Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Monogamy of entanglement

From Wikipedia, the free encyclopedia
Principle in quantum information science
Part of a series of articles about
Quantum mechanics
iddt|Ψ=H^|Ψ{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle }

Inquantum physics,monogamy is the property ofquantum entanglement that restricts entanglement from being freely shared between arbitrarily many parties.

In order for two qubitsA andB to bemaximally entangled, they must not be entangled with any third qubitC whatsoever. Even ifA andB are not maximally entangled, the degree of entanglement between them constrains the degree to which either can be entangled withC. In full generality, forn3{\displaystyle n\geq 3} qubitsA1,,An{\displaystyle A_{1},\ldots ,A_{n}}, monogamy is characterized by theCoffman–Kundu–Wootters (CKW)inequality, which states that

k=2nτ(ρA1Ak)τ(ρA1(A2An)){\displaystyle \sum _{k=2}^{n}\tau (\rho _{A_{1}A_{k}})\leq \tau (\rho _{A_{1}(A_{2}{\ldots }A_{n})})}

whereρA1Ak{\displaystyle \rho _{A_{1}A_{k}}} is thedensity matrix of the substate consisting of qubitsA1{\displaystyle A_{1}} andAk{\displaystyle A_{k}} andτ{\displaystyle \tau } is the "tangle", a quantification of bipartite entanglement equal to the square of theconcurrence.[1][2]

Monogamy, which is closely related to theno-cloning property,[3][4] is purely a feature of quantum correlations, and has no classical analogue. Supposing that two classical random variablesX andY are correlated, we can copy, or "clone",X to create arbitrarily many random variables that all share precisely the same correlation withY. If we letX andY be entangled quantum states instead, thenX cannot be cloned, and this sort of "polygamous" outcome is impossible.

The monogamy of entanglement has broad implications for applications ofquantum mechanics ranging fromblack hole physics toquantum cryptography, where it plays a pivotal role in the security ofquantum key distribution.[5]

Proof

[edit]

The monogamy of bipartite entanglement was established for tripartite systems in terms of concurrence by Valerie Coffman, Joydip Kundu, andWilliam Wootters in 2000.[1] In 2006, Tobias Osborne andFrank Verstraete extended this result to the multipartite case, proving the CKW inequality.[2][6]

Example

[edit]

For the sake of illustration, consider the three-qubit state|ψ(C2)3{\displaystyle |\psi \rangle \in (\mathbb {C} ^{2})^{\otimes 3}} consisting of qubitsA,B, andC. Suppose thatA andB form a (maximally entangled)EPR pair, e.g.

|EPRAB=(|00+|11)2{\displaystyle |{\text{EPR}}\rangle _{AB}={\frac {(|00\rangle +|11\rangle )}{\sqrt {2}}}}

We will show that:

|ψ=|EPRAB|ϕC{\displaystyle |\psi \rangle =|{\text{EPR}}\rangle _{AB}\otimes |\phi \rangle _{C}}

for some valid quantum state|ϕC{\displaystyle |\phi \rangle _{C}}. By the definition of entanglement, this implies thatC must be completely disentangled fromA andB.

When measured in the standard basis,A andB collapse to the states|00{\displaystyle |00\rangle } and|11{\displaystyle |11\rangle } with probability12{\displaystyle {\frac {1}{2}}} each. It follows that:

|ψ=|00(α0|0+α1|1)+|11(β0|0+β1|1){\displaystyle |\psi \rangle =|00\rangle \otimes (\alpha _{0}|0\rangle +\alpha _{1}|1\rangle )+|11\rangle \otimes (\beta _{0}|0\rangle +\beta _{1}|1\rangle )}

for someα0,α1,β0,β1C{\displaystyle \alpha _{0},\alpha _{1},\beta _{0},\beta _{1}\in \mathbb {C} } such that|α0|2+|α1|2=|β0|2+|β1|2=12{\displaystyle |\alpha _{0}|^{2}+|\alpha _{1}|^{2}=|\beta _{0}|^{2}+|\beta _{1}|^{2}={\frac {1}{2}}}.

By defining diagonal basis vectors|+{\displaystyle |+\rangle } and|{\displaystyle |-\rangle } such that:

|0=12(|++|){\displaystyle |0\rangle ={\frac {1}{\sqrt {2}}}(|+\rangle +|-\rangle )}
|1=12(|+|){\displaystyle |1\rangle ={\frac {1}{\sqrt {2}}}(|+\rangle -|-\rangle )}

we can rewrite the states ofA andB in terms of|++{\displaystyle |++\rangle },|+{\displaystyle |+-\rangle },|+{\displaystyle |-+\rangle }, and|{\displaystyle |--\rangle } as:

|ψ=12(|+++|++|++|)(α0|0+α1|1)+12(|++|+|++|)(β0|0+β1|1){\displaystyle |\psi \rangle ={\frac {1}{2}}(|++\rangle +|+-\rangle +|-+\rangle +|--\rangle )\otimes (\alpha _{0}|0\rangle +\alpha _{1}|1\rangle )+{\frac {1}{2}}(|++\rangle -|+-\rangle -|-+\rangle +|--\rangle )\otimes (\beta _{0}|0\rangle +\beta _{1}|1\rangle )}
=12(|+++|)((α0+β0)|0+(α1+β1)|1)+12(|++|+)((α0β0)|0+(α1β1)|1){\displaystyle ={\frac {1}{2}}(|++\rangle +|--\rangle )\otimes ((\alpha _{0}+\beta _{0})|0\rangle +(\alpha _{1}+\beta _{1})|1\rangle )+{\frac {1}{2}}(|+-\rangle +|-+\rangle )\otimes ((\alpha _{0}-\beta _{0})|0\rangle +(\alpha _{1}-\beta _{1})|1\rangle )}

Being maximally entangled,A andB collapse to one of the two states|++{\displaystyle |++\rangle } or|{\displaystyle |--\rangle } when measured in the diagonal basis. The probability of observing outcomes|+{\displaystyle |+-\rangle } or|+{\displaystyle |-+\rangle } is zero. Therefore, according to the equation above, it must be the case thatα0β0=0{\displaystyle \alpha _{0}-\beta _{0}=0} andα1β1=0{\displaystyle \alpha _{1}-\beta _{1}=0}. It follows immediately thatα0=β0{\displaystyle \alpha _{0}=\beta _{0}} andα1=β1{\displaystyle \alpha _{1}=\beta _{1}}. We can rewrite our expression for|ψ{\displaystyle |\psi \rangle } accordingly:

|ψ=(|+++|)(α0|0+α1|1){\displaystyle |\psi \rangle =(|++\rangle +|--\rangle )\otimes (\alpha _{0}|0\rangle +\alpha _{1}|1\rangle )}
=|EPRAB(2α0|0+2α1|1){\displaystyle =|{\text{EPR}}\rangle _{AB}\otimes ({\sqrt {2}}\alpha _{0}|0\rangle +{\sqrt {2}}\alpha _{1}|1\rangle )}
=|EPRAB|ϕC{\displaystyle =|{\text{EPR}}\rangle _{AB}\otimes |\phi \rangle _{C}}

This shows that the original state can be written as a product of a pure state inAB and a pure state inC, which means that the EPR state in qubitsA andB is not entangled with the qubitC.

References

[edit]
  1. ^abCoffman, Valerie; Kundu, Joydip; Wootters, William (2000). "Distributed entanglement".Physical Review A.61 (5) 052306.arXiv:quant-ph/9907047.Bibcode:2000PhRvA..61e2306C.doi:10.1103/physreva.61.052306.S2CID 1781516.
  2. ^abOsborne, Tobias J.; Verstraete, Frank (2006). "General Monogamy Inequality for Bipartite Qubit Entanglement".Physical Review Letters.96 (22) 220503.arXiv:quant-ph/0502176.Bibcode:2006PhRvL..96v0503O.doi:10.1103/PhysRevLett.96.220503.hdl:1854/LU-8588637.PMID 16803293.S2CID 14366769.
  3. ^Seevnick, Michael (2010)."Monogamy of correlations versus monogamy of entanglement".Quantum Information Processing.9 (2):273–294.arXiv:0908.1867.Bibcode:2010QuIP....9..273S.doi:10.1007/s11128-009-0161-6.
  4. ^Leifer, Matthew S. (2006). "Quantum dynamics as an analog of conditional probability".Physical Review A.74 (4) 042310.arXiv:quant-ph/0606022.Bibcode:2006PhRvA..74d2310L.doi:10.1103/PhysRevA.74.042310.S2CID 56054135.
  5. ^Pawłowski, Marcin (2010). "Security proof for cryptographic protocols based only on the monogamy of Bell's inequality violations".Physical Review A.82 (3) 032313.arXiv:0907.3778.Bibcode:2010PhRvA..82c2313P.doi:10.1103/PhysRevA.82.032313.S2CID 119078270.
  6. ^Bertlmann, Reinhold; Friis, Nicolai (2023-10-05).Modern Quantum Theory: From Quantum Mechanics to Entanglement and Quantum Information. Oxford University Press.ISBN 978-0-19-150634-5.
General
Theorems
Quantum
communication
Quantum cryptography
Quantum algorithms
Quantum
complexity theory
Quantum
processor benchmarks
Quantum
computing models
Quantum
error correction
Physical
implementations
Quantum optics
Ultracold atoms
Spin-based
Superconducting
Quantum
programming
Retrieved from "https://en.wikipedia.org/w/index.php?title=Monogamy_of_entanglement&oldid=1333986204"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp