Themusical system of ancient Greece evolved over a period of more than 500 years from simplescales oftetrachords, or divisions of theperfect fourth, into several complex systems encompassing tetrachords and octaves, as well as octave scales divided into seven to thirteen intervals.[1]
Any discussion of themusic of ancient Greece, theoretical, philosophical or aesthetic, is fraught with two problems: there are few examples of written music, and there are many, sometimes fragmentary, theoretical and philosophical accounts. The empirical research of scholars like Richard Crocker,[2][3][4] C. André Barbera,[5][6] and John Chalmers[7] has made it possible to look at the ancient Greek systems as a whole without regard to the tastes of any one ancient theorist. The primary genera they examine are those of Pythagoras and thePythagorean school,Archytas,Aristoxenos, andPtolemy (including his versions of the genera ofDidymos andEratosthenes).[8]
As an initial introduction to the principal names and divisions of the Ancient Greek tone system this article will give a depiction of the "perfect system" orsystema teleion, which was elaborated in its entirety by about the turn of the 5th to 4th centuryBCE.
Thediagram at the right reproduces information fromChalmers (1993). It shows the common ancientharmoniai, thetonoi in allgenera, and the system as a whole in one complete map. (Half-sharp and double-sharp notes not used with the depicted notes are omitted.)

The central three columns of the diagram show, first the modern note-names, then the two systems of symbols used in ancient Greece: the vocal symbols (favoured by singers) and instrumental symbols (favoured by instrument players). The modern note-names are given in theHelmholtz pitch notation, and the Greek note symbols are as given in the work ofEgert Pöhlmann [de].[9] The pitches of the notes in modern notation are conventional, going back to the time of a publication byJohann Friedrich Bellermann [de] in 1840;[10] in practice the pitches would have been somewhat lower.[11]
The section spanned by a blue brace is the range of the centraloctave. The range is approximately what is now depicted on a modern music staff and is given in thegraphic below, left. Note that Greek theorists described scales as descending from higher pitch to lower, which is the opposite of modern practice and caused considerable confusion among Renaissance interpreters of ancient musicological texts.

The earliest Greek scales were organized intetrachords, which were series of four descending tones, with the top and bottom tones being separated by aninterval of a fourth, in modern terms. The sub-intervals of the tetrachord were unequal, with the largest intervals always at the top, and the smallest at the bottom. The 'characteristic interval' of a tetrachord is its largest one.
TheGreater Perfect System (systema teleion meizon) was composed of four stacked tetrachords called (from lowest to highest) theHypaton,Meson,Diezeugmenon and Hyperbolaion tetrachords. These are shown on the right hand side of the diagram. Octaves were composed from two stacked tetrachords connected by one common tone, thesynaphe.
At the position of theparamese, the continuity of the system encounters a boundary (at b-flat, b). To retain the logic of the internal divisions of the tetrachords and avoid theMeson being forced into three whole tone steps (b–a–g–f), an interstitial note, thediazeuxis ('dividing'), was introduced between theparamese andmese. This procedure gives its name to the tetrachorddiezeugmenon, which means the 'divided'.
To bridge the inconsistency of thediazeuxis, the system allowed moving thenete one step up, permitting the construction of theSynemmenon ('conjunct') tetrachord, shown at the far left of the diagram.
The use of theSynemmenon tetrachord effected a modulation of the system, hence the namesystema metabolon, the modulating system, also called theLesser Perfect System. This was considered apart, built of three stacked tetrachords—theHypaton,Meson andSynemmenon. The first two of these are the same as the first two tetrachords of the Greater Perfect System, with a third tetrachord placed above theMeson. When all these are considered together, with theSynemmenon tetrachord placed between theMeson andDiezeugmenon tetrachords, they make up theImmutable (or Unmodulating)System (systema ametabolon). The lowest tone does not belong to the system of tetrachords, as is reflected in its name, theProslambanomenos, the adjoined.
In sum, it is clear that the Ancient Greeks conceived of a unified system with the tetrachord as the basic structure, but the octave as the principle of unification.
Below is an elaboration of the mathematics that led to the logic of the system of tetrachords just described.
After the discovery of the fundamental intervals (octave, fourth and fifth), the first known systematic divisions of the octave were those ofPythagoras to whom was often attributed the discovery that the frequency of a vibrating string is inversely proportional to its length.Pythagoras construed the intervals arithmetically, allowing for 1:1 = Unison, 2:1 = Octave, 3:2 = Fifth, 4:3 = Fourth. Pythagoras's scale consists of a stack of perfect fifths, the ratio 3:2 (see alsoPythagorean Interval andPythagorean Tuning).
The earliest such description of a scale is found in Philolaus fr. B6.Philolaus recognizes that, if the interval of a fourth goes up from any given note, and then up the interval of a fifth, the final note is an octave above the first note. Thus, the octave is made up of a fourth and a fifth. ... Philolaus's scale thus consisted of the following intervals: 9:8, 9:8, 256:243 [these three intervals take us up a fourth], 9:8, 9:8, 9:8, 256:243 [these four intervals make up a fifth and complete the octave from our starting note]. This scale is known as the Pythagorean diatonic and is the scale thatPlato adopted in the construction of theworld soul in theTimaeus (36a-b).[12]
The next notable Pythagorean theorist known today isArchytas, contemporary and friend of Plato, who explained the use of arithmetic, geometric and harmonic means in tuning musical instruments.Euclid further developed Archytas's theory in hisThe Division of the Canon (Katatomē kanonos, the LatinSectio Canonis). He elaborated the acoustics with reference to the frequency of vibrations (or movements).[13]
Archytas provided a rigorous proof that the basic musical intervals cannot be divided in half, or in other words, that there is no mean proportional between numbers in super-particular ratio (octave 2:1, fourth 4:3, fifth 3:2, 9:8).[12][14]
Archytas was also the first ancient Greek theorist to provide ratios for all 3genera.[1] The three genera oftetrachords recognized by Archytas have the following ratios:
These three tunings appear to have corresponded to the actual musical practice of his day.[14]
Thegenera arose after the framing interval of the tetrachord was fixed, because the two internal notes (calledlichanoi andparhypate) still had variable tunings. Tetrachords were classified into genera depending on the position of thelichanos (thus the namelichanos, which means "the indicator"). For instance alichanos that is aminor third from the bottom and amajor second from the top, defines the genusdiatonic. The other two genera,chromatic andenharmonic, were defined in similar fashion.[15]
More generally, threegenera of seven octavespecies can be recognized, depending on the positioning of the interposed tones in the componenttetrachords:
Within these basic forms, the intervals of the chromatic and diatonic genera were varied further by three and two "shades" (chroai), respectively .[17][18]
The elaboration of tetrachords was also accompanied by penta- and hexachords. The joining of a tetrachord and a pentachord yields an octachord, i.e. the complete seven-tone scale plus a higher octave of the base note. However, this was also produced by joining two tetrachords, which were linked by means of an intermediary or shared note. The final evolution of the system did not end with the octave as such but with theSystema teleion, a set of five tetrachords linked by conjunction and disjunction into arrays of tones spanning two octaves, as explained above.[1]
Having elaborated theSystema teleion, the most significant individual system, that ofAristoxenos, which influenced much classification well into the Middle Ages, will be examined.
Aristoxenus was a disciple ofAristotle who flourished in the 4th century BC. He introduced a radically different model for creating scales, and the nature of his scales deviated sharply from his predecessors. His system was based on seven "octave species" named after Greek regions and ethnicities – Dorian, Lydian, etc. This association of the ethnic names with the octave species appears to have preceded Aristoxenus,[19] and the same system of names was revived in theRenaissance as names of musicalmodes according to the harmonic theory of that time, which was however quite different from that of the ancient Greeks. Thus the names Dorian, Lydian etc. should not be taken to imply a historical continuity between the systems.
In contrast to Archytas who distinguished his "genera" only by moving thelichanoi, Aristoxenus varied bothlichanoi andparhypate in considerable ranges.[20] Instead of using discrete ratios to place the intervals in his scales, Aristoxenus used continuously variable quantities: as a result he obtained scales of thirteen notes to an octave, and considerably different qualities of consonance.[21]
The octave species in theAristoxenian tradition were:[22][19]
These names are derived from:
The termtonos (pl.tonoi) was used in four senses, for it could designate a note, an interval, a region of the voice, and a pitch.[23]
The ancient writerCleonides attributes thirteentonoi to Aristoxenus, which represent a transposition of the tones of the Pythagorean system into a more uniform progressive scale over the range of an octave.[18]
According to Cleonides,[23] these transpositionaltonoi were named analogously to the octave species, supplemented with new terms to raise the number of degrees from seven to thirteen. In fact, Aristoxenus criticized the application of these names by the earlier theorists, whom he called the "Harmonicists".[19]
According to the interpretation of at least two modern authorities, in the Aristoxeniantonoi the Hypodorian is the lowest, and the Mixolydian is next-to-highest: the reverse of the case of the octave species.[18][24] The nominal base pitches are as follows (in descending order, after Mathiesen; Solomon uses the octave betweenA anda instead):
| f | Hypermixolydian | also called Hyperphrygian |
|---|---|---|
| e | High Mixolydian | also called Hyperiastian |
| e♭ | Low Mixolydian | also called Hyperdorian |
| d | High Lydian | |
| c♯ | Low Lydian | also called Aeolian |
| c | High Phrygian | |
| B | Low Phrygian | also called Iastian |
| B♭ | Dorian | |
| A | High Hypolydian | |
| G♯ (and A♭?) | Low Hypolydian | also called Hypoaeolian |
| G | High Hypophrygian | |
| F♯ | Low Hypophrygian | also called Hypoiastian |
| F | Hypodorian |
Based on the above, it can be seen that the Aristoxene system of tones and octave species can be combined with the Pythagorean system of "genera" to produce a more complete system in which each octave species of thirteen tones (Dorian, Lydian, etc.) can be declined into a system of seven tones by selecting particular tones and semitones to form genera (Diatonic, Chromatic, and Enharmonic).
The order of theoctave species names in the following table are the original Greek ones, followed by later alternatives (Greek and other). The species and notation are built around the template of the Dorian.
| Tonic | Name | Mese |
|---|---|---|
| (A) | (Hypermixolydian, Hyperphrygian, Locrian) | (d) |
| B | Mixolydian, Hyperdorian | e |
| c | Lydian | f |
| d | Phrygian | g |
| e | Dorian | a |
| f | Hypolydian | b |
| g | Hypophrygian, Ionian | c′ |
| a | Hypodorian, Aeolian | d′ |
| Tonic | Name | Mese |
|---|---|---|
| (A) | (Hypermixolydian, Hyperphrygian, Locrian) | (d♭) |
| B | Mixolydian, Hyperdorian | e |
| c | Lydian | f |
| d♭ | Phrygian | g♭ |
| e | Dorian | a |
| f | Hypolydian | b |
| g♭ | Hypophrygian, Ionian | c′ |
| a | Hypodorian, Aeolian | d′♭ |
| Tonic | Name | Mese |
|---|---|---|
| (A) | (Hypermixolydian, Hyperphrygian, Locrian) | (d |
| B | Mixolydian, Hyperdorian | e |
| c | Lydian | f |
| d | Phrygian | g |
| e | Dorian | a |
| f | Hypolydian | b |
| g | Hypophrygian, Ionian | c′ |
| a | Hypodorian, Aeolian | d′ |
The notation "C
" is standard modern notation for the pitch of noteC when flattened by aquarter tone.[a]The double-flats (
) are used merely to adhere to the modern convention of that all standard pitches in an octave are assigned a distinct, sequential alphabetic letter.
In the notation above and below, the standard double-flat symbol
is used to accommodate as far as possible the modern musical convention that demands every note in a scale to have a distinct, sequential letter; so interpret
only as meaning the immediate prior letter in the alphabet.[25] This complication is unnecessary in Greek notation, which had distinct symbols for each pitch, in set of three: half-flat, flat, or natural notes.
The superscript symbol
after a letter indicates an approximately half-flattened version of the named note; the exact degree of flattening intended depending on which of several tunings was used. Hence a three-tone falling-pitch sequenced,d
,d♭, with the second note,d
, about 1 / 2 flat (aquarter-tone flat: modern "
") from the first note,d, and the samed
about 1 / 2 sharp (a quarter-tone sharp: modern "
") from the followingd♭.
The (d) listed first for the Dorian is theProslambanómenos, which was appended as it was, and falls outside of the linked-tetrachord scheme.
These tables are a depiction ofAristides Quintilianus's enharmonicharmoniai, the diatonic of Henderson[26] and Chalmers[7] chromatic versions. Chalmers, from whom they originate, states:
In the enharmonic and chromatic forms of some of the harmoniai, it has been necessary to use both ad and either ad
ord
because of the non-heptatonic nature of these scales.C andF are synonyms ford
andg
[respectively]. The appropriate tunings for these scales are those of Archytas[27] and Pythagoras.[25]
The superficial resemblance of these octave species with the churchmodes is misleading: The conventional representation as a section (such asC D E F followed byD E F G) is incorrect: The species were re-tunings of the central octave such that the sequences of intervals (the cyclical modes divided by ratios defined by genus) corresponded to the notes of thePerfect Immutable System described above.[28]
| Genus | Tones |
|---|---|
| Enharmonic | (d) e f |
| Chromatic | (d) e f g♭ a b c′ d′♭ e′ |
| Diatonic | (d) e f g a b c′ d′ e′ |
| Genus | Tones |
|---|---|
| Enharmonic | d e f |
| Chromatic | d e f g♭ a b c′ d′♭ d′ |
| Diatonic | d e f g a b c′ d′ |
| Genus | Tones |
|---|---|
| Enharmonic | f |
| Chromatic | f g a b c′ d′♭ e′ f′ |
| Diatonic | f g a b c′ d′ e′ f′ |
| Genus | Tones |
|---|---|
| Enharmonic | B c |
| Chromatic | B c d♭ d e f |
| Diatonic | B c d e f (g) (a) b |
| Genus | Tones |
|---|---|
| Enharmonic | B c |
| Chromatic | B c d♭ e g |
| 1st Diatonic | c d e f g |
| 2nd Diatonic | B c d e g |
| Genus | Tones |
|---|---|
| Enharmonic | B c |
| Chromatic | B c d♭ e g a |
| 1st Diatonic | c e f g |
| 2nd Diatonic | B c d e g a |
In marked contrast to his predecessors,Ptolemy's scales employed a division of thepyknon in the ratio of 1:2, melodic, in place of equal divisions.[29] Ptolemy, in hisHarmonics, ii.3–11, construed thetonoi differently, presenting all seven octave species within a fixed octave, through chromatic inflection of the scale degrees (comparable to the modern conception of building all seven modal scales on a single tonic). In Ptolemy's system, therefore there are only seventonoi.[18][30] Ptolemy preserved Archytas's tunings in hisHarmonics as well as transmitting the tunings ofEratosthenes andDidymos and providing his own ratios and scales.[1]
In music theory the Greek wordharmonia can signify the enharmonic genus of tetrachord, the seven octave species, or a style of music associated with one of the ethnic types or thetonoi named by them.[31]
Particularly in the earliest surviving writings,harmonia is regarded not as a scale, but as the epitome of the stylised singing of a particular district or people or occupation.[32] When the late 6th-century poetLasus of Hermione referred to the Aeolianharmonia, for example, he was more likely thinking of amelodic style characteristic of Greeks speaking the Aeolic dialect than of a scale pattern.[33]
In theRepublic,Plato uses the term inclusively to encompass a particular type of scale, range and register, characteristic rhythmic pattern, textual subject, etc.[18]
The philosophical writings of Plato andAristotle (c. 350BCE) include sections that describe the effect of differentharmoniai on mood and character formation (see below on ethos). For example, in theRepublic (iii.10–11) Plato describes the music a person is exposed to as molding the person's character, which he discusses as particularly relevant for the proper education of the guardians of his ideal State. Aristotle in thePolitics (viii:1340a:40–1340b:5):
But melodies themselves do contain imitations of character. This is perfectly clear, for theharmoniai have quite distinct natures from one another, so that those who hear them are differently affected and do not respond in the same way to each. To some, such as the one called Mixolydian, they respond with more grief and anxiety, to others, such as the relaxedharmoniai, with more mellowness of mind, and to one another with a special degree of moderation and firmness, Dorian being apparently the only one of theharmoniai to have this effect, while Phrygian creates ecstatic excitement. These points have been well expressed by those who have thought deeply about this kind of education; for they cull the evidence for what they say from the facts themselves.[34]
Aristotle remarks further:
From what has been said it is evident what an influence music has over the disposition of the mind, and how variously it can fascinate it—and if it can do this, most certainly it is what youth ought to be instructed in.[35])
The ancient Greeks have used the wordethos (ἔθος or ἦθος), in this context best rendered by "character" (in the sense of patterns of being and behaviour, but not necessarily with "moral" implications), to describe the ways music can convey, foster, and even generate emotional or mental states. Beyond this general description, there is no unified "Greek ethos theory" but "many different views, sometimes sharply opposed."[33] Ethos is attributed to thetonoi orharmoniai or modes (for instance, Plato, in theRepublic (iii: 398d–399a), attributes "virility" to the "Dorian," and "relaxedness" to the "Lydian" mode), instruments (especially theaulos and thecithara, but also others), rhythms, and sometimes even thegenus and individual tones. The most comprehensive treatment of musical ethos is provided byAristides Quintilianus in his bookOn Music, with the original conception of assigning ethos to the various musical parameters according to the general categories of male and female.Aristoxenus was the first Greek theorist to point out that ethos does not only reside in the individual parameters but also in the musical piece as a whole (cited in Pseudo-Plutarch,De Musica 32: 1142d ff; see also Aristides Quintilianus 1.12). The Greeks were interested in musical ethos particularly in the context of education (so Plato in hisRepublic and Aristotle in his eighth book of hisPolitics), with implications for the well-being of the State. Many other ancient authors refer to what is nowadays called psychological effect of music and draw judgments for the appropriateness (or value) of particular musical features or styles, while others, in particularPhilodemus (in his fragmentary workDe musica) andSextus Empiricus (in his sixth book of his workAdversus mathematicos), deny that music possesses any influence on the human person apart from generating pleasure. These different views anticipate in some way the modern debate inmusic philosophy whether music on its own orabsolute music, independent of text, is able toelicit emotions on the listener or musician.[36]
Cleonides describes "melic" composition, "the employment of the materials subject to harmonic practice with due regard to the requirements of each of the subjects under consideration"[37] — which, together with the scales,tonoi, andharmoniai resemble elements found in medieval modal theory.[38] According to Aristides Quintilianus (On Music, i.12), melic composition is subdivided into three classes: dithyrambic, nomic, and tragic. These parallel his three classes of rhythmic composition: systaltic, diastaltic and hesychastic. Each of these broad classes of melic composition may contain various subclasses, such as erotic, comic and panegyric, and any composition might be elevating (diastaltic), depressing (systaltic), or soothing (hesychastic).[39]
The classification of therequirements we have fromProclusUseful Knowledge as preserved byPhotios:[citation needed]
According to Mathiesen:
Such pieces of music were called melos, which in its perfect form (teleion melos) comprised not only the melody and the text (including its elements of rhythm and diction) but also stylized dance movement. Melic and rhythmic composition (respectively, melopoiïa and rhuthmopoiïa) were the processes of selecting and applying the various components of melos and rhythm to create a complete work.[40]
Music symbols of ancient Greece were added to theUnicode Standard in March 2005 with the release of version 4.1.
alt. titlePolitics