Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Napier Sabre

From Wikipedia, the free encyclopedia
1930s British aircraft piston engine

Sabre
Napier Sabre cutaway at the London Science Museum.
TypeLiquid-cooledH-24sleeve valvepistonaero engine
National originUnited Kingdom
ManufacturerD. Napier & Son
First runJanuary 1938
Major applicationsHawker Tempest
Hawker Typhoon
Napier-Heston Racer

TheNapier Sabre is a BritishH-24-cylinder,liquid-cooled,sleeve valve,pistonaero engine, designed byMajor Frank Halford and built byD. Napier & Son duringWorld War II. The engine evolved to become one of the most powerfulinline piston aircraft engines in the world, developing from 2,200 hp (1,600 kW) in its earlier versions to 3,500 hp (2,600 kW) in late-model prototypes.

The first operational aircraft to be powered by the Sabre were theHawker Typhoon andHawker Tempest; the first aircraft powered by the Sabre was theNapier-Heston Racer, which was designed to capture the world speed record.[nb 1] Other aircraft using the Sabre were early prototype and production variants of theBlackburn Firebrand, theMartin-Baker MB 3 prototype and aHawker Fury prototype. The rapid introduction ofjet engines after the war led to the quick demise of the Sabre, as there was less need for high power military piston aero engines and because Napier turned its attention to developingturboprop engines such as theNaiad andEland.

Design and development

[edit]

Prior to the Sabre, Napier had been working on large aero engines for some time. Its most famous was theLion, which had been a very successful engine between the World Wars and in modified form had powered several of theSupermarineSchneider Trophy competitors in 1923 and 1927, as well as severalland speed record cars. By the late 1920s, the Lion was no longer competitive and work started on replacements.

Napier followed the Lion with twoH-block designs: the H-16Rapier and the H-24Dagger. The H-block has a compact layout, consisting of two horizontally opposed engines, one atop or beside the other. Since the cylinders are opposed, the motion in one is balanced by the motion on the opposing side, eliminating both first order and second order vibration. In these new designs, Napier chose air cooling but in service, the rear cylinders proved to be impossible to cool properly, which made the engines unreliable.

Genesis

[edit]
The first aircraft designed around the Sabre engine – theNapier-Heston Racer which crashed during early flight tests.

During the 1930s, studies showed the need for engines capable of developing one horsepower per cubic inch of displacement (about 45 kW/litre). Such power output was needed to propel aircraft large enough to carry large fuel loads for long range flights. A typical large engine of the era, thePratt & Whitney R-1830Twin Wasp, developed about 1,200 hp (890 kW) from 1,830cubic inches (30 litres), so an advance of some 50 per cent would be needed. This called for radical changes and while many companies tried to build such an engine, none succeeded.[citation needed]

In 1927,Harry Ricardo published a study on the concept of thesleeve valve engine. In it, he wrote that traditionalpoppet valve engines would be unlikely to produce much more than 1,500 hp (1,100 kW), a figure that many companies were eyeing for next generation engines. To pass this limit, the sleeve valve would have to be used, to increasevolumetric efficiency, as well as to decrease the engine's sensitivity to detonation, which was prevalent with the poor quality, low-octane fuels in use at the time.[1] Halford had worked for Ricardo 1919–1922 at its London office[nb 2] and Halford's 1923 office was in Ladbroke Grove, North Kensington, only a few miles from Ricardo, while Halford's 1929 office was even closer (700 yards),[2][3] and while in 1927 Ricardo started work withBristol Engines on a line of sleeve-valve designs,[4] Halford started work with Napier,[5] using the Dagger as the basis. The layout of the H-block, with its inherent balance and the Sabre's relatively short stroke, allowed it to run at a higher rate of rotation, to deliver more power from a smaller displacement, provided that good volumetric efficiency could be maintained (with better breathing), which sleeve valves could do.[6]

The Napier company decided first to develop a large 24 cylinder liquid–cooled engine, capable of producing at least 2,000 hp (1,500 kW) in late 1935. Although the company continued with the opposed H layout of the Dagger, this new design positioned the cylinder blocks horizontally and it was to use sleeve valves.[7] All of the accessories were grouped conveniently above and below the cylinder blocks, rather than being at the front and rear of the engine, as in most contemporary designs.[7]

The Air Ministry supported the Sabre programme with a development order in 1937 for two reasons: to provide an alternative engine if theRolls-Royce Vulture and theBristol Centaurus failed as the next generation of high power engines and to keep Napier in the aero-engine industry.[8]The first Sabre engines were ready for testing in January 1938, although they were limited to 1,350 hp (1,010 kW). By March, they were passing tests at 2,050 hp (1,530 kW) and by June 1940, when the Sabre passed theAir Ministry's 100-hour test, the first production versions were delivering 2,200 hp (1,600 kW) from their 2,238 cubic inch (37 litre) displacements.[7] By the end of the year, they were producing 2,400 hp (1,800 kW). The contemporary 1940Rolls-Royce Merlin II was generating just over 1,000 hp (750 kW) from a 1,647 cubic inch (27 litre) displacement.

Production

[edit]
TheHawker Typhoon was the first operational Sabre-powered aircraft, entering service with the RAF in mid-1941. Problems with both the Sabre engine and the airframe nearly led to the Typhoon's withdrawal from service.

Problems arose as soon as mass production began. Prototype engines had been hand-assembled by Napier craftsmen and it proved to be difficult to adapt it to assembly-line production techniques. The sleeves often failed due to the way they were manufactured from chrome-molybdenum steel, leading to seized cylinders, which caused the loss of the sole prototypeMartin-Baker MB 3.[9][10] The Ministry of Aircraft Production was responsible for the development of the engine and arranged for sleeves to be machined by theBristol Aeroplane Company from its Taurus engine forgings. These nitrided austenitic steel sleeves were the result of many years of intensive sleeve development, experience that Napier did not have. Air filters had to be fitted when a new sleeve problem appeared in 1944 when aircraft were operating from Normandy soil with its abrasive, gritty dust.[11]

Quality control proved to be inadequate, engines were often delivered with improperly cleaned castings, broken piston rings and machine cuttings left inside the engine.[12] Mechanics were overworked trying to keep the Sabres running and during cold weather they had to run them every two hours during the night so that the engine oil would not congeal and prevent the engine from starting the next day.[nb 3] These problems took too long to remedy and the engine gained a bad reputation. To make matters worse, mechanics and pilots unfamiliar with the different nature of the engine, tended to blame the Sabre for problems that were caused by not following correct procedures. This was exacerbated by the representatives of the competing Rolls-Royce company, which had its own agenda. In 1944, Rolls-Royce produced a similar design prototype called theEagle.

Napier seemed complacent and tinkered with the design for better performance. In 1942, it started a series of projects to improve its high-altitude performance, with the addition of a three-speed, two-stagesupercharger, when the basic engine was still not running reliably. In December 1942, the company was purchased by theEnglish Electric Company, which ended the supercharger project immediately and devoted the whole company to solving the production problems, which was achieved quickly.

The truck has signs reading "2,400 Horsepower!! The power behind the Typhoon & Tempest fighters" and "Napier Sabre - The most powerful aero engine in service in the world", plus the Napier logo
A 2,400hp Sabre inside a mock-up of an aircraft nose, mounted on a truck for display purposes

By 1944, the Sabre V was delivering 2,400 horsepower (1,800 kilowatts) consistently and the reputation of the engine started to improve. This was the last version to enter service, being used in theHawker Typhoon and its derivative, theHawker Tempest. Without the advanced supercharger, the engine's performance over 20,000 ft (6,100 m) fell off rapidly and pilots flying Sabre-powered aircraft, were generally instructed to enter combat only below this altitude. At low altitude, both planes were formidable. As air superiority over Continental Europe was slowly gained, Typhoons were increasingly used asfighter-bombers, notably by theRAF Second Tactical Air Force. The Tempest became the principal destroyer of theV-1 flying bomb (Fieseler Fi 103), since it was the fastest of all the Allied fighters at low levels. Later, the Tempest destroyed about 20Messerschmitt Me 262 jet aircraft.

Development continued and the later Sabre VII delivered 3,500 hp (2,600 kW) with a new supercharger. By the end of World War II, there were several engines in the same power class. ThePratt & Whitney R-4360 Wasp Major four-row, 28-cylinder radial produced 3,000 hp (2,200 kW) at first and later types produced 3,800 hp (2,800 kW), but these required almost twice the displacement in order to do so, 4,360 cubic inches (71 litres).

Variants

[edit]

Note:[nb 4]

Sabre I (E.107)
(1939) 2,000 hp (1,500 kW).
Sabre II
(1940) 2,300 hp (1,700 kW). Experimental 0.332:1 propeller reduction gear ratio.
Sabre II (production variant)
2,200 hp (1,600 kW). Reduction gear ratio 0.274:1: mainly used in earlyHawker Typhoons.[13]
Sabre IIA
2,235 hp (1,667 kW). Revised ignition system: maximum boost +9 lbs.[14]
Sabre IIB
2,400 hp (1,800 kW). Four chokeS.U. carburettor: Mainly used inHawker Tempest V.[15]
Sabre IIC
2,065 hp (1,540 kW). Similar to Mk VII.
Napier Sabre III
Sabre III
2,250 hp (1,680 kW). Similar to Mk IIA, tailored for theBlackburn Firebrand: 25 manufactured and installed.[15]
Sabre IV
2,240 hp (1,670 kW). As Mk VA with Hobson fuel injection: preliminary flight development engine for Sabre V series.[15] Used in Hawker Tempest I.[16]
Sabre V
2,600 hp (1,900 kW). Developed MK II, redesigned supercharger with increased boost, redesigned induction system.
Sabre VA
2,600 hp (1,900 kW). Mk V with Hobson-R.A.E fuel injection, single-lever throttle and propeller control: used in Hawker Tempest VI.
Sabre VI
2,310 hp (1,720 kW). Mk VA withRotol cooling fan: used in 2 Hawker Tempest Vs modified to use Napier designed annular radiators; also in experimentalVickers Warwick V.[17]
Sabre VII
3,055 hp (2,278 kW). Mk VA strengthened to withstand high powers produced usingWater/Methanol injection. Larger supercharger impeller.[18]
Sabre VIII
3,000 hp (2,200 kW). Intended forHawker Fury; tested in theFolland Fo.108.
Sabre E.118
(1941) Three-speed, two-stage supercharger,contra-rotating propeller; test flown in Fo.108.
Sabre E.122
(1946) 3,500 horsepower. Intended for Napier 500mph tailless fighter

Applications

[edit]

The engine has been used in many aircraft, including two mass-produced fighters.[19]

Adopted

[edit]

Limited production and prototypes

[edit]

Restoration project and engines on display

[edit]
Under restoration
Preserved on public display
Sectioned Napier engines on public display

Specifications (Sabre VA)

[edit]

Data fromLumsden[21][22]

General characteristics

  • Type: 24-cylinder supercharged liquid-cooledH-type aircraft piston engine
  • Bore: 5.0 in (127 mm)
  • Stroke: 4.75 in (121 mm)
  • Displacement: 2,240 cu in (36.7 L)
  • Length: 82.25 in (2,089 mm)
  • Width: 40 in (1,000 mm)
  • Height: 46 in (1,200 mm)
  • Dry weight: 2,360 pounds (1,070 kg)

Components

Performance

  • Power output: * 2,850 hp (2,130 kW) at 3,800 rpm and +13 psi (0.9 bar, 56") intake boost
  • 3,040 hp (2,270 kW) at 4,000 rpmwar emergency power
  • Specific power: 1.36 hp/in³ (59.9 kW/L)
  • Compression ratio: 7:1
  • Fuel consumption: 117 gallons/hour (532 L/hr) at maximum cruise, F.S. supercharger gear; 241 gallons/hour (1,096 L/hr) at maximum combat rating, F.S. supercharger
  • Oil consumption: 47 pints/hour (27 L/hr) at maximum cruise 3,250 rpm and +7 psi (0.48 bar, 14"); 71 pints/hour (40 L/hr) at war emergency power
  • Power-to-weight ratio: 1.29 hp/lb (2.06 kW/kg)

See also

[edit]

Comparable engines

Related lists

References

[edit]

Footnotes

[edit]
  1. ^The Napier-Heston Racer used the first production Sabre engine. The world-record contender crashed during early tests and the project was discontinued.
  2. ^21 Suffolk St, Westminster, London, a little cul-de-sac off Pall Mall East.
  3. ^Unlike current "multigrade"motor oils, the lubricants in use in the 1940s thickened up at low temperatures, thus preventing the Sabre from "picking-up" when started.
  4. ^List from Lumsden unless otherwise noted.

Notes

[edit]
  1. ^Engines and Enterprise: The Life and Work of Sir Harry Ricardo, John Reynolds,1999ISBN 978-0750917124, p.145
  2. ^Engines and Enterprise: The Life and Work of Sir Harry Ricardo, John Reynolds,1999ISBN 978-0750917124, p.103
  3. ^Boxkite to Jet - the remarkable career of Frank B Halford, Douglas Taylor, 1999,ISBN 1 872922 16 3, p.73
  4. ^Engines and Enterprise: The Life and Work of Sir Harry Ricardo, John Reynolds,1999ISBN 978-0750917124, p.186
  5. ^Boxkite to Jet - the remarkable career of Frank B Halford, Douglas Taylor, 1999,ISBN 1 872922 16 3, p.81
  6. ^Engines and Enterprise: The Life and Work of Sir Harry Ricardo, John Reynolds,1999ISBN 978-0750917124, p.187
  7. ^abc[F C Sheffield] 23 March 1944. "2,200 h.p. Napier Sabre"Flight, p. 309. www.flightglobal.com. Retrieved: 9 November 2009.
  8. ^Industry and Air Power The Expansion Of British Aircraft Production 1935-1941, Sebastian Ritchie 2007, Routledge Taylor and Francis Group,ISBN 0-7146-4343-2, p.140
  9. ^Flight 1945, p.550.
  10. ^Aeroplane 2010, pp. 65–66.
  11. ^I Kept No Diary-60 Years with Marine Diesels, Automobile and Aero Engines, F.R. Banks 1978, Airlife Publications,ISBN 0 9504543 9 7, p.133
  12. ^Napier SabreArchived 23 June 2012 at theWayback Machine Retrieved on 17 July 2009.
  13. ^Sheffield March 1944, p. 310.
  14. ^Air Ministry 1943, pp. 24, 25.
  15. ^abcFlight 1945, p. 551.
  16. ^Mason 1991, p. 331.
  17. ^Flight 1946, p. 91.
  18. ^Flight 1945, p. 552.
  19. ^Application lists from Lumsden
  20. ^CAHC "Workshop One"[usurped] Retrieved: 21 November 2009.
  21. ^Lumsden 2003, p.176.
  22. ^Flight 1945, pp. 550-553.

Bibliography

[edit]

Further reading

[edit]
  • Bridgman, Leonard, ed.Jane's All The World's Aircraft 1945–1946. London: Samson Low, Marston & Company, Ltd 1946.ISBN 0-517-67964-7 (1989 copy by Crescent Books, NY.)
  • Clostermann, Pierre:The Big Show. London, UK: Chatto & Windus in association with William Heinemann, 1953.ISBN 0-297-84619-1 (2004 edition).

External links

[edit]
Wikimedia Commons has media related toNapier Sabre.
Piston engines
Turboprop / Turboshaft
Turbo-compound
Gas-generator
Rocket
Retrieved from "https://en.wikipedia.org/w/index.php?title=Napier_Sabre&oldid=1247135325"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp