Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Multiplication table

From Wikipedia, the free encyclopedia
Mathematical table
For the Matthew Shipp album, seeThe Multiplication Table.
"Times table" redirects here. For a table of departure and arrival times, seeTimetable (disambiguation).
Multiplication table from 1 to 10 drawn to scale with the upper-right half labelled with prime factorisations

Inmathematics, amultiplication table (sometimes, less formally, atimes table) is amathematical table used to define amultiplicationoperation for an algebraic system.

Thedecimal multiplication table was traditionally taught as an essential part ofelementary arithmetic around the world, as it lays the foundation for arithmetic operations with base-ten numbers. Many educators believe it is necessary to memorize the table up to 9 × 9.[1]

History

[edit]

Pre-modern times

[edit]
TheTsinghua Bamboo Slips, ChineseWarring States era decimal multiplication table of 305 BC

The oldest known multiplication tables were used by theBabylonians about 4000 years ago.[2] However, they used a base of 60.[2] The oldest known tables using a base of 10 are theChinesedecimal multiplication table on bamboo strips dating to about 305 BC, during China'sWarring States period.[2]

"Table of Pythagoras" onNapier's bones[3]

The multiplication table is sometimes attributed to the ancient Greek mathematicianPythagoras (570–495 BC). It is also called the Table of Pythagoras in many languages (for example French, Italian and Russian), sometimes in English.[4] TheGreco-Roman mathematicianNichomachus (60–120 AD), a follower ofNeopythagoreanism, included a multiplication table in hisIntroduction to Arithmetic, whereas the oldest survivingGreek multiplication table is on a wax tablet dated to the 1st century AD and currently housed in theBritish Museum.[5]

In 493 AD,Victorius of Aquitaine wrote a 98-column multiplication table which gave (inRoman numerals) the product of every number from 2 to 50 times and the rows were "a list of numbers starting with one thousand, descending by hundreds to one hundred, then descending by tens to ten, then by ones to one, and then the fractions down to 1/144."[6]

Modern times

[edit]

In his 1820 bookThe Philosophy of Arithmetic,[7] mathematicianJohn Leslie published a table of "quarter-squares" which could be used, with some additional steps, for multiplication up to 1000 × 1000. Leslie also recommended that young pupils memorize the multiplication table up to 50 × 50.

In 1897,August Leopold Crelle publishedCalculating tables giving the products of every two numbers from one to one thousand[8] which is a simple multiplication table for products up to 1000 × 10000.

Tables showing all products of numbers from 1 to 10 or 1 to 12 are the sizes most commonly found in primary schools. The table below shows products up to 12 × 12:

×123456789101112
1123456789101112
224681012141618202224
3369121518212427303336
44812162024283236404448
551015202530354045505560
661218243036424854606672
771421283542495663707784
881624324048566472808896
9918273645546372819099108
10102030405060708090100110120
11112233445566778899110121132
121224364860728496108120132144

The common multi-digitmultiplication algorithms taught in school break that problem down into a sequence of single-digit multiplication and multi-digit addition problems. Single-digit multiplication can be summarized in a 100-entry table of all products of digits from 0 to 9. Because0 ×a = 0 for any numbera, the rows and columns for multiplication by 0 are typically left out. Multiplication of integers iscommutative,a ×b =b ×a. Therefore, the table is symmetric across its main diagonal, and can be reduced to 45 entries by only showing entriesa ×b whereab, as shown below. The table could be reduced further (to 36 entries) by leaving off rows and columns for multiplication by 1, themultiplicative identity, which satisfiesa × 1 =a.

11
224
3369
4481216
5510152025
661218243036
77142128354249
8816243240485664
991827364554637281
×123456789

The traditionalrote learning of multiplication was based on memorization of columns in the table, arranged as follows.

1 × 1 = 1
2 × 1 = 2
3 × 1 = 3
4 × 1 = 4
5 × 1 = 5
6 × 1 = 6
7 × 1 = 7
8 × 1 = 8
9 × 1 = 9
10 × 1 = 10
11 × 1 = 11
12 × 1 = 12

1 × 2 = 2
2 × 2 = 4
3 × 2 = 6
4 × 2 = 8
5 × 2 = 10
6 × 2 = 12
7 × 2 = 14
8 × 2 = 16
9 × 2 = 18
10 × 2 = 20
11 × 2 = 22
12 × 2 = 24

1 × 3 = 3
2 × 3 = 6
3 × 3 = 9
4 × 3 = 12
5 × 3 = 15
6 × 3 = 18
7 × 3 = 21
8 × 3 = 24
9 × 3 = 27
10 × 3 = 30
11 × 3 = 33
12 × 3 = 36

1 × 4 = 4
2 × 4 = 8
3 × 4 = 12
4 × 4 = 16
5 × 4 = 20
6 × 4 = 24
7 × 4 = 28
8 × 4 = 32
9 × 4 = 36
10 × 4 = 40
11 × 4 = 44
12 × 4 = 48

1 × 5 = 5
2 × 5 = 10
3 × 5 = 15
4 × 5 = 20
5 × 5 = 25
6 × 5 = 30
7 × 5 = 35
8 × 5 = 40
9 × 5 = 45
10 × 5 = 50
11 × 5 = 55
12 × 5 = 60

1 × 6 = 6
2 × 6 = 12
3 × 6 = 18
4 × 6 = 24
5 × 6 = 30
6 × 6 = 36
7 × 6 = 42
8 × 6 = 48
9 × 6 = 54
10 × 6 = 60
11 × 6 = 66
12 × 6 = 72

1 × 7 = 7
2 × 7 = 14
3 × 7 = 21
4 × 7 = 28
5 × 7 = 35
6 × 7 = 42
7 × 7 = 49
8 × 7 = 56
9 × 7 = 63
10 × 7 = 70
11 × 7 = 77
12 × 7 = 84

1 × 8 = 8
2 × 8 = 16
3 × 8 = 24
4 × 8 = 32
5 × 8 = 40
6 × 8 = 48
7 × 8 = 56
8 × 8 = 64
9 × 8 = 72
10 × 8 = 80
11 × 8 = 88
12 × 8 = 96

1 × 9 = 9
2 × 9 = 18
3 × 9 = 27
4 × 9 = 36
5 × 9 = 45
6 × 9 = 54
7 × 9 = 63
8 × 9 = 72
9 × 9 = 81
10 × 9 = 90
11 × 9 = 99
12 × 9 = 108

1 × 10 = 10
2 × 10 = 20
3 × 10 = 30
4 × 10 = 40
5 × 10 = 50
6 × 10 = 60
7 × 10 = 70
8 × 10 = 80
9 × 10 = 90
10 × 10 = 100
11 × 10 = 110
12 × 10 = 120

1 × 11 = 11
2 × 11 = 22
3 × 11 = 33
4 × 11 = 44
5 × 11 = 55
6 × 11 = 66
7 × 11 = 77
8 × 11 = 88
9 × 11 = 99
10 × 11 = 110
11 × 11 = 121
12 × 11 = 132

1 × 12 = 12
2 × 12 = 24
3 × 12 = 36
4 × 12 = 48
5 × 12 = 60
6 × 12 = 72
7 × 12 = 84
8 × 12 = 96
9 × 12 = 108
10 × 12 = 120
11 × 12 = 132
12 × 12 = 144

This form of writing the multiplication table in columns with complete number sentences is still used in some countries, such as Colombia, Bosnia and Herzegovina,[citation needed] instead of the modern grids above.

Patterns in the tables

[edit]

There is a pattern in the multiplication table that can help people to memorize the table more easily. It uses the figures below:

 
12324
456
78968
05 0 
Figure 1: OddFigure 2: Even
Cycles of the unit digit of multiples of integers ending in 1, 3, 7 and 9 (upper row), and 2, 4, 6 and 8 (lower row) on atelephone keypad

Figure 1 is used for multiples of 1, 3, 7, and 9. Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5. As you would start on the number you are multiplying, when you multiply by 0, you stay on 0 (0 is external and so the arrows have no effect on 0, otherwise 0 is used as a link to create a perpetual cycle). The pattern also works with multiples of 10, by starting at 1 and simply adding 0, giving you 10, then just apply every number in the pattern to the "tens" unit as you would normally do as usual to the "ones" unit.

For example, to recall all the multiples of 7:

  1. Look at the 7 in the first picture and follow the arrow.
  2. The next number in the direction of the arrow is 4. So think of the next number after 7 that ends with 4, which is 14.
  3. The next number in the direction of the arrow is 1. So think of the next number after 14 that ends with 1, which is 21.
  4. After coming to the top of this column, start with the bottom of the next column, and travel in the same direction. The number is 8. So think of the next number after 21 that ends with 8, which is 28.
  5. Proceed in the same way until the last number, 3, corresponding to 63.
  6. Next, use the 0 at the bottom. It corresponds to 70.
  7. Then, start again with the 7. This time it will correspond to 77.
  8. Continue like this.

In abstract algebra

[edit]

Tables can also define binary operations ongroups,fields,rings, and otheralgebraic systems. In such contexts they are calledCayley tables.

For every natural numbern, addition and multiplication inZn, the ring of integers modulon, is described by ann byn table(see:Modular arithmetic). For example, the tables forZ5 are:

+01234
001234
112340
223401
334012
440123
×01234
000000
101234
202413
303142
404321

For other examples, seegroup.

Hypercomplex numbers

[edit]
Visual analogue showing cycles of multiplication ofi (red),j (green) andk (blue)

Hypercomplex number multiplication tables show the non-commutative results of multiplying two hypercomplex imaginary units. The simplest example is that of thequaternion multiplication table(for further examples, see:Octonion § Multiplication,Sedenion § Multiplication, andTrigintaduonion § Multiplication):

Quaternion multiplication table
↓ × →1ijk
11ijk
ii−1kj
jjk−1i
kkji−1

Chinese and Japanese multiplication tables

[edit]
Main article:Chinese multiplication table

The Chinese multiplication table consists of eighty-one terms. It was historically called thenine-nine table, because in ancient times it started with 9 × 9: nine nines beget eighty-one, eight nines beget seventy-two, etc. It was known in China as early as theSpring and Autumn period, and survived through the age of the abacus; pupils in elementary school today still must memorize it. A shorter version of the table consists of only forty-five sentences:

九九乘法口诀表 (The Nine-nine multiplication table)
×1 一
2 二
èr
3 三
sān
4 四
5 五
6 六
liù
7 七
8 八
9 九
jiǔ
1 一
一一
得一
2 二
èr
一二
得二
二二
得四
3 三
sān
一三
得三
二三
得六
三三
得九
4 四
一四
得四
二四
得八
三四
十二
四四
十六
5 五
一五
得五
二五
一十
三五
十五
四五
二十
五五
二十五
6 六
liù
一六
得六
二六
十二
三六
十八
四六
二十四
五六
三十
六六
三十六
7 七
一七
得七
二七
十四
三七
二十一
四七
二十八
五七
三十五
六七
四十二
七七
四十九
8 八
一八
得八
二八
十六
三八
二十四
四八
三十二
五八
四十
六八
四十八
七八
五十六
八八
六十四
9 九
jiǔ
一九
得九
二九
十八
三九
二十七
四九
三十六
五九
四十五
六九
五十四
七九
六十三
八九
七十二
九九
八十一

Mokkan discovered atHeijō Palace suggest that the multiplication table may have been introduced to Japan through Chinese mathematical treatises such as theSunzi Suanjing, because their expression of the multiplication table share the character in products less than ten.[9] Chinese and Japanese share a similar system of eighty-one short, easily memorable sentences taught to students to help them learn the multiplication table up to 9 × 9. In current usage, the sentences that express products less than ten include an additional particle in both languages. In the case of modern Chinese, this is (); and in Japanese, this is (ga). This is useful for those who practice calculation with asuanpan or asoroban, because the sentences remind them to shift one column to the right when inputting a product that does not begin with atens digit. In particular, the Japanese multiplication table uses non-standard pronunciations for numbers in some specific instances (such as the replacement ofsan roku withsaburoku; indicated in bold below).

The Japanese multiplication table
×1ichi2ni3san4shi5go6roku7shichi8ha9ku
1
in
in'ichi ga ichiinni ga niinsan ga saninshi ga shiingo ga goinroku ga rokuinshichi ga shichiinhachi ga hachiinku ga ku
2
ni
ni ichi ga nininin ga shini san ga rokuni shi ga hachini go jūni roku jūnini shichi jūshini hachi jūrokuni ku jūhachi
3
san
san ichi ga sansan ni ga rokusazan ga kusan shi jūnisan go jūgosaburoku jūhachisan shichi nijūichisanpa nijūshisan ku nijūshichi
4
shi
shi ichi ga shishi ni ga hachishi san jūnishi shi jūrokushi go nijūshi roku nijūshishi shichi nijūhachishi ha sanjūnishi ku sanjūroku
5
go
go ichi ga gogo ni jūgo san jūgogo shi nijūgo go nijūgogo roku sanjūgo shichi sanjūgogo ha shijūgokku shijūgo
6
roku
roku ichi ga rokuroku ni jūniroku san jūhachiroku shi nijūshiroku go sanjūroku roku sanjūrokuroku shichi shijūniroku ha shijūhachirokku gojūshi
7
shichi
shichi ichi ga shichishichi ni jūshishichi san nijūichishichi shi nijūhachishichi go sanjūgoshichi roku shijūnishichi shichi shijūkushichi ha gojūrokushichi ku rokujūsan
8
hachi
hachi ichi ga hachihachi ni jūrokuhachi san nijūshihachi shi sanjūnihachi go shijūhachi roku shijūhachihachi shichi gojūrokurokku gojūshihakku shichijūni
9
ku
ku ichi ga kuku ni jūhachiku san nijūshichiku shi sanjūrokuku go shijūgoku roku gojūshiku shichi rokujūsanku ha shichijūniku ku hachijūichi

Warring States decimal multiplication bamboo slips

[edit]

A bundle of 21 bamboo slips dated 305 BC in theWarring States period in theTsinghua Bamboo Slips (清華簡) collection is the world's earliest known example of a decimal multiplication table.[10]

A modern representation of the Warring States decimal multiplication table used to calculate 12 × 34.5

Standards-based mathematics reform in the US

[edit]
icon
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(January 2025) (Learn how and when to remove this message)

In 1989, theNational Council of Teachers of Mathematics (NCTM) developed new standards which were based on the belief that all students should learn higher-order thinking skills, which recommended reduced emphasis on the teaching of traditional methods that relied on rote memorization, such as multiplication tables. Widely adopted texts such asInvestigations in Numbers, Data, and Space (widely known asTERC after its producer, Technical Education Research Centers) omitted aids such as multiplication tables in early editions. NCTM made it clear in their 2006Focal Points that basic mathematics facts must be learned, though there is no consensus on whether rote memorization is the best method. In recent years, a number of nontraditional methods have been devised to help children learn multiplication facts, including video-game style apps and books that aim to teach times tables through character-based stories.

In 2024, the recommendation to learn the multiplication table was removed from the California Mathematics Curriculum Framework.[11]

See also

[edit]
  • Vedic square
  • IBM 1620, an early computer that used tables stored in memory to perform addition and multiplication
Wikimedia Commons has media related toMultiplication tables.

References

[edit]
  1. ^Trivett, John (1980), "The Multiplication Table: To Be Memorized or Mastered!",For the Learning of Mathematics,1 (1):21–25,JSTOR 40247697.
  2. ^abcQiu, Jane (January 7, 2014)."Ancient times table hidden in Chinese bamboo strips".Nature News.doi:10.1038/nature.2014.14482.S2CID 130132289.
  3. ^Wikisource:Page:Popular Science Monthly Volume 26.djvu/467
  4. ^for example inAn Elementary Treatise on Arithmetic byJohn Farrar
  5. ^David E. Smith (1958),History of Mathematics, Volume I: General Survey of the History of Elementary Mathematics. New York: Dover Publications (a reprint of the 1951 publication),ISBN 0-486-20429-4, pp. 58, 129.
  6. ^David W. Maher and John F. Makowski. "Literary evidence for Roman arithmetic with fractions".Classical Philology, 96/4 (October 2001), p. 383.
  7. ^Leslie, John (1820).The Philosophy of Arithmetic; Exhibiting a Progressive View of the Theory and Practice of Calculation, with Tables for the Multiplication of Numbers as Far as One Thousand. Edinburgh: Abernethy & Walker.
  8. ^"Calculating tables giving the products of every two numbers from one to one thousand and their application to the multiplication and division of all numbers above one thousand". 1897.
  9. ^"「九九」は中国伝来...平城宮跡から木簡出土". Yomiuri Shimbun. December 4, 2010. Archived fromthe original on December 7, 2010.
  10. ^Nature articleThe 2,300-year-old matrix is the world's oldest decimal multiplication table
  11. ^Sorensen, Sugi; Margulies, David; Malione, Michael."California Removes Memorizing Times Tables".The Well News. Retrieved2025-11-24.
International
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Multiplication_table&oldid=1323927484"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp