Mokume-gane (木目金) is a Japanese metalworking procedure which produces a mixed-metal laminate with distinctive layered patterns; the term is also used to refer to the resulting laminate itself. The termmokume-gane translates closely to 'wood grain metal' or 'wood eye metal' and describes the way metal takes on the appearance of natural wood grain.[1]Mokume-gane fuses several layers of differently coloured precious metals together to form a sandwich of alloys called a "billet." The billet is then manipulated in such a way that a pattern resembling wood grain emerges over its surface. Numerous ways of workingmokume-gane create diverse patterns. Once the metal has been rolled into a sheet or bar, several techniques are used to produce a range of effects.
Mokume-gane has been used to create many artistic objects. Though the technique was first developed for production of decorative sword fittings, the craft is today mostly used in the production of jewelry andhollowware.[2]
First developed in 17th-centuryJapan,mokume-gane was originally used for swords. As the customaryJapanese sword stopped serving as a weapon and became largely a status symbol, a demand arose for elaborate decorative handles and sheaths.[3]
To meet this demand,Denbei Shoami (1651–1728), a master metalworker fromAkita prefecture, invented themokume-gane process. He initially called his productguri bori, as the technique in its simplest form resembledguri, a type of carvedlacquerwork with alternating layers of red and black. Other historical names for it werekasumi-uchi (cloud metal),itame-gane (wood-grain metal), andyosefuki.[4]
The early components ofmokume-gane were relatively soft metals and alloys (gold, copper, silver,shakudō,shibuichi, andkuromido) which would form liquid phasediffusion bonds with one another without completely melting. This was useful in the traditional techniques of fusing and soldering the layers together.[3]
Over time, the practice ofmokume-gane faded. Thekatana industry dried up in the late 19th century, with theMeiji Restoration returning ruling power to the emperor, following the dissolution of theshogunate government and the end of the samurai class. The public display of swords as a sign of samurai status was outlawed. After this, the few metalsmiths who practicedmokume-gane along with most other sword related artisans largely transferred their skills to create other objects.[2]
Tiffany & Co's silver division under the direction of Edward C. Moore began to experiment withmokume-gane techniques around 1877, and at the Paris exposition of 1878, Tiffany's grand prize-winning display of Moore's "Japanesque" silver wares included a magnificent "Conglomerate Vase" with asymmetrical panels ofmokume-gane. Moore and Tiffany's silver smiths continued to develop its popularmokume-gane techniques in preparation for the Paris exposition of 1889, where it displayed a vast array of Japanesque silver, using ever more complex alloys ofshakudō,sedo andshibuichi, along with gold and silver, to make laminates of up to twenty-four layers. Tiffany's display again won the grand prize for silver wares, and the company continued to produce its Japanesque silver withmokume-gane techniques up into the 20th century.[5]
By the mid 20th century,mokume-gane had fallen into heavy obscurity. Japan's movement away from traditional craftwork, paired with the great difficulty of masteringmokume-gane, had broughtmokume-gane artisans to the brink of extinction. It reached a point where only scholars and collectors of metalwork were aware of the technique.[3] It was not until the 1970s, when Hiroko Sato Pijanowski – who learned the craft from Norio Tamagawa[6][better source needed] – that the craft was reignited in the public eye, as Hiroko and her husband Eugene Pijanowski brought the craft ofmokume-gane back to the United States and began teaching it to their students.
Today, jewelry, flatware, hollowware, spinning tops and other artistic objects are made usingmokume-gane.[2]
Modern processes are highly controlled and include a compressive force on the billet. This has allowed the technique to include many nontraditional components such astitanium,platinum,iron,bronze,brass,nickel silver, and various colors of karatgold including yellow, white, sage, and rose hues as well as sterling silver.[3] At the Santa Fe Symposium, a major annual gathering of jewelers from around the world, there have been several papers presented on new, more predictable, and more economic, methods of producingmokume-gane materials, along with new possibilities for laminating metals such as the use of friction-stir welding.
In liquid phase fusion, metal sheets were stacked and carefully heated; the solidbillet of simple stripes could be forged and carved to increase the pattern's complexity. Successful lamination using this process requires a highly skilled smith with a great deal of experience. Bonding in the traditional process is achieved when some or all of the alloys in the stack are heated to the point of becoming partially molten (above solidus) this liquid alloy is what fuses the layers together. Careful heat control and skillful forging are required for this process.[3]
In attempting to recreate the appearance of traditionalmokume-gane, some artisans tried brazing layers together. The sheets were soldered using silver solder or some other brazing alloy. This technique joined the metals, but is difficult to perfect, particularly on larger sheets, because flux inclusions can trapped or bubbles could form. Commonly, these imperfections need to be cut out, and the metal re-soldered. In addition, brazed sheets also do not display the same levels of ductility and work-ability of diffusion-bonded material.
The modernized process of solid-state bonding typically uses a controlled atmosphere in a temperature-controlled furnace. Mechanical aids such as a hydraulic press or torque plates (bolted clamps) are also typically used to apply compressive force on the billet during lamination. These provide for the implementation of lower temperature solid-state diffusion between the interleaved layers, thus allowing the inclusion of non-traditional materials.[3]
After the layer fusion, the surface of the billet is cut with chisel to expose lower layers, then flattened. This cutting and flattening process will be repeated over and over again to develop intricate patterns.[4]
To increase the contrast between the laminate layers, manymokume-gane items are colored by the application of apatina (a controlled corrosion layer) to accentuate or even totally change the colors of the metal's surface.
One example of a traditional Japanese patination formokume-gane is the use of theniiro process, usually involvingrokushō, a complex copperverdigris compound produced specifically for use as a patina. The piece to be patinated is prepared, then immersed in a boiling solution until it reaches the desired color, and each element of a compound piece may be transformed to a different color. Historically, a paste of grounddaikon radish was also used to prepare the work for the patina. The paste was applied immediately before the piece is boiled in therokushō to protect the surface against tarnish and uneven coloring.[4]
In an accidental but parallel development,Sheffield plate was developed in England. It follows a similar principal of bonded layers, without use of solder, but typically had 2–3 layers, whereasmokume-gane could have many more.
{{cite journal}}
:Cite journal requires|journal=
(help){{cite journal}}
:Cite journal requires|journal=
(help) Media related toMokume-gane at Wikimedia Commons