Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Multivariate Laplace distribution

From Wikipedia, the free encyclopedia
Probability distribution

In the mathematical theory of probability,multivariate Laplace distributions are extensions of theLaplace distribution and theasymmetric Laplace distribution to multiple variables. Themarginal distributions of symmetric multivariate Laplace distribution variables are Laplace distributions. The marginal distributions of asymmetric multivariate Laplace distribution variables are asymmetric Laplace distributions.[1]

Symmetric multivariate Laplace distribution

[edit]
Multivariate Laplace (symmetric)
ParametersμRklocation
ΣRk×kcovariance (positive-definite matrix)
Supportxμ + span(Σ) ⊆Rk
PDF
Ifμ=0{\displaystyle {\boldsymbol {\mu }}=\mathbf {0} },
2(2π)k/2|Σ|1/2(xΣ1x2)v/2Kv(2xΣ1x),{\displaystyle {\frac {2}{(2\pi )^{k/2}\left|{\boldsymbol {\Sigma }}\right|^{1/2}}}\left({\frac {\mathbf {x} '{\boldsymbol {\Sigma }}^{-1}\mathbf {x} }{2}}\right)^{v/2}K_{v}\left({\sqrt {2\mathbf {x} '{\boldsymbol {\Sigma }}^{-1}\mathbf {x} }}\right),}
wherev=(2k)/2{\displaystyle v=(2-k)/2} andKv{\displaystyle K_{v}} is themodified Bessel function of the second kind.
Meanμ
Modeμ
VarianceΣ
Skewness0
CFexp(iμt)1+12tΣt{\displaystyle {\frac {\exp(i{\boldsymbol {\mu }}'\mathbf {t} )}{1+{\tfrac {1}{2}}\mathbf {t} '{\boldsymbol {\Sigma }}\mathbf {t} }}}

A typical characterization of the symmetric multivariate Laplace distribution has thecharacteristic function:

φ(t;μ,Σ)=exp(iμt)1+12tΣt,{\displaystyle \varphi (t;{\boldsymbol {\mu }},{\boldsymbol {\Sigma }})={\frac {\exp(i{\boldsymbol {\mu }}'\mathbf {t} )}{1+{\tfrac {1}{2}}\mathbf {t} '{\boldsymbol {\Sigma }}\mathbf {t} }},}

whereμ{\displaystyle {\boldsymbol {\mu }}} is the vector ofmeans for each variable andΣ{\displaystyle {\boldsymbol {\Sigma }}} is thecovariance matrix.[2]

Unlike themultivariate normal distribution, even if the covariance matrix has zerocovariance andcorrelation the variables are not independent.[1] The symmetric multivariate Laplace distribution iselliptical.[1]

Probability density function

[edit]

Ifμ=0{\displaystyle {\boldsymbol {\mu }}=\mathbf {0} }, theprobability density function (pdf) for ak-dimensional multivariate Laplace distribution becomes:

fx(x1,,xk)=2(2π)k/2|Σ|0.5(xΣ1x2)v/2Kv(2xΣ1x),{\displaystyle f_{\mathbf {x} }(x_{1},\ldots ,x_{k})={\frac {2}{(2\pi )^{k/2}|{\boldsymbol {\Sigma }}|^{0.5}}}\left({\frac {\mathbf {x} '{\boldsymbol {\Sigma }}^{-1}\mathbf {x} }{2}}\right)^{v/2}K_{v}\left({\sqrt {2\mathbf {x} '{\boldsymbol {\Sigma }}^{-1}\mathbf {x} }}\right),}

where:

v=(2k)/2{\displaystyle v=(2-k)/2} andKv{\displaystyle K_{v}} is themodified Bessel function of the second kind.[1]

In the correlated bivariate case, i.e.,k = 2, withμ1=μ2=0{\displaystyle \mu _{1}=\mu _{2}=0} the pdf reduces to:

fx(x1,x2)=1πσ1σ21ρ2K0(2(x12σ122ρx1x2σ1σ2+x22σ22)1ρ2),{\displaystyle f_{\mathbf {x} }(x_{1},x_{2})={\frac {1}{\pi \sigma _{1}\sigma _{2}{\sqrt {1-\rho ^{2}}}}}K_{0}\left({\sqrt {\frac {2\left({\frac {x_{1}^{2}}{\sigma _{1}^{2}}}-{\frac {2\rho x_{1}x_{2}}{\sigma _{1}\sigma _{2}}}+{\frac {x_{2}^{2}}{\sigma _{2}^{2}}}\right)}{1-\rho ^{2}}}}\right),}

where:

σ1{\displaystyle \sigma _{1}} andσ2{\displaystyle \sigma _{2}} are thestandard deviations ofx1{\displaystyle x_{1}} andx2{\displaystyle x_{2}}, respectively, andρ{\displaystyle \rho } is thecorrelation coefficient ofx1{\displaystyle x_{1}} andx2{\displaystyle x_{2}}.[1]

For the uncorrelated bivariate Laplace case, that isk = 2,μ1=μ2=ρ=0{\displaystyle \mu _{1}=\mu _{2}=\rho =0} andσ1=σ2=1{\displaystyle \sigma _{1}=\sigma _{2}=1}, the pdf becomes:

fx(x1,x2)=1πK0(2(x12+x22)).{\displaystyle f_{\mathbf {x} }(x_{1},x_{2})={\frac {1}{\pi }}K_{0}\left({\sqrt {2(x_{1}^{2}+x_{2}^{2})}}\right).}[1]

Asymmetric multivariate Laplace distribution

[edit]
Multivariate Laplace (asymmetric)
ParametersμRklocation
ΣRk×kcovariance (positive-definite matrix)
Supportxμ + span(Σ) ⊆Rk
PDF2exΣ1μ(2π)k2|Σ|0.5(xΣ1x2+μΣ1μ)v2Kv((2+μΣ1μ)(xΣ1x)){\displaystyle {\frac {2e^{\mathbf {x} '{\boldsymbol {\Sigma }}^{-1}{\boldsymbol {\mu }}}}{(2\pi )^{\frac {k}{2}}|{\boldsymbol {\Sigma }}|^{0.5}}}{\Big (}{\frac {\mathbf {x} '{\boldsymbol {\Sigma }}^{-1}\mathbf {x} }{2+{\boldsymbol {\mu }}'{\boldsymbol {\Sigma }}^{-1}{\boldsymbol {\mu }}}}{\Big )}^{\frac {v}{2}}K_{v}{\Big (}{\sqrt {(2+{\boldsymbol {\mu }}'{\boldsymbol {\Sigma }}^{-1}{\boldsymbol {\mu }})(\mathbf {x} '{\boldsymbol {\Sigma }}^{-1}\mathbf {x} )}}{\Big )}}
wherev=(2k)/2{\displaystyle v=(2-k)/2} andKv{\displaystyle K_{v}} is themodified Bessel function of the second kind.
Meanμ
VarianceΣ +μ 'μ
Skewnessnon-zero unlessμ=0
CF11+12tΣtiμt{\displaystyle {\frac {1}{1+{\tfrac {1}{2}}\mathbf {t} '{\boldsymbol {\Sigma }}\mathbf {t} -i{\boldsymbol {\mu }}\mathbf {t} }}}

A typical characterization of the asymmetric multivariate Laplace distribution has thecharacteristic function:

φ(t;μ,Σ)=11+12tΣtiμt.{\displaystyle \varphi (t;{\boldsymbol {\mu }},{\boldsymbol {\Sigma }})={\frac {1}{1+{\tfrac {1}{2}}\mathbf {t} '{\boldsymbol {\Sigma }}\mathbf {t} -i{\boldsymbol {\mu }}\mathbf {t} }}.}[1]

As with the symmetric multivariate Laplace distribution, the asymmetric multivariate Laplace distribution has meanμ{\displaystyle {\boldsymbol {\mu }}}, but the covariance becomesΣ+μμ{\displaystyle {\boldsymbol {\Sigma }}+{\boldsymbol {\mu }}'{\boldsymbol {\mu }}}.[3] The asymmetric multivariate Laplace distribution is not elliptical unlessμ=0{\displaystyle {\boldsymbol {\mu }}=\mathbf {0} }, in which case the distribution reduces to the symmetric multivariate Laplace distribution withμ=0{\displaystyle {\boldsymbol {\mu }}=\mathbf {0} }.[1]

Theprobability density function (pdf) for ak-dimensional asymmetric multivariate Laplace distribution is:

fx(x1,,xk)=2exΣ1μ(2π)k/2|Σ|0.5(xΣ1x2+μΣ1μ)v/2Kv((2+μΣ1μ)(xΣ1x)),{\displaystyle f_{\mathbf {x} }(x_{1},\ldots ,x_{k})={\frac {2e^{\mathbf {x} '{\boldsymbol {\Sigma }}^{-1}{\boldsymbol {\mu }}}}{(2\pi )^{k/2}|{\boldsymbol {\Sigma }}|^{0.5}}}{\Big (}{\frac {\mathbf {x} '{\boldsymbol {\Sigma }}^{-1}\mathbf {x} }{2+{\boldsymbol {\mu }}'{\boldsymbol {\Sigma }}^{-1}{\boldsymbol {\mu }}}}{\Big )}^{v/2}K_{v}{\Big (}{\sqrt {(2+{\boldsymbol {\mu }}'{\boldsymbol {\Sigma }}^{-1}{\boldsymbol {\mu }})(\mathbf {x} '{\boldsymbol {\Sigma }}^{-1}\mathbf {x} )}}{\Big )},}

where:

v=(2k)/2{\displaystyle v=(2-k)/2} andKv{\displaystyle K_{v}} is themodified Bessel function of the second kind.[1]

The asymmetric Laplace distribution, including the special case ofμ=0{\displaystyle {\boldsymbol {\mu }}=\mathbf {0} }, is an example of ageometric stable distribution.[3] It represents the limiting distribution for a sum ofindependent, identically distributed random variables with finite variance and covariance where the number of elements to be summed is itself an independent random variable distributed according to ageometric distribution.[1] Such geometric sums can arise in practical applications within biology, economics and insurance.[1] The distribution may also be applicable in broader situations to model multivariate data with heavier tails than a normal distribution but finitemoments.[1]

The relationship between theexponential distribution and theLaplace distribution allows for a simple method for simulating bivariate asymmetric Laplace variables (including for the case ofμ=0{\displaystyle {\boldsymbol {\mu }}=\mathbf {0} }). Simulate a bivariate normal random variable vectorY{\displaystyle \mathbf {Y} } from a distribution withμ1=μ2=0{\displaystyle \mu _{1}=\mu _{2}=0} and covariance matrixΣ{\displaystyle {\boldsymbol {\Sigma }}}. Independently simulate an exponential random variableW{\displaystyle \mathbf {W} } from an Exp(1) distribution.X=WY+Wμ{\displaystyle \mathbf {X} ={\sqrt {W}}\mathbf {Y} +W{\boldsymbol {\mu }}} will be distributed (asymmetric) bivariate Laplace with meanμ{\displaystyle {\boldsymbol {\mu }}} and covariance matrixΣ{\displaystyle {\boldsymbol {\Sigma }}}.[1]

References

[edit]
  1. ^abcdefghijklmKotz. Samuel; Kozubowski, Tomasz J.; Podgorski, Krzysztof (2001).The Laplace Distribution and Generalizations. Birkhauser. pp. 229–245.ISBN 0817641661.
  2. ^Fragiadakis, Konstantinos & Meintanis, Simos G. (March 2011)."Goodness-of-fit tests for multivariate Laplace distributions".Mathematical and Computer Modelling.53 (5–6):769–779.doi:10.1016/j.mcm.2010.10.014.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^abKozubowski, Tomasz J.; Podgorski, Krzysztof; Rychlik, Igor (2010)."Multivariate Generalized Laplace Distributions and Related Random Fields".Journal of Multivariate Analysis.113. University of Gothenburg:59–72.doi:10.1016/j.jmva.2012.02.010.S2CID 206252976.
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Multivariate_Laplace_distribution&oldid=1294922580"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp