Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Minor actinide

From Wikipedia, the free encyclopedia
Category of elements in spent nuclear fuel
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Minor actinide" – news ·newspapers ·books ·scholar ·JSTOR
(April 2009) (Learn how and when to remove this message)
Transmutation flow between238Pu and244Cm in LWR.[1]
Fission percentage is 100 minus shown percentages.
Total rate of transmutation varies greatly by nuclide.
245Cm–248Cm are long-lived with negligible decay.
Minor actinides in the periodic table
HydrogenHelium
LithiumBerylliumBoronCarbonNitrogenOxygenFluorineNeon
SodiumMagnesiumAluminiumSiliconPhosphorusSulfurChlorineArgon
PotassiumCalciumScandiumTitaniumVanadiumChromiumManganeseIronCobaltNickelCopperZincGalliumGermaniumArsenicSeleniumBromineKrypton
RubidiumStrontiumYttriumZirconiumNiobiumMolybdenumTechnetiumRutheniumRhodiumPalladiumSilverCadmiumIndiumTinAntimonyTelluriumIodineXenon
CaesiumBariumLanthanumCeriumPraseodymiumNeodymiumPromethiumSamariumEuropiumGadoliniumTerbiumDysprosiumHolmiumErbiumThuliumYtterbiumLutetiumHafniumTantalumTungstenRheniumOsmiumIridiumPlatinumGoldMercury (element)ThalliumLeadBismuthPoloniumAstatineRadon
FranciumRadiumActiniumThoriumProtactiniumUraniumNeptuniumPlutoniumAmericiumCuriumBerkeliumCaliforniumEinsteiniumFermiumMendeleviumNobeliumLawrenciumRutherfordiumDubniumSeaborgiumBohriumHassiumMeitneriumDarmstadtiumRoentgeniumCoperniciumNihoniumFleroviumMoscoviumLivermoriumTennessineOganesson
Major actinides in the periodic table
HydrogenHelium
LithiumBerylliumBoronCarbonNitrogenOxygenFluorineNeon
SodiumMagnesiumAluminiumSiliconPhosphorusSulfurChlorineArgon
PotassiumCalciumScandiumTitaniumVanadiumChromiumManganeseIronCobaltNickelCopperZincGalliumGermaniumArsenicSeleniumBromineKrypton
RubidiumStrontiumYttriumZirconiumNiobiumMolybdenumTechnetiumRutheniumRhodiumPalladiumSilverCadmiumIndiumTinAntimonyTelluriumIodineXenon
CaesiumBariumLanthanumCeriumPraseodymiumNeodymiumPromethiumSamariumEuropiumGadoliniumTerbiumDysprosiumHolmiumErbiumThuliumYtterbiumLutetiumHafniumTantalumTungstenRheniumOsmiumIridiumPlatinumGoldMercury (element)ThalliumLeadBismuthPoloniumAstatineRadon
FranciumRadiumActiniumThoriumProtactiniumUraniumNeptuniumPlutoniumAmericiumCuriumBerkeliumCaliforniumEinsteiniumFermiumMendeleviumNobeliumLawrenciumRutherfordiumDubniumSeaborgiumBohriumHassiumMeitneriumDarmstadtiumRoentgeniumCoperniciumNihoniumFleroviumMoscoviumLivermoriumTennessineOganesson

Aminor actinide is anactinide, other thanuranium orplutonium, found inspent nuclear fuel. The minor actinides includeneptunium (element 93),americium (element 95),curium (element 96),berkelium (element 97),californium (element 98),einsteinium (element 99), andfermium (element 100).[2] The most important isotopes of these elements inspent nuclear fuel areneptunium-237,americium-241,americium-243,curium-242 through -248, andcalifornium-249 through -252.

Plutonium and the minoractinides will be responsible for the bulk of theradiotoxicity and heat generation ofspent nuclear fuel in the long term (300 to 20,000 years in thefuture).[3]

The plutonium from a power reactor tends to have a greater amount ofplutonium-241 than the plutonium generated by the lowerburnup operations designed to createweapons-grade plutonium. Because thereactor-grade plutonium contains so much241Pu, the presence of241Am makes the plutonium less suitable for making anuclear weapon. The ingrowth of americium in plutonium is one of the methods for identifying the origin of an unknown sample of plutonium and the time since it was last separated chemically from the americium.

Americium is commonly used in industry as both analpha particle source and as a lowphoton-energygamma radiation source. For example, it is commonly used insmoke detectors. Americium can be formed by neutron capture of239Pu and240Pu, forming241Pu which then beta decays to241Am.[4] In general, as the energy of the neutrons increases, the ratio of the fission cross section to the neutron capture cross section changes in favour offission. Hence, ifMOX is used in athermal reactor such as aboiling water reactor (BWR) orpressurized water reactor (PWR) then more americium can be expected to be found in the spent fuel than in that from afast neutron reactor.[5]

Some of the minor actinides have been found infallout from bomb tests. SeeActinides in the environment for details.

Transuranics inLWRspent fuel (burnup 55 GWdth/T) and meanneutron consumption viafission[6]
IsotopeFractionDLWRDfastDsuperthermal
237
Np
0.05391.12−0.59−0.46
238
Pu
0.03640.17−1.36−0.13
239
Pu
0.451−0.67−1.46−1.07
240
Pu
0.2060.44−0.960.14
241
Pu
0.121−0.56−1.24−0.86
242
Pu
0.08131.76−0.441.12
241
Am
0.02421.12−0.62−0.54
242m
Am
0.0000880.15−1.36−1.53
243
Am
0.01790.82−0.600.21
243
Cm
0.00011−1.90−2.13−1.63
244
Cm
0.00765−0.15−1.39−0.48
245
Cm
0.000638−1.48−2.51−1.37
Weighted sum−0.03−1.16−0.51
Negative numbers mean net neutron producer

References

[edit]
  1. ^Sasahara, Akihiro; Matsumura, Tetsuo; Nicolaou, Giorgos; Papaioannou, Dimitri (April 2004)."Neutron and Gamma Ray Source Evaluation of LWR High Burn-up UO2 and MOX Spent Fuels".Journal of Nuclear Science and Technology.41 (4):448–456.doi:10.3327/jnst.41.448.
  2. ^Moyer, Bruce A. (2009).Ion Exchange and Solvent Extraction: A Series of Advances, Volume 19. CRC Press. p. 120.ISBN 9781420059700.
  3. ^Stacey, Weston M. (2007).Nuclear Reactor Physics. John Wiley & Sons. p. 240.ISBN 9783527406791.
  4. ^Raj, Gurdeep (2008).Advanced Inorganic Chemistry Vol-1, 31st ed. Krishna Prakashan Media. p. 356.ISBN 9788187224037.
  5. ^Berthou, V.; et al. (2003)."Transmutation characteristics in thermal and fast neutron spectra: application to americium"(PDF).Journal of Nuclear Materials.320 (1–2):156–162.Bibcode:2003JNuM..320..156B.doi:10.1016/S0022-3115(03)00183-1. Archived fromthe original(PDF) on 2016-01-26. Retrieved2013-03-31.
  6. ^Etienne Parent (2003)."Nuclear Fuel Cycles for Mid-Century Deployment"(PDF). MIT. p. 104. Archived fromthe original(PDF) on 2009-02-25.
Science
Fuel
Neutron
Power
Medicine
Imaging
Therapy
Processing
Weapons
Topics
Lists
Waste
Products
Disposal
Debate
Light water
Heavy water
bycoolant
D2O
H2O
Organic
CO2
Water (LWGR)
H2O
Gas
CO2
He
Molten-salt
Fluorides
Generation IV
Others
Magnetic
Inertial
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Minor_actinide&oldid=1175864956"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp