Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Neuromorphic computing

From Wikipedia, the free encyclopedia
Integrated circuit technology

Part of a series on
Machine learning
anddata mining
This article needs to beupdated. Please help update this article to reflect recent events or newly available information.(October 2025)
Neuromorphic computing
InventorCarver Mead

Neuromorphic computing is a computing approach inspired by the human brain's structure and function.[1][2] It usesartificial neurons to perform computations, mimicking neural systems for tasks such as perception, motor control, and multisensory integration.[3] These systems, implemented in analog, digital, or mixed-modeVLSI, prioritize robustness, adaptability, and learning by emulating the brain’s distributed processing across small computing elements.[4] This interdisciplinary field integratesbiology,physics,mathematics,computer science, andelectronic engineering to develop systems that emulate the brain’s morphology and computational strategies.[5] Neuromorphic systems aim to enhance energy efficiency and computational power for applications including artificial intelligence, pattern recognition, and sensory processing.

History

[edit]

Carver Mead proposed one of the first applications for neuromorphic engineering in the late 1980s.[6] In 2006, researchers atGeorgia Tech developed a field programmable neural array, a silicon-based chip modeling neuron channel-ion characteristics.[7] In 2011,MIT researchers created a chip mimicking synaptic communication using 400 transistors and standardCMOS techniques.[8][9]

In 2012HP Labs researchers reported that Mott memristors exhibit volatile behavior at low temperatures, enabling the creation ofneuristors that mimic neuron behavior and supportTuring machine components.[10] Also in 2012,Purdue University researchers presented a neuromorphic chip design using lateralspin valves andmemristors, noted for energy efficiency.[11]

The 2013Blue Brain Project creates detailed digital models of rodent brains.[12]

Neurogrid, developed byBrains in Silicon atStanford University, used 16 NeuroCore chips to emulate 65,536 neurons with high energy efficiency in 2014.[13] The 2014BRAIN Initiative andIBM’sTrueNorth chip contributed to neuromorphic advancements.[14]

The 2016 BrainScaleS project, a hybrid neuromorphic supercomputer atUniversity of Heidelberg, operated 864 times faster than biological neurons.[15]

In 2017,Intel unveiled itsLoihi chip, using an asynchronousspiking neural network for efficient learning and inference.[16] Also in 2017IMEC’s self-learning chip, based on OxRAM, demonstrated music composition by learning from minuets.[17]

In 2022, MIT researchers developed artificial synapses usingprotons for analog deep learning.[18] In 2019, the European Union funded neuromorphic quantum computing to explore quantum operations using neuromorphic systems.[19] Also in 2022, researchers at theMax Planck Institute for Polymer Research developed an organic artificial spiking neuron for in-situ neuromorphic sensing and biointerfacing.[20]

Researchers reported in 2024 that chemical systems in liquid solutions can detect sound at various wavelengths, offering potential for neuromorphic applications.[21]

Neurological inspiration

[edit]

Neuromorphic engineering emulates the brain’s structure and operations, focusing on the analog nature of biological computation and the role of neurons in cognition. The brain processes information via neurons using chemical signals, abstracted into mathematical functions. Neuromorphic systems distribute computation across small elements, similar to neurons, using methods guided by anatomical and functional neural maps fromelectron microscopy and neural connection studies.[22][23]

Implementation

[edit]

Neuromorphic systems employ hardware such as oxide-based memristors,spintronic memories, threshold switches, and transistors.[24][25] Software implementations trainspiking neural networks using errorbackpropagation.[26][27]

Neuromemristive systems

[edit]

Neuromemristive systems use memristors to implement neuroplasticity, focusing on abstract neural network models rather than detailed biological mimicry.[28] These systems enable applications inspeech recognition,face recognition, andobject recognition, and can replace conventional digital logic gates.[29] TheCaravelli-Traversa-Di Ventra equation describes memristive memory evolution, revealing tunneling phenomena andLyapunov functions.[30]

Neuromorphic sensors

[edit]

Neuromorphic principles extend to sensors, such as theretinomorphic sensor orevent camera, which mimic human vision by registering brightness changes individually, optimizing power consumption.[31]

An example of this applied to detectinglight is theretinomorphic sensor or, when employed in an array, anevent camera.

Ethical considerations

[edit]

Neuromorphic systems raise the same ethical questions as those for other approaches toartificial intelligence. Daniel Lim argued that advanced neuromorphic systems could lead to machine consciousness, raising concerns about whether civil rights and other protocols should be extended to them.[32] Legal debates, such as inAcohs Pty Ltd v. Ucorp Pty Ltd, question ownership of work produced by neuromorphic systems, as non-human-generated outputs may not be copyrightable.[33]

See also

[edit]
Portal:

References

[edit]
  1. ^Ham, Donhee; Park, Hongkun; Hwang, Sungwoo; Kim, Kinam (2021)."Neuromorphic electronics based on copying and pasting the brain".Nature Electronics.4 (9):635–644.doi:10.1038/s41928-021-00646-1.ISSN 2520-1131.S2CID 240580331.
  2. ^van de Burgt, Yoeri; Lubberman, Ewout; Fuller, Elliot J.; Keene, Scott T.; Faria, Grégorio C.; Agarwal, Sapan; Marinella, Matthew J.; Alec Talin, A.; Salleo, Alberto (April 2017)."A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing".Nature Materials.16 (4):414–418.Bibcode:2017NatMa..16..414V.doi:10.1038/nmat4856.ISSN 1476-4660.PMID 28218920.
  3. ^Mead, Carver (1990)."Neuromorphic electronic systems"(PDF).Proceedings of the IEEE.78 (10):1629–1636.doi:10.1109/5.58356.S2CID 1169506.
  4. ^Boddhu, S. K.; Gallagher, J. C. (2012)."Qualitative Functional Decomposition Analysis of Evolved Neuromorphic Flight Controllers".Applied Computational Intelligence and Soft Computing.2012:1–21.doi:10.1155/2012/705483.
  5. ^Rami A. Alzahrani; Alice C. Parker (July 2020).Neuromorphic Circuits With Neural Modulation Enhancing the Information Content of Neural Signaling. International Conference on Neuromorphic Systems 2020. pp. 1–8.doi:10.1145/3407197.3407204.S2CID 220794387.
  6. ^Mead, Carver A.; Mahowald, M. A. (January 1, 1988)."A silicon model of early visual processing %2888%2990024-X".Neural Networks.1 (1):91–97.doi:10.1016/0893-6080(88)90024-X.ISSN 0893-6080.
  7. ^Farquhar, Ethan; Hasler, Paul. (May 2006). "A Field Programmable Neural Array".2006 IEEE International Symposium on Circuits and Systems. pp. 4114–4117.doi:10.1109/ISCAS.2006.1693534.ISBN 978-0-7803-9389-9.S2CID 206966013.
  8. ^"MIT creates "brain chip"". November 15, 2011. RetrievedDecember 4, 2012.
  9. ^Poon, Chi-Sang; Zhou, Kuan (2011)."Neuromorphic silicon neurons and large-scale neural networks: challenges and opportunities".Frontiers in Neuroscience.5: 108.doi:10.3389/fnins.2011.00108.PMC 3181466.PMID 21991244.
  10. ^Pickett, M. D.; Medeiros-Ribeiro, G.; Williams, R. S. (2012). "A scalable neuristor built with Mott memristors".Nature Materials.12 (2):114–7.Bibcode:2013NatMa..12..114P.doi:10.1038/nmat3510.PMID 23241533.S2CID 16271627.
  11. ^Sharad, Mrigank; Augustine, Charles; Panagopoulos, Georgios; Roy, Kaushik (2012). "Proposal For Neuromorphic Hardware Using Spin Devices".arXiv:1206.3227 [cond-mat.dis-nn].
  12. ^"Involved Organizations". Archived fromthe original on March 2, 2013. RetrievedFebruary 22, 2013.
  13. ^Boahen, Kwabena (April 24, 2014). "Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations".Proceedings of the IEEE.102 (5):699–716.doi:10.1109/JPROC.2014.2313565.S2CID 17176371.
  14. ^Modha, Dharmendra (August 2014). "A million spiking-neuron integrated circuit with a scalable communication network and interface".Science.345 (6197):668–673.Bibcode:2014Sci...345..668M.doi:10.1126/science.1254642.PMID 25104385.S2CID 12706847.
  15. ^"Beyond von Neumann, Neuromorphic Computing Steadily Advances".HPCwire. March 21, 2016. RetrievedOctober 8, 2021.
  16. ^Davies, Mike; et al. (January 16, 2018). "Loihi: A Neuromorphic Manycore Processor with On-Chip Learning".IEEE Micro.38 (1):82–99.Bibcode:2018IMicr..38a..82D.doi:10.1109/MM.2018.112130359.S2CID 3608458.
  17. ^Bourzac, Katherine (May 23, 2017)."A Neuromorphic Chip That Makes Music".IEEE Spectrum. RetrievedOctober 1, 2019.
  18. ^Onen, Murat; Emond, Nicolas; Wang, Baoming; Zhang, Difei; Ross, Frances M.; Li, Ju; Yildiz, Bilge; del Alamo, Jesús A. (July 29, 2022)."Nanosecond protonic programmable resistors for analog deep learning"(PDF).Science.377 (6605):539–543.Bibcode:2022Sci...377..539O.doi:10.1126/science.abp8064.ISSN 0036-8075.PMID 35901152.S2CID 251159631.
  19. ^"Neuromorphic Quantum Computing | Quromorphic Project | Fact Sheet | H2020".CORDIS | European Commission.doi:10.3030/828826. RetrievedMarch 18, 2024.
  20. ^Sarkar, Tanmoy; Lieberth, Katharina; Pavlou, Aristea; Frank, Thomas; Mailaender, Volker; McCulloch, Iain; Blom, Paul W. M.; Torriccelli, Fabrizio; Gkoupidenis, Paschalis (November 7, 2022)."An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing".Nature Electronics.5 (11):774–783.doi:10.1038/s41928-022-00859-y.hdl:10754/686016.ISSN 2520-1131.S2CID 253413801.
  21. ^Tomassoli, Laura; Silva-Dias, Leonardo; Dolnik, Milos; Epstein, Irving R.; Germani, Raimondo; Gentili, Pier Luigi (February 8, 2024)."Neuromorphic Engineering in Wetware: Discriminating Acoustic Frequencies through Their Effects on Chemical Waves".The Journal of Physical Chemistry B.128 (5):1241–1255.doi:10.1021/acs.jpcb.3c08429.ISSN 1520-6106.PMID 38285636.
  22. ^Devineni, Anita (October 2, 2024). "A complete map of the fruit-fly".Nature.634 (8032):35–36.doi:10.1038/d41586-024-03029-6.PMID 39358530.
  23. ^Wang, Jun; Jung, Woo-Bin; Gertner, Rona; Park, Hongkun; Ham, Donhee (2025)."Synaptic connectivity mapping among thousands of neurons via parallelized intracellular recording with a microhole electrode array".Nature Biomedical Engineering.9 (7):1144–1154.doi:10.1038/s41551-025-01352-5.PMID 39934437.
  24. ^Maan, A. K.; Jayadevi, D. A.; James, A. P. (January 1, 2016). "A Survey of Memristive Threshold Logic Circuits".IEEE Transactions on Neural Networks and Learning Systems.PP (99):1734–1746.arXiv:1604.07121.Bibcode:2016arXiv160407121M.doi:10.1109/TNNLS.2016.2547842.ISSN 2162-237X.PMID 27164608.S2CID 1798273.
  25. ^Zhou, You; Ramanathan, S. (August 1, 2015)."Mott Memory and Neuromorphic Devices".Proceedings of the IEEE.103 (8):1289–1310.doi:10.1109/JPROC.2015.2431914.ISSN 0018-9219.S2CID 11347598.
  26. ^Eshraghian, Jason K.; Ward, Max; Neftci, Emre; Wang, Xinxin; Lenz, Gregor; Dwivedi, Girish; Bennamoun, Mohammed; Jeong, Doo Seok; Lu, Wei D. (October 1, 2021). "Training Spiking Neural Networks Using Lessons from Deep Learning".arXiv:2109.12894 [cs.NE].
  27. ^"Hananel-Hazan/bindsnet: Simulation of spiking neural networks (SNNs) using PyTorch".GitHub. March 31, 2020.
  28. ^"002.08 N.I.C.E. Workshop 2014: Towards Intelligent Computing with Neuromemristive Circuits and Systems – Feb. 2014".digitalops.sandia.gov. RetrievedAugust 26, 2019.
  29. ^Maan, A.K.; James, A.P.; Dimitrijev, S. (2015). "Memristor pattern recogniser: isolated speech word recognition".Electronics Letters.51 (17):1370–1372.Bibcode:2015ElL....51.1370M.doi:10.1049/el.2015.1428.hdl:10072/140989.S2CID 61454815.
  30. ^Caravelli; et al. (2017). "The complex dynamics of memristive circuits: analytical results and universal slow relaxation".Physical Review E.95 (2) 022140.arXiv:1608.08651.Bibcode:2017PhRvE..95b2140C.doi:10.1103/PhysRevE.95.022140.PMID 28297937.S2CID 6758362.
  31. ^Skorka, Orit (July 1, 2011)."Toward a digital camera to rival the human eye".Journal of Electronic Imaging.20 (3): 033009–033009–18.Bibcode:2011JEI....20c3009S.doi:10.1117/1.3611015.ISSN 1017-9909.
  32. ^Lim, Daniel (June 1, 2014). "Brain simulation and personhood: a concern with the Human Brain Project".Ethics and Information Technology.16 (2):77–89.doi:10.1007/s10676-013-9330-5.ISSN 1572-8439.S2CID 17415814.
  33. ^Lavan."Copyright in source code and digital products".Lavan. RetrievedMay 10, 2019.

External links

[edit]
Wikimedia Commons has media related toNeuromorphic engineering.
Basic
science
Clinical
neuroscience
Cognitive
neuroscience
Interdisciplinary
fields
Concepts
Differentiable computing
General
Hardware
Software libraries
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Neuromorphic_computing&oldid=1323155916"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp