Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Mosaic evolution

From Wikipedia, the free encyclopedia
Evolution of characters at various rates both within and between species
For other uses, seeMosaic (disambiguation).
Part of a series on
Evolutionary biology

Mosaic evolution (or modular evolution) is the concept, mainly frompalaeontology, thatevolutionary change takes place in some body parts or systems without simultaneous changes in other parts.[1] Another definition is the "evolution of characters at various rates both within and between species".[2]408 Its place in evolutionary theory comes under long-term trends ormacroevolution.[2]

Background

[edit]

In theneodarwinisttheory of evolution, as postulated byStephen Jay Gould, there is room for differing development, when a life form matures earlier or later, in shape and size. This is due toallomorphism. Organs develop at differing rhythms, as a creature grows and matures. Thus a "heterochronic clock" has three variants: 1) time, as a straight line; 2) general size, as a curved line; 3) shape, as another curved line.[3]

When a creature is advanced in size, it may develop at a smaller rate. Alternatively, it may maintain its original size or, if delayed, it may result in a larger sized creature. That is insufficient to understand heterochronic mechanism.Size must be combined with shape, so a creature may retainpaedomorphic features if advanced in shape or present recapitulatory appearance when retarded in shape. These names are not very indicative, as past theories of development were very confusing.[3]

A creature in itsontogeny may combine heterochronic features in six vectors, although Gould considers that there is some binding with growth and sexual maturation. A creature may, for example, present someneotenic features and retarded development, resulting in new features derived from an original creature only by regulatory genes. Most novel human features (compared to closely related apes) were of this nature, not implying major change in structural genes, as was classically considered.[3]

Taxonomic range

[edit]

It is not claimed that this pattern is universal, but there is now a wide range of examples from many different taxa, including:

Mosaic evolution (in hominin)

[edit]

Although mosaic evolution is usually seen in terms of animals such asDarwin's finches, it can also be seen in the evolutionary process ofhominin. To help further explain the meaning of mosaic evolution in hominin, mosaicism will get broken down into three subgroups. Group 1 includes related species developing independently, of which carry deep variability in their own morphological structure. Examples of this can be seen within comparisons ofA. sediba,H. naledi, andH. floresiensis. Group 2 relies on the different environmental impacts on the changes of a species. An example of this is the variability of bipedalism forming independently within all related species of hominin. Lastly, Group 3 involves the presence of behavior such as the human vernacular.Language is a mosaic composite of various elements working together for one specific attribute, and this is not a single trait an offspring can inherit directly.[14] In addition, it has been shown that an increase in social interactions corresponds to theevolution of human intelligence or in other words, an increase inbrain size. This is provided and shown byRobin Dunbar's social brain hypothesis.[15] Moreover, this can be used as a level of transition in human evolution; of which also includes dental shapes.[16]

Brain size has shown intra-specific mosaic variability within its own development, as these differences are a result of environmental limitations. In other words, independent variability of brain structure is seen more when brain regions are unassociated from one another, ultimately, giving rise to perceptible features. When comparing current brain size and capacity between humans and chimpanzees, the ability to predict the evolutionary change between their ancestors was incredibly insightful. This granted the discovery that "local spatial interactions" were the main effect of the limitations.[17] Furthermore, alongside the cranial capacity and structure of the brain, dental shape provides another example of mosaicism.

Using fossil record, dental shape showed mosaic evolution within the canine teeth found in early hominin. Reduction of canine sizes are seen as an authentication mark of human ancestor evolution. However,A. anamensis, discovered in Kenya, was found to have the largest mandibular canine root as part ofAustralopithecus evolution. This alters the authentication mark because the dimorphism between root and crown reduction has not been assessed. Although canine reduction has probably occurred prior to the evolution ofAustralopithecus, "changes in canine shape, in both crowns and roots, occurred in a mosaic fashion throughout theA. anamensis–afarensis lineage".[18]

See also

[edit]

References

[edit]
  1. ^King, R.C.; Stansfield, W.D.; Mulligan, P.K. 2006.A dictionary of genetics. 7th ed, Oxford University Press. p286ISBN 0-19-530761-5
  2. ^abCarroll R.L. 1997.Patterns and processes of vertebrate evolution. Cambridge University Press.ISBN 0-521-47809-X
  3. ^abcGould, S.J. 1977.Ontogeny and phylogeny. Belknap Press of Harvard University Press.
  4. ^Stanley, S.M. 1979.Macroevolution: pattern and process. Freeman, San Francisco. p154ISBN 0-7167-1092-7
  5. ^Jurmain, Robert. et al. 2008.Introduction to Physical Anthropology. Thompson Wadsworth. p479
  6. ^Foster, Michael and Lankester, E. Ray (eds )1898–1903.The scientific memoirs of Thomas Henry Huxley. 4 vols and supplement, Macmillan, LondonISBN 1-4326-4011-9
  7. ^Barnovsky, A.D. 1993. Mosaic evolution at population level inMicrotus pennsylvanicus. InMorphological changes in Quaternary mammals of North America. ed R.A. Martin & A.D. Barnovsky. Cambridge University Press. pp24–59
  8. ^Lü, J.; Unwin, D.M.; Jin, X.; Liu, Y.; Ji, Q. (2010)."Evidence for modular evolution in a long-tailed pterosaur with a pterodactyloid skull".Proceedings of the Royal Society B.277 (1680):383–389.doi:10.1098/rspb.2009.1603.PMC 2842655.PMID 19828548.
  9. ^MacFadden, Bruce J. (2003) [1999].Fossil horses: systematics, paleobiology, and evolution of the Family Equidae. Cambridge: Cambridge University Press.ISBN 0-521-47708-5. Retrieved6 June 2010.
  10. ^Maynard Smith, John 1993.The theory of evolution. Cambridge University Press. 3rd ed + new Introduction. pp285–290ISBN 0-521-45128-0
  11. ^Kermack, D.M.; Kermack, K.A. (1984).The evolution of mammalian characters. Croom Helm.ISBN 0-7099-1534-9.
  12. ^Kemp T.S. 2005.The origin and evolution of mammals. Oxford University Press, Oxford.ISBN 0-19-850761-5
  13. ^Kielan-Jaworowska, Zofia; Richard L. Cifelli and Zhe-Xi Luo 2004.Mammals from the Age of Dinosaurs: origins, evolution, and structure, Columbia University Press, New York.ISBN 0-231-11918-6
  14. ^Parravicini, Andrea; Pievani, Telmo (2019). "Mosaic evolution in hominin phylogeny: meanings, implications, and explanations".Journal of Anthropological Sciences.96 (97):45–68.doi:10.4436/JASS.97001.ISSN 1827-4765.PMID 31241465.
  15. ^Dunbar, R.I.M. (2009). "The social brain hypothesis and its implications for social evolution".Annals of Human Biology.36 (5):562–572.doi:10.1080/03014460902960289.ISSN 0301-4460.PMID 19575315.S2CID 21495059.
  16. ^Foley, Robert A. (2016-07-05)."Mosaic evolution and the pattern of transitions in the hominin lineage".Philosophical Transactions of the Royal Society B: Biological Sciences.371 (1698) 20150244.doi:10.1098/rstb.2015.0244.ISSN 0962-8436.PMC 4920300.PMID 27298474.
  17. ^Gómez-Robles, Aida; Hopkins, William D.; Sherwood, Chet C. (2014)."Modular structure facilitates mosaic evolution of the brain in chimpanzees and humans".Nature Communications.5 (1): 4469.Bibcode:2014NatCo...5.4469G.doi:10.1038/ncomms5469.ISSN 2041-1723.PMC 4144426.PMID 25047085.
  18. ^Manthi, Fredrick K.; Plavcan, J. Michael; Ward, Carol V. (2012-03-01)."New hominin fossils from Kanapoi, Kenya, and the mosaic evolution of canine teeth in early hominins".South African Journal of Science.108 (3/4): 9 pages.doi:10.4102/sajs.v108i3/4.724.ISSN 1996-7489.
Evolution
Population
genetics
Development
Oftaxa
Oforgans
Ofprocesses
Tempo and modes
Speciation
History
Philosophy
Related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Mosaic_evolution&oldid=1314030573"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp