Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Mnemonics in trigonometry

From Wikipedia, the free encyclopedia
Mathematical memory aids

Intrigonometry, it is common to usemnemonics to help remembertrigonometric identities and the relationships between the varioustrigonometric functions.

Image mnemonic to help remember the ratios of sides of a right triangle

Thesine,cosine, andtangent ratios in a right triangle can be remembered by representing them as strings of letters, for instance SOH-CAH-TOA in English:

Sine =Opposite ÷Hypotenuse
Cosine =Adjacent ÷Hypotenuse
Tangent =Opposite ÷Adjacent

One way to remember the letters is to sound them out phonetically (i.e./ˌskəˈtə/SOH-kə-TOH, similar toKrakatoa).[1]

Phrases

[edit]

Another method is to expand the letters into a sentence, such as "Some Old Horses Chew Apples Happily Throughout Old Age", "Some Old Hippy Caught Another Hippy Tripping On Acid", or "Studying Our Homework Can Always Help To Obtain Achievement". The order may be switched, as in "Tommy On A Ship Of His Caught A Herring" (tangent, sine, cosine) or "The Old Army Colonel And His Son Often Hiccup" (tangent, cosine, sine) or "Come And Have Some Oranges Help To Overcome Amnesia" (cosine, sine, tangent).[2][3] Communities in Chinese circles may choose to remember it as TOA-CAH-SOH, which also means 'big-footed woman' (Chinese:大腳嫂;Pe̍h-ōe-jī:tōa-kha-só) inHokkien.[citation needed]

An alternate way to remember the letters for Sin, Cos, and Tan is to memorize the syllables Oh, Ah, Oh-Ah (i.e./əˈ.ə/) for O/H, A/H, O/A.[4] Longer mnemonics for these letters include "Oscar Has A Hold On Angie" and "Oscar Had A Heap of Apples."[2]

All Students Take Calculus

[edit]
Signs of trigonometric functions in each quadrant.

All StudentsTakeCalculus is amnemonic for the sign of eachtrigonometric functions in eachquadrant of the plane. The letters ASTC signify which of the trigonometric functions are positive, starting in the top right 1st quadrant and movingcounterclockwise through quadrants 2 to 4.[5]

  • Quadrant 1 (angles from 0 to 90 degrees, or 0 to π/2 radians):All trigonometric functions are positive in this quadrant.
  • Quadrant 2 (angles from 90 to 180 degrees, or π/2 to π radians):Sine and cosecant functions are positive in this quadrant.
  • Quadrant 3 (angles from 180 to 270 degrees, or π to 3π/2 radians):Tangent and cotangent functions are positive in this quadrant.
  • Quadrant 4 (angles from 270 to 360 degrees, or 3π/2 to 2π radians):Cosine and secant functions are positive in this quadrant.

Other mnemonics include:

  • All StationsToCentral[6]
  • All SillyTomCats[6]
  • AddSugarToCoffee[6]
  • AllScienceTeachers (are)Crazy[7]
  • ASmartTrigClass[8]
  • AllSchoolsTortureChildren[5]
  • AwfulStinkyTrigCourse[5]

Other easy-to-remember mnemonics are theACTS andCAST laws. These have the disadvantages of not going sequentially from quadrants 1 to 4 and not reinforcing the numbering convention of the quadrants.

  • CAST still goes counterclockwise but starts in quadrant 4 going through quadrants 4, 1, 2, then 3.
  • ACTS still starts in quadrant 1 but goes clockwise going through quadrants 1, 4, 3, then 2.

Sines and cosines of special angles

[edit]

Sines and cosines of common angles 0°, 30°, 45°, 60° and 90° follow the patternn2{\displaystyle {\frac {\sqrt {n}}{2}}} withn = 0, 1, ..., 4 for sine andn = 4, 3, ..., 0 for cosine, respectively:[9]

θ{\displaystyle \theta }sinθ{\displaystyle \sin \theta }cosθ{\displaystyle \cos \theta }tanθ=sinθ/cosθ{\displaystyle \tan \theta =\sin \theta {\Big /}\cos \theta }
0° = 0 radians02=0{\displaystyle {\frac {\sqrt {\mathbf {\color {blue}{0}} }}{2}}=\;\;0}42=1{\displaystyle {\frac {\sqrt {\mathbf {\color {red}{4}} }}{2}}=\;\;1}0/1=0{\displaystyle \;\;0\;\;{\Big /}\;\;1\;\;=\;\;0}
30° =π/6 radians12=12{\displaystyle {\frac {\sqrt {\mathbf {\color {teal}{1}} }}{2}}=\;\,{\frac {1}{2}}}32{\displaystyle {\frac {\sqrt {\mathbf {\color {orange}{3}} }}{2}}}12/32=13{\displaystyle \;\,{\frac {1}{2}}\;{\Big /}{\frac {\sqrt {3}}{2}}={\frac {1}{\sqrt {3}}}}
45° =π/4 radians22=12{\displaystyle {\frac {\sqrt {\mathbf {\color {green}{2}} }}{2}}={\frac {1}{\sqrt {2}}}}22=12{\displaystyle {\frac {\sqrt {\mathbf {\color {green}{2}} }}{2}}={\frac {1}{\sqrt {2}}}}12/12=1{\displaystyle {\frac {1}{\sqrt {2}}}{\Big /}{\frac {1}{\sqrt {2}}}=\;\;1}
60° =π/3 radians32{\displaystyle {\frac {\sqrt {\mathbf {\color {orange}{3}} }}{2}}}12=12{\displaystyle {\frac {\sqrt {\mathbf {\color {teal}{1}} }}{2}}=\;{\frac {1}{2}}}32/12=3{\displaystyle {\frac {\sqrt {3}}{2}}{\Big /}\;{\frac {1}{2}}\;\,={\sqrt {3}}}
90° =π/2 radians42=1{\displaystyle {\frac {\sqrt {\mathbf {\color {red}{4}} }}{2}}=\;\,1}02=0{\displaystyle {\frac {\sqrt {\mathbf {\color {blue}{0}} }}{2}}=\;\,0}1/0={\displaystyle \;\;1\;\;{\Big /}\;\;0\;\;=} undefined

Hexagon chart

[edit]
Trigonometric identities mnemonic

Another mnemonic permits all of the basic identities to be read off quickly. The hexagonal chart can be constructed with a little thought:[10]

  1. Draw three triangles pointing down, touching at a single point. This resembles afallout sheltertrefoil.
  2. Write a 1 in the middle where the three triangles touch
  3. Write the functions without "co" on the three left outer vertices (from top to bottom:sine,tangent,secant)
  4. Write the co-functions on the corresponding three right outer vertices (cosine,cotangent,cosecant)

Starting at any vertex of the resulting hexagon:

IdentityExample(s)Illustration
The starting vertex equals one over the opposite vertex.sinA=1cscA{\displaystyle \sin A={\frac {1}{\csc A}}}
tanA=1cotA{\displaystyle \tan A={\frac {1}{\cot A}}}
cosA=1secA{\displaystyle \cos A={\frac {1}{\sec A}}}
Going either clockwise or counter-clockwise, the starting vertex equals the next vertex divided by the vertex after that.sinA=cosAcotA=tanAsecA{\displaystyle \sin A={\frac {\cos A}{\cot A}}={\frac {\tan A}{\sec A}}}
cosA=cotAcscA=sinAtanA{\displaystyle \cos A={\frac {\cot A}{\csc A}}={\frac {\sin A}{\tan A}}}
cotA=cscAsecA=cosAsinA{\displaystyle \cot A={\frac {\csc A}{\sec A}}={\frac {\cos A}{\sin A}}}
cscA=secAtanA=cotAcosA{\displaystyle \csc A={\frac {\sec A}{\tan A}}={\frac {\cot A}{\cos A}}}
secA=tanAsinA=cscAcotA{\displaystyle \sec A={\frac {\tan A}{\sin A}}={\frac {\csc A}{\cot A}}}
tanA=sinAcosA=secAcscA{\displaystyle \tan A={\frac {\sin A}{\cos A}}={\frac {\sec A}{\csc A}}}
The starting corner equals the product of its two nearest neighbors.sinA=cosAtanA{\displaystyle \sin A=\cos A\cdot \tan A}
The sum of the squares of the two items at the top of a triangle equals the square of the item at the bottom. These are thetrigonometric Pythagorean identities.sin2A+cos2A=12=1 {\displaystyle \sin ^{2}A+\cos ^{2}A=1^{2}=1\ }
1+cot2A=csc2A {\displaystyle 1+\cot ^{2}A=\csc ^{2}A\ }
tan2A+1=sec2A {\displaystyle \tan ^{2}A+1=\sec ^{2}A\ }

Aside from the last bullet, the specific values for each identity are summarized in this table:

Starting function... equals1/opposite... equalsfirst/second clockwise... equalsfirst/second counter-clockwise/anticlockwise... equals the product of two nearest neighbors
tanA{\displaystyle \tan A}=1cotA{\displaystyle ={\frac {1}{\cot A}}}=sinAcosA{\displaystyle ={\frac {\sin A}{\cos A}}}=secAcscA{\displaystyle ={\frac {\sec A}{\csc A}}}=sinAsecA{\displaystyle =\sin A\cdot \sec A}
sinA{\displaystyle \sin A}=1cscA{\displaystyle ={\frac {1}{\csc A}}}=cosAcotA{\displaystyle ={\frac {\cos A}{\cot A}}}=tanAsecA{\displaystyle ={\frac {\tan A}{\sec A}}}=cosAtanA{\displaystyle =\cos A\cdot \tan A}
cosA{\displaystyle \cos A}=1secA{\displaystyle ={\frac {1}{\sec A}}}=cotAcscA{\displaystyle ={\frac {\cot A}{\csc A}}}=sinAtanA{\displaystyle ={\frac {\sin A}{\tan A}}}=sinAcotA{\displaystyle =\sin A\cdot \cot A}
cotA{\displaystyle \cot A}=1tanA{\displaystyle ={\frac {1}{\tan A}}}=cscAsecA{\displaystyle ={\frac {\csc A}{\sec A}}}=cosAsinA{\displaystyle ={\frac {\cos A}{\sin A}}}=cosAcscA{\displaystyle =\cos A\cdot \csc A}
cscA{\displaystyle \csc A}=1sinA{\displaystyle ={\frac {1}{\sin A}}}=secAtanA{\displaystyle ={\frac {\sec A}{\tan A}}}=cotAcosA{\displaystyle ={\frac {\cot A}{\cos A}}}=cotAsecA{\displaystyle =\cot A\cdot \sec A}
secA{\displaystyle \sec A}=1cosA{\displaystyle ={\frac {1}{\cos A}}}=tanAsinA{\displaystyle ={\frac {\tan A}{\sin A}}}=cscAcotA{\displaystyle ={\frac {\csc A}{\cot A}}}=cscAtanA{\displaystyle =\csc A\cdot \tan A}

See also

[edit]

References

[edit]
  1. ^Humble, Chris (2001).Key Maths : GCSE, Higher. Fiona McGill. Cheltenham: Stanley Thornes Publishers. p. 51.ISBN 0-7487-3396-5.OCLC 47985033.
  2. ^abWeisstein, Eric W."SOHCAHTOA".MathWorld.
  3. ^Foster, Jonathan K. (2008).Memory: A Very Short Introduction. Oxford. p. 128.ISBN 978-0-19-280675-8.
  4. ^Weisstein, Eric W."Trigonometry".MathWorld.
  5. ^abcStueben, Michael; Sandford, Diane (1998).Twenty years before the blackboard: the lessons and humor of a mathematics teacher. Spectrum series. Washington, DC: Mathematical Association of America. p. 119.ISBN 978-0-88385-525-6.
  6. ^abc"Sine, Cosine and Tangent in Four Quadrants".Math Is Fun. Archived fromthe original on 2015-01-18. Retrieved2015-01-18.
  7. ^Heng, H. H.; Cheng, Khoo; Talbert, J. F. (2005).Additional Mathematics. Pearson Education South Asia. p. 228.ISBN 978-981-235-211-8. Archived fromthe original on 2023-06-10.
  8. ^"Math Mnemonics and Songs for Trigonometry".Online Math Learning.Archived from the original on 2019-10-17. Retrieved2019-10-17.
  9. ^Larson, Ron (2014).Precalculus with Limits: A Graphing Approach, Texas Edition (6 ed.). Cengage Learning.
  10. ^"Magic Hexagon for Trig Identities".Math is Fun.Archived from the original on 2018-02-05. Retrieved2018-02-04.
Sciencemnemonics
Physics
Biology
Mathematics
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Mnemonics_in_trigonometry&oldid=1297035136"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp