Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Nelson–Aalen estimator

From Wikipedia, the free encyclopedia
Nonparametric estimate of cumulative hazard

TheNelson–Aalen estimator is anon-parametric estimator of thecumulative hazard rate function in case ofcensored data orincomplete data.[1] It is used insurvival theory,reliability engineering andlife insurance to estimate the cumulative number of expected events. An "event" can be the failure of a non-repairable component, the death of a human being, or any occurrence for which the experimental unit remains in the "failed" state (e.g., death) from the point at which it changed on. Theestimator is given by

H~(t)=titdini,{\displaystyle {\tilde {H}}(t)=\sum _{t_{i}\leq t}{\frac {d_{i}}{n_{i}}},}

withdi{\displaystyle d_{i}} the number of events at timeti{\displaystyle t_{i}} andni{\displaystyle n_{i}} the total individuals at risk atti{\displaystyle t_{i}}.[2]

The curvature of the Nelson–Aalen estimator gives an idea of the hazard rate shape. A concave shape is an indicator forinfant mortality while a convex shape indicateswear out mortality.

It can be used for example when testing the homogeneity ofPoisson processes.[3]

It was constructed byWayne Nelson andOdd Aalen.[4][5][6]The Nelson-Aalen estimator is directly related to theKaplan-Meier estimator and both maximize theempirical likelihood.[7]

References

[edit]
  1. ^"Kaplan–Meier and Nelson–Aalen Estimators". 21 September 2008.
  2. ^"Kaplan–Meier Survival Estimates".
  3. ^Kysely, Jan; Picek, Jan; Beranova, Romana (2010). "Estimating extremes in climate change simulations using the peaks-over-threshold method with a non-stationary threshold".Global and Planetary Change.72 (1–2):55–68.Bibcode:2010GPC....72...55K.doi:10.1016/j.gloplacha.2010.03.006.
  4. ^Nelson, W. (1969). "Hazard plotting for incomplete failure data".Journal of Quality Technology.1:27–52.doi:10.1080/00224065.1969.11980344.
  5. ^Nelson, W. (1972). "Theory and applications of hazard plotting for censored failure data".Technometrics.14 (4):945–965.doi:10.1080/00401706.1972.10488991.
  6. ^Aalen, Odd (1978)."Nonparametric inference for a family of counting processes".Annals of Statistics.6 (4):701–726.doi:10.1214/aos/1176344247.JSTOR 2958850.
  7. ^Zhou, M. (2015). Empirical Likelihood Method in Survival Analysis (1st ed.). Chapman and Hall/CRC.https://doi.org/10.1201/b18598,https://books.google.com/books?id=9-b5CQAAQBAJ&dq=Does+the+Nelson%E2%80%93Aalen+estimator+construct+an+empirical+likelihood%3F&pg=PA7

Further reading

[edit]

External links

[edit]
Continuous data
Center
Dispersion
Shape
Count data
Summary tables
Dependence
Graphics
Study design
Survey methodology
Controlled experiments
Adaptive designs
Observational studies
Statistical theory
Frequentist inference
Point estimation
Interval estimation
Testing hypotheses
Parametric tests
Specific tests
Goodness of fit
Rank statistics
Bayesian inference
Correlation
Regression analysis (see alsoTemplate:Least squares and regression analysis
Linear regression
Non-standard predictors
Generalized linear model
Partition of variance
Categorical
Multivariate
Time-series
General
Specific tests
Time domain
Frequency domain
Survival
Survival function
Hazard function
Test
Biostatistics
Engineering statistics
Social statistics
Spatial statistics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Nelson–Aalen_estimator&oldid=1292201264"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp