1) 1061412.doi:10.1080/23312009.2015.1061412.
  12. ^Wislicenus, Wilhelm; Endres, Anton (1902)."Ueber Nitrirung mittels Aethylnitrat [Nitrification by means of ethyl nitrate]".Berichte der Deutschen Chemischen Gesellschaft.35 (2):1755–1762.doi:10.1002/cber.190203502106.
  13. ^Weygand, Conrad (1972). Hilgetag, G.; Martini, A. (eds.).Weygand/Hilgetag Preparative Organic Chemistry (4th ed.). New York: John Wiley & Sons, Inc. p. 1007.ISBN 978-0-471-93749-4.
  14. ^Whitmore, F. C.; Whitmore, Marion G. (1923). "Nitromethane".Organic Syntheses.1: 401.doi:10.15227/orgsyn.003.0083.
  15. ^Edmund ter Meer (1876)."Ueber Dinitroverbindungen der Fettreihe".Justus Liebigs Annalen der Chemie.181 (1):1–22.doi:10.1002/jlac.18761810102.
  16. ^Hawthorne, M. Frederick (1956). "Aci-Nitroalkanes. I. The Mechanism of the ter Meer Reaction1".Journal of the American Chemical Society.78 (19):4980–4984.doi:10.1021/ja01600a048.
  17. ^3-Hexene, 3,4-dinitro- D. E. Bisgrove, J. F. Brown, Jr., and L. B. Clapp.Organic Syntheses, Coll. Vol. 4, p. 372 (1963); Vol. 37, p. 23 (1957). (Article)
  18. ^Zocher, Georg; Winkler, Robert; Hertweck, Christian; Schulz, Georg E (2007). "Structure and Action of the N-oxygenase AurF from Streptomyces thioluteus".Journal of Molecular Biology.373 (1):65–74.doi:10.1016/j.jmb.2007.06.014.PMID 17765264.
  19. ^Maia, José Guilherme S.; Andrade, Eloísa Helena A. (2009)."Database of the Amazon aromatic plants and their essential oils"(PDF).Química Nova.32 (3). FapUNIFESP (SciELO):595–622.doi:10.1590/s0100-40422009000300006.ISSN 0100-4042.
  20. ^Kramer, K.U.; Kubitzki, K.; Rohwer, J.G.; Bittrich, V. (1993).Flowering Plants, Dicotyledons: Magnoliid, Hamamelid, and Caryophyllid Families. Families and genera of vascular plants. Springer-Verlag, Berlin.ISBN 978-3-540-55509-4.
  21. ^Nepali K, Lee HY, Liou JP (March 2019). "Nitro-Group-Containing Drugs".J. Med. Chem.62 (6):2851–2893.doi:10.1021/acs.jmedchem.8b00147.PMID 30295477.S2CID 52931949.
  22. ^"ETHYL p-DIMETHYLAMINOPHENYLACETATE"(PDF).Organic Syntheses.47: 69. 1967.doi:10.15227/orgsyn.047.0069.
  23. ^Bordwell, Frederick G; Satish, A. V (1994). "Is Resonance Important in Determining the Acidities of Weak Acids or the Homolytic Bond Dissociation Enthalpies (BDEs) of Their Acidic H-A Bonds?".Journal of the American Chemical Society.116 (20): 8885.doi:10.1021/ja00099a004.
  24. ^Ranganathan, Darshan; Rao, Bhushan; Ranganathan, Subramania; Mehrotra, Ashok & Iyengar, Radha (1980). "Nitroethylene: a stable, clean, and reactive agent for organic synthesis".The Journal of Organic Chemistry.45 (7):1185–1189.doi:10.1021/jo01295a003.
  25. ^Jubert, Carole & Knochel, Paul (1992). "Preparation of polyfunctional nitro olefins and nitroalkanes using the copper-zinc reagents RCu(CN)ZnI".The Journal of Organic Chemistry.57 (20):5431–5438.doi:10.1021/jo00046a027.
  26. ^Williams, D. L. H. (1988).Nitrosation. Cambridge, UK:Cambridge University. p. 44.ISBN 0-521-26796-X.
  27. ^Smith (2020),March's Organic Chemistry, rxn. 16-3.
  28. ^Bartoli, Giuseppe; Marcantoni, Enrico; Petrini, Marino (1992) [14 Apr 1992]. "Nitrones from addition of benzyl and allyl Grignard reagents to alkyl nitro compounds: chemo-, regio-, and stereoselectivity of the reaction".Journal of Organic Chemistry.57 (22). American Chemical Society:5834–5840.doi:10.1021/jo00048a012.
  29. ^Nagpal, Akanksha; Valley, Michael P.; Fitzpatrick, Paul F.; Orville, Allen M. (2006)."Crystal Structures of Nitroalkane Oxidase: Insights into the Reaction Mechanism from a Covalent Complex of the Flavoenzyme Trapped during Turnover".Biochemistry.45 (4):1138–50.doi:10.1021/bi051966w.PMC 1855086.PMID 16430210.
Wikimedia Commons has media related toNitro compounds.
Hydrocarbons
(only C and H)
Onlycarbon,
hydrogen,
andoxygen
(only C, H and O)
R-O-R
carbonyl
carboxy
Only one
element,
not being
carbon,
hydrogen,
or oxygen
(one element,
not C, H or O)
Nitrogen
Silicon
Phosphorus
Arsenic
Sulfur
Boron
Selenium
Tellurium
Polonium
Halo
Other
Nitrogen species
Hydrides
Organic
Oxides
Halides
Oxidation states
−3,−2,−1, 0,+1,+2,+3,+4,+5 (a stronglyacidic oxide)
International
National
Retrieved from "https://en.wikipedia.org/w/index.php?title=Nitro_compound&oldid=1338542337"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp