This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Orders of magnitude" temperature – news ·newspapers ·books ·scholar ·JSTOR(February 2025) (Learn how and when to remove this message) |
![]() |
Factor | Multiple | Negative thermodynamic temperatures[a] | Type |
---|---|---|---|
10−9 | − nK | Artificial (A) | |
10−12 | −100 pK | −750 pK; (nuclear spin temperature) usingrhodium.[4] | A |
Absolute zero[5][6] | |||
0 | N/A |
| |
Positive temperatures | |||
10−12 | 10s–100s pK |
| A |
10−9 | 10–100 nK | A | |
10−6 | 1μK |
| |
10−3 | 1–100s mK |
| |
1 | 1 K |
| |
101 | 10 K |
| |
102 | 100 K |
Seedetailed list below | |
103 | 1-10 kK |
| |
104 | 10-100s kK |
| |
106 | 1–100s MK |
| |
109 | 1–100s GK |
| |
1012 | 0.1–100s TK |
| |
1015 | 0.1-1 PK |
| |
1018 | EK | ||
1021 | ZK | ||
1024 | 1 YK |
| |
1027 | 1 RK |
| |
1030 | 1 QK | ||
1032 | 100 QK |
| |
1033 | 1000 QK |
| |
10290 | 10260 QK |
Kelvin | Degrees Celsius | Degrees Fahrenheit | Condition |
---|---|---|---|
100 K | −173.15 °C | −279.67 °F | |
133 K | −140 °C | −220 °F |
|
133 K to 163 K | −140 to −110 °C | −220 to −160 °F |
|
163 K | −110 °C | −166 °F |
|
165 K | −108 °C | −163 °F |
|
175.4 K | −97.8 °C | −144 °F |
|
183.7 K | −89.5 °C | −129.1 °F |
|
183.9 K | −89.2 °C | −128.6 °F |
|
192 K | −81 °C | −114 °F |
|
193 to 203 K | −80 to −70 °C | −112 to −94 °F |
|
194.6 K | −78.5 °C | −109.3 °F |
|
203.55 K | −69.6 °C | −93.3 °F | Coldest officially recorded air temperature in theNorthern Hemisphere at Klinck AWS,Greenland (Denmark) on 1991-12-22[47] |
205.5 K | −67.7 °C | −89.9 °F | Coldest officially recorded air temperature on theEurasian continent atOymyakon,USSR on 6 February 1933[48][full citation needed] |
210 K | −63 °C | −80 °F |
|
214.9 K | –58.3 °C | –72.9 °F |
|
223.15 K | −50 °C | −58 °F |
|
224.8 K | −48.4 °C | −55.0 °F |
|
225 K | −48 °C | −55 °F |
|
233.15 K | −40 °C | −40 °F |
|
234.3 K | −38.83 °C | −37.89 °F |
|
240.4 K | −32.8 °C | −27.0 °F | |
246 K | −27 °C | −17 °F |
|
249 K | –24 °C | –11 °F |
|
249.3 K | –23.9 °C | –11.0 °F | |
250 K | –23 °C | –9 °F |
|
255.37 K | –177⁄9 °C | 0°F |
|
255 K | –18 °C | 0 °F |
|
256 K | –17 °C | 1 °F |
|
256 K | –17 °C | 2 °F |
|
257 K | –16 °C | 3 °F |
|
262 K | −11 °C | 12 °F |
|
263.15 K | –10 °C | 14 °F |
|
265 K | –8 °C | 18 °F |
|
265.8 K | –7.2 °C | 19 °F |
|
267 K | –6 °C | 21 °F |
|
271.15 K | −2 °C | 28.4 °F | |
273.14 K | -0.01 °C | 31.98 °F |
|
273.15 K | 0.00°C | 32.00 °F |
|
273.16 K | 0.01 °C | 32.02 °F |
|
276 K | 3 °C | 37 °F |
|
277 K | 3.85 °C | 39 °F |
|
277.13 K | 3.98 °C | 39.16 °F |
|
279.8 K | 6.67 °C | 44 °F |
|
283.2 K | 10 °C | 50 °F |
|
286.9 K | 12.7 °C | 54.9 °F |
|
287.6 K | 14.44 °C | 58 °F |
|
288 K | 15 °C | 59 °F |
|
291.6 K | 18.4 °C | 65.1 °F |
|
294 K | 21 °C | 70 °F |
|
296 K | 23 °C | 73 °F |
|
297 K | 24 °C | 75 °F |
|
298 K | 25 °C | 77 °F |
|
300 K | 27 °C | 81 °F | |
302.9 K | 29.8 °C | 85.6 °F |
|
303.15 K | 30 °C | 86 °F |
|
304 K | 31 °C | 88 °F |
|
307 K | 34 °C | 93 °F | |
307.6 K | 34.4 °C | 93.9 °F |
|
308 K | 35 °C | 95 °F |
|
309.5 K | 36.4 °C | 97.5 °F |
|
311.03 K | 37.87 °C | 100.2 °F |
|
311.8 K | 38.6 °C | 101.5 °F |
|
313.15 K | 40 °C | 104 °F |
|
315 K | 42 °C | 108 °F |
|
317.6 K | 44.44 °C | 112 °F |
|
319.7 K | 46.5 °C | 115.7 °F |
|
321.45 K | 48.3 °C | 119 °F | World's hottest air temperature recorded while raining, atImperial, California, USA on July 24, 2018[70] |
322.1 K | 48.9 °C | 120.0 °F | |
323.14 K | 49.99 °C | 121.99 °F |
|
323.9 K | 50.7 °C | 123.3 °F |
|
329.87 K | 56.7 °C | 134.1 °F |
|
333.15 K | 60 °C | 140 °F |
|
336 K | 63 °C | 145.4 °F |
|
342 K | 69 °C | 157 °F |
|
343.15 K | 70 °C | 158 °F |
|
350 K | 77 °C | 170 °F |
|
351.52 K | 78.37 °C | 173.07 °F |
|
353.15 K | 80 °C | 176 °F |
|
355 K | 82 °C | 180 °F |
|
355.6 K | 82.4 °C | 180.3 °F |
|
366 K | 93 °C | 200 °F |
|
367 K | 94 °C | 201 °F |
|
371 K | 98 °C | 209 °F |
|
373.13 K | 99.98 °C | 211.97 °F |
|
380 K | 107 °C | 225 °F |
|
388 K | 115 °C | 239 °F |
|
400 K | 127 °C | 260 °F |
|
433.15 K | 160 °C | 320 °F |
|
450 K | 177 °C | 350 °F |
|
453.15 K | 180 °C | 356 °F |
|
483 K | 210 °C | 410 °F | |
491 K | 218 °C | 425 °F |
|
519 K | 246 °C | 475 °F |
|
522 K | 249 °C | 480 °F |
|
525 K | 252 °C | 485 °F | |
538 K | 265 °C | 510 °F |
|
574.5875 K | 301.4375 °C | 574.5875 °F | Fahrenheit andKelvin temperature scales coincide |
600.65 K | 327.5 °C | 621.5 °F |
|
647 K | 374 °C | 705 °F |
|
693 K | 419 °C | 787 °F |
|
723 K | 450 °C | 842 °F |
|
738 K | 465 °C | 870 °F |
|
749 K | 476 °C | 889 °F |
|
773.15 K | 500 °C | 932 °F |
|
798 K | 525 °C | 977 °F |
|
858 K | 585 °C | 1085 °F | Kindling point ofhydrogen[80] |
933.47 K | 660.32 °C | 1220.58 °F |
|
1000 K | 726.85 °C | 1340.33 °F |
Submultiples | Multiples | ||||
---|---|---|---|---|---|
Value | SI symbol | Name | Value | SI symbol | Name |
10−1 K | dK | decikelvin | 101 K | daK | decakelvin |
10−2 K | cK | centikelvin | 102 K | hK | hectokelvin |
10−3 K | mK | millikelvin | 103 K | kK | kilokelvin |
10−6 K | μK | microkelvin | 106 K | MK | megakelvin |
10−9 K | nK | nanokelvin | 109 K | GK | gigakelvin |
10−12 K | pK | picokelvin | 1012 K | TK | terakelvin |
10−15 K | fK | femtokelvin | 1015 K | PK | petakelvin |
10−18 K | aK | attokelvin | 1018 K | EK | exakelvin |
10−21 K | zK | zeptokelvin | 1021 K | ZK | zettakelvin |
10−24 K | yK | yoctokelvin | 1024 K | YK | yottakelvin |
10−27 K | rK | rontokelvin | 1027 K | RK | ronnakelvin |
10−30 K | qK | quectokelvin | 1030 K | QK | quettakelvin |
How do you measure temperature?...we take images of our atoms with a CCD camera...We compare the distribution of our atoms with the theoretically expected distributions. The distribution that fits best gives us the temperature of the atoms.
superfluid3He was finally discovered in 1971. Osheroff, Richardson and Lee observed clear indications for two phase transitions in3He at temperatures around 2mK" (sic) "in experiments using aPomeranchuk cell
indicate the existence of a new phase in solid He3 below 2.7 mK of a fundamentally different nature
[13]-p.47:OSHEROFF, RICHARDSON, LEE (1972)
L156: We have measured a 9 mK upper limit (3 σ) on continuum emission at 89.2 and 145.6 GHz toward the Boomerang Nebula, which is much smaller than the negative temperatures seen in the CO and13COJ 1–0 spectra, so these must result from absorption of the microwave background, requiring the excitation temperature (Tex) to be less than 2.8 K (Tbb).3. A TWO–SHELL MODEL In shell 2 (R1,o <r <R2),Tkin < 2.8 K
Aboriginal and Torres Strait Islander people should be aware this website contains images, voices and names of people who have died.
Reference 1. Marc J Assael, J-AM Assael, Marcia L Huber, Richard A Perkins, and Yasayuki Takata. Correlation of the thermal conductivity of normal and parahydrogen from the triple point to 1000 k and up to 100 mpa. J. Phys. Chem. Ref. Data, 40(3):033101, 2011.