Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Nakagami distribution

From Wikipedia, the free encyclopedia
Statistical distribution
This article has multiple issues. Please helpimprove it or discuss these issues on thetalk page.(Learn how and when to remove these messages)
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Nakagami distribution" – news ·newspapers ·books ·scholar ·JSTOR
(April 2013) (Learn how and when to remove this message)
This article includes a list ofgeneral references, butit lacks sufficient correspondinginline citations. Please help toimprove this article byintroducing more precise citations.(April 2013) (Learn how and when to remove this message)
(Learn how and when to remove this message)
Nakagami
Probability density function
Cumulative distribution function
Parametersm or μ0.5{\displaystyle m{\text{ or }}\mu \geq 0.5}shape (real)
Ω or ω>0{\displaystyle \Omega {\text{ or }}\omega >0}scale (real)
Supportx>0{\displaystyle x>0\!}
PDF2mmΓ(m)Ωmx2m1exp(mΩx2){\displaystyle {\frac {2m^{m}}{\Gamma (m)\Omega ^{m}}}x^{2m-1}\exp \left(-{\frac {m}{\Omega }}x^{2}\right)}
CDFγ(m,mΩx2)Γ(m){\displaystyle {\frac {\gamma \left(m,{\frac {m}{\Omega }}x^{2}\right)}{\Gamma (m)}}}
MeanΓ(m+12)Γ(m)(Ωm)1/2{\displaystyle {\frac {\Gamma (m+{\frac {1}{2}})}{\Gamma (m)}}\left({\frac {\Omega }{m}}\right)^{1/2}}
MedianNo simple closed form
Mode((2m1)Ω2m)1/2{\displaystyle \left({\frac {(2m-1)\Omega }{2m}}\right)^{1/2}}
VarianceΩ(11m(Γ(m+12)Γ(m))2){\displaystyle \Omega \left(1-{\frac {1}{m}}\left({\frac {\Gamma (m+{\frac {1}{2}})}{\Gamma (m)}}\right)^{2}\right)}

TheNakagami distribution or theNakagami-m distribution is aprobability distribution related to thegamma distribution. The family of Nakagami distributions has two parameters: ashape parameterm1/2{\displaystyle m\geq 1/2} and ascale parameterΩ>0{\displaystyle \Omega >0}.It is used to model physical phenomena such as those found in medical ultrasound imaging, communications engineering, meteorology, hydrology, multimedia, and seismology.

Characterization

[edit]

Itsprobability density function (pdf) is[1]

f(x;m,Ω)=2mmΓ(m)Ωmx2m1exp(mΩx2) for x0.{\displaystyle f(x;\,m,\Omega )={\frac {2m^{m}}{\Gamma (m)\Omega ^{m}}}x^{2m-1}\exp \left(-{\frac {m}{\Omega }}x^{2}\right){\text{ for }}x\geq 0.}

wherem1/2{\displaystyle m\geq 1/2} andΩ>0{\displaystyle \Omega >0}.

Itscumulative distribution function (CDF) is[1]

F(x;m,Ω)=γ(m,mΩx2)Γ(m)=P(m,mΩx2){\displaystyle F(x;\,m,\Omega )={\frac {\gamma \left(m,{\frac {m}{\Omega }}x^{2}\right)}{\Gamma (m)}}=P\left(m,{\frac {m}{\Omega }}x^{2}\right)}

whereP is the regularized (lower)incomplete gamma function.

Parameterization

[edit]

The parametersm{\displaystyle m} andΩ{\displaystyle \Omega } are[2]

m=(E[X2])2Var[X2],{\displaystyle m={\frac {\left(\operatorname {E} [X^{2}]\right)^{2}}{\operatorname {Var} [X^{2}]}},}

and

Ω=E[X2].{\displaystyle \Omega =\operatorname {E} [X^{2}].}

No closed form solution exists for themedian of this distribution, although special cases do exist, such asΩln(2){\displaystyle {\sqrt {\Omega \ln(2)}}} whenm = 1. For practical purposes the median would have to be calculated as the 50th-percentile of the observations.

Parameter estimation

[edit]

An alternative way of fitting the distribution is to re-parametrizeΩ{\displaystyle \Omega } asσ = Ω/m.[3]

Givenindependent observationsX1=x1,,Xn=xn{\textstyle X_{1}=x_{1},\ldots ,X_{n}=x_{n}} from the Nakagami distribution, thelikelihood function is

L(σ,m)=(2Γ(m)σm)n(i=1nxi)2m1exp(i=1nxi2σ).{\displaystyle L(\sigma ,m)=\left({\frac {2}{\Gamma (m)\sigma ^{m}}}\right)^{n}\left(\prod _{i=1}^{n}x_{i}\right)^{2m-1}\exp \left(-{\frac {\sum _{i=1}^{n}x_{i}^{2}}{\sigma }}\right).}

Its logarithm is

(σ,m)=logL(σ,m)=nlogΓ(m)nmlogσ+(2m1)i=1nlogxii=1nxi2σ.{\displaystyle \ell (\sigma ,m)=\log L(\sigma ,m)=-n\log \Gamma (m)-nm\log \sigma +(2m-1)\sum _{i=1}^{n}\log x_{i}-{\frac {\sum _{i=1}^{n}x_{i}^{2}}{\sigma }}.}

Therefore

σ=nmσ+i=1nxi2σ2andm=nΓ(m)Γ(m)nlogσ+2i=1nlogxi.{\displaystyle {\begin{aligned}{\frac {\partial \ell }{\partial \sigma }}={\frac {-nm\sigma +\sum _{i=1}^{n}x_{i}^{2}}{\sigma ^{2}}}\quad {\text{and}}\quad {\frac {\partial \ell }{\partial m}}=-n{\frac {\Gamma '(m)}{\Gamma (m)}}-n\log \sigma +2\sum _{i=1}^{n}\log x_{i}.\end{aligned}}}

These derivatives vanish only when

σ=i=1nxi2nm{\displaystyle \sigma ={\frac {\sum _{i=1}^{n}x_{i}^{2}}{nm}}}

and the value ofm for which the derivative with respect tom vanishes is found by numerical methods including theNewton–Raphson method.

It can be shown that at the critical point a global maximum is attained, so the critical point is the maximum-likelihood estimate of (m,σ). Because of theequivariance of maximum-likelihood estimation, a maximum likelihood estimate for Ω is obtained as well.

Random variate generation

[edit]

The Nakagami distribution is related to thegamma distribution.In particular, given a random variableYGamma(k,θ){\displaystyle Y\,\sim {\textrm {Gamma}}(k,\theta )}, it is possible to obtain a random variableXNakagami(m,Ω){\displaystyle X\,\sim {\textrm {Nakagami}}(m,\Omega )}, by settingk=m{\displaystyle k=m},θ=Ω/m{\displaystyle \theta =\Omega /m}, and taking the square root ofY{\displaystyle Y}:

X=Y.{\displaystyle X={\sqrt {Y}}.\,}

Alternatively, the Nakagami distributionf(y;m,Ω){\displaystyle f(y;\,m,\Omega )} can be generated from thechi distribution with parameterk{\displaystyle k} set to2m{\displaystyle 2m} and then following it by a scaling transformation of random variables. That is, a Nakagami random variableX{\displaystyle X} is generated by a simple scaling transformation on a chi-distributed random variableYχ(2m){\displaystyle Y\sim \chi (2m)} as below.

X=(Ω/2m)Y.{\displaystyle X={\sqrt {(\Omega /2m)}}Y.}

For a chi-distribution, the degrees of freedom2m{\displaystyle 2m} must be an integer, but for Nakagami them{\displaystyle m} can be any real number greater than 1/2. This is the critical difference and accordingly, Nakagami-m is viewed as a generalization of chi-distribution, similar to a gamma distribution being considered as a generalization of chi-squared distributions.

History and applications

[edit]

The Nakagami distribution is relatively new, being first proposed in 1960 by Minoru Nakagami as a mathematical model for small-scale fading in long-distance high-frequency radio wave propagation.[4] It has been used to model attenuation ofwireless signalstraversing multiple paths[5] and to study the impact offading channels on wireless communications.[6]

Related distributions

[edit]

See also

[edit]

References

[edit]
  1. ^abLaurenson, Dave (1994)."Nakagami Distribution".Indoor Radio Channel Propagation Modelling by Ray Tracing Techniques. Retrieved2007-08-04.
  2. ^R. Kolar, R. Jirik, J. Jan (2004)"Estimator Comparison of the Nakagami-m Parameter and Its Application in Echocardiography",Radioengineering, 13 (1), 8–12
  3. ^Mitra, Rangeet; Mishra, Amit Kumar; Choubisa, Tarun (2012). "Maximum Likelihood Estimate of Parameters of Nakagami-m Distribution".International Conference on Communications, Devices and Intelligent Systems (CODIS), 2012:9–12.
  4. ^Nakagami, M. (1960) "The m-Distribution, a general formula of intensity of rapid fading". In William C. Hoffman, editor,Statistical Methods in Radio Wave Propagation: Proceedings of a Symposium held June 18–20, 1958, pp. 3–36. Pergamon Press.,doi:10.1016/B978-0-08-009306-2.50005-4
  5. ^Parsons, J. D. (1992)The Mobile Radio Propagation Channel. New York: Wiley.
  6. ^Ramon Sanchez-Iborra; Maria-Dolores Cano; Joan Garcia-Haro (2013). "Performance evaluation of QoE in VoIP traffic under fading channels".2013 World Congress on Computer and Information Technology (WCCIT). pp. 1–6.doi:10.1109/WCCIT.2013.6618721.ISBN 978-1-4799-0462-4.S2CID 16810288.
  7. ^Paris, J.F. (2009). "Nakagami-q (Hoyt) distribution function with applications".Electronics Letters.45 (4):210–211.Bibcode:2009ElL....45..210P.doi:10.1049/el:20093427.
  8. ^"HoytDistribution".
  9. ^"NakagamiDistribution".
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Nakagami_distribution&oldid=1267351176"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp