Triangle inequality in Lp spaces
Inmathematical analysis , theMinkowski inequality establishes that theL p {\displaystyle L^{p}} spaces satisfy thetriangle inequality in the definition ofnormed vector spaces . The inequality is named after the German mathematicianHermann Minkowski .
LetS {\textstyle S} be ameasure space , let1 ≤ p ≤ ∞ {\textstyle 1\leq p\leq \infty } and letf {\textstyle f} andg {\textstyle g} be elements ofL p ( S ) . {\textstyle L^{p}(S).} Thenf + g {\textstyle f+g} is inL p ( S ) , {\textstyle L^{p}(S),} and we have the triangle inequality
‖ f + g ‖ p ≤ ‖ f ‖ p + ‖ g ‖ p {\displaystyle \|f+g\|_{p}\leq \|f\|_{p}+\|g\|_{p}}
with equality for1 < p < ∞ {\textstyle 1<p<\infty } if and only iff {\textstyle f} andg {\textstyle g} are positivelylinearly dependent ; that is,f = λ g {\textstyle f=\lambda g} for someλ ≥ 0 {\textstyle \lambda \geq 0} org = 0. {\textstyle g=0.} Here, the norm is given by:
‖ f ‖ p = ( ∫ | f | p d μ ) 1 p {\displaystyle \|f\|_{p}=\left(\int |f|^{p}d\mu \right)^{\frac {1}{p}}}
ifp < ∞ , {\textstyle p<\infty ,} or in the casep = ∞ {\textstyle p=\infty } by theessential supremum
‖ f ‖ ∞ = e s s s u p x ∈ S | f ( x ) | . {\displaystyle \|f\|_{\infty }=\operatorname {ess\ sup} _{x\in S}|f(x)|.}
The Minkowski inequality is the triangle inequality inL p ( S ) . {\textstyle L^{p}(S).} In fact, it is a special case of the more general fact
‖ f ‖ p = sup ‖ g ‖ q = 1 ∫ | f g | d μ , 1 p + 1 q = 1 {\displaystyle \|f\|_{p}=\sup _{\|g\|_{q}=1}\int |fg|d\mu ,\qquad {\tfrac {1}{p}}+{\tfrac {1}{q}}=1}
where it is easy to see that the right-hand side satisfies the triangular inequality.
LikeHölder's inequality , the Minkowski inequality can be specialized to sequences and vectors by using thecounting measure :
( ∑ k = 1 n | x k + y k | p ) 1 / p ≤ ( ∑ k = 1 n | x k | p ) 1 / p + ( ∑ k = 1 n | y k | p ) 1 / p {\displaystyle \left(\sum _{k=1}^{n}|x_{k}+y_{k}|^{p}\right)^{1/p}\leq \left(\sum _{k=1}^{n}|x_{k}|^{p}\right)^{1/p}+\left(\sum _{k=1}^{n}|y_{k}|^{p}\right)^{1/p}}
for allreal (orcomplex ) numbersx 1 , … , x n , y 1 , … , y n {\textstyle x_{1},\dots ,x_{n},y_{1},\dots ,y_{n}} and wheren {\textstyle n} is thecardinality ofS {\textstyle S} (the number of elements inS {\textstyle S} ).
In probabilistic terms, given theprobability space ( Ω , F , P ) , {\displaystyle (\Omega ,{\mathcal {F}},\mathbb {P} ),} andE {\displaystyle \mathbb {E} } denote theexpectation operator for every real- or complex-valuedrandom variables X {\displaystyle X} andY {\displaystyle Y} onΩ , {\displaystyle \Omega ,} Minkowski's inequality reads
( E [ | X + Y | p ] ) 1 p ⩽ ( E [ | X | p ] ) 1 p + ( E [ | Y | p ] ) 1 p . {\displaystyle \left(\mathbb {E} [|X+Y|^{p}]\right)^{\frac {1}{p}}\leqslant \left(\mathbb {E} [|X|^{p}]\right)^{\frac {1}{p}}+\left(\mathbb {E} [|Y|^{p}]\right)^{\frac {1}{p}}.} Proof by Hölder's inequality[ edit ] First, we prove thatf + g {\textstyle f+g} has finitep {\textstyle p} -norm iff {\textstyle f} andg {\textstyle g} both do, which follows by
| f + g | p ≤ 2 p − 1 ( | f | p + | g | p ) . {\displaystyle |f+g|^{p}\leq 2^{p-1}(|f|^{p}+|g|^{p}).}
Indeed, here we use the fact thath ( x ) = | x | p {\textstyle h(x)=|x|^{p}} isconvex overR + {\textstyle \mathbb {R} ^{+}} (forp > 1 {\textstyle p>1} ) and so, by the definition of convexity,
| 1 2 f + 1 2 g | p ≤ | 1 2 | f | + 1 2 | g | | p ≤ 1 2 | f | p + 1 2 | g | p . {\displaystyle \left|{\tfrac {1}{2}}f+{\tfrac {1}{2}}g\right|^{p}\leq \left|{\tfrac {1}{2}}|f|+{\tfrac {1}{2}}|g|\right|^{p}\leq {\tfrac {1}{2}}|f|^{p}+{\tfrac {1}{2}}|g|^{p}.}
This means that
| f + g | p ≤ 1 2 | 2 f | p + 1 2 | 2 g | p = 2 p − 1 | f | p + 2 p − 1 | g | p . {\displaystyle |f+g|^{p}\leq {\tfrac {1}{2}}|2f|^{p}+{\tfrac {1}{2}}|2g|^{p}=2^{p-1}|f|^{p}+2^{p-1}|g|^{p}.}
Now, we can legitimately talk about‖ f + g ‖ p {\textstyle \|f+g\|_{p}} . If it is zero, then Minkowski's inequality holds. We now assume that‖ f + g ‖ p {\textstyle \|f+g\|_{p}} is not zero. Using the triangle inequality and thenHölder's inequality , we find that
‖ f + g ‖ p p = ∫ | f + g | p d μ = ∫ | f + g | ⋅ | f + g | p − 1 d μ ≤ ∫ ( | f | + | g | ) | f + g | p − 1 d μ = ∫ | f | | f + g | p − 1 d μ + ∫ | g | | f + g | p − 1 d μ ≤ ( ( ∫ | f | p d μ ) 1 p + ( ∫ | g | p d μ ) 1 p ) ( ∫ | f + g | ( p − 1 ) ( p p − 1 ) d μ ) 1 − 1 p Hölder's inequality = ( ‖ f ‖ p + ‖ g ‖ p ) ‖ f + g ‖ p p ‖ f + g ‖ p {\displaystyle {\begin{aligned}\|f+g\|_{p}^{p}&=\int |f+g|^{p}\,\mathrm {d} \mu \\&=\int |f+g|\cdot |f+g|^{p-1}\,\mathrm {d} \mu \\&\leq \int (|f|+|g|)|f+g|^{p-1}\,\mathrm {d} \mu \\&=\int |f||f+g|^{p-1}\,\mathrm {d} \mu +\int |g||f+g|^{p-1}\,\mathrm {d} \mu \\&\leq \left(\left(\int |f|^{p}\,\mathrm {d} \mu \right)^{\frac {1}{p}}+\left(\int |g|^{p}\,\mathrm {d} \mu \right)^{\frac {1}{p}}\right)\left(\int |f+g|^{(p-1)\left({\frac {p}{p-1}}\right)}\,\mathrm {d} \mu \right)^{1-{\frac {1}{p}}}&&{\text{ Hölder's inequality}}\\&=\left(\|f\|_{p}+\|g\|_{p}\right){\frac {\|f+g\|_{p}^{p}}{\|f+g\|_{p}}}\end{aligned}}}
We obtain Minkowski's inequality by multiplying both sides by
‖ f + g ‖ p ‖ f + g ‖ p p . {\displaystyle {\frac {\|f+g\|_{p}}{\|f+g\|_{p}^{p}}}.}
Proof by a direct convexity argument [ edit ] Givent ∈ ( 0 , 1 ) {\displaystyle t\in (0,1)} , one has, by convexity (Jensen's inequality ), for everyx ∈ S {\displaystyle x\in S}
| f ( x ) + g ( x ) | p = | ( 1 − t ) f ( x ) 1 − t + t g ( x ) t | p ≤ ( 1 − t ) | f ( x ) 1 − t | p + t | g ( x ) t | p = | f ( x ) | p ( 1 − t ) p − 1 + | g ( x ) | p t p − 1 . {\displaystyle |f(x)+g(x)|^{p}={\Bigl |}(1-t){\frac {f(x)}{1-t}}+t{\frac {g(x)}{t}}{\Bigr |}^{p}\leq (1-t){\Bigl |}{\frac {f(x)}{1-t}}{\Bigr |}^{p}+t{\Bigl |}{\frac {g(x)}{t}}{\Bigr |}^{p}={\frac {|f(x)|^{p}}{(1-t)^{p-1}}}+{\frac {|g(x)|^{p}}{t^{p-1}}}.} By integration this leads to
∫ S | f + g | p d μ ≤ 1 ( 1 − t ) p − 1 ∫ S | f | p d μ + 1 t p − 1 ∫ S | g | p d μ . {\displaystyle \int _{S}|f+g|^{p}\,\mathrm {d} \mu \leq {\frac {1}{(1-t)^{p-1}}}\int _{S}|f|^{p}\,\mathrm {d} \mu +{\frac {1}{t^{p-1}}}\int _{S}|g|^{p}\,\mathrm {d} \mu .} One takes then
t = ‖ g ‖ p ‖ f ‖ p + ‖ g ‖ p {\displaystyle t={\frac {\Vert g\Vert _{p}}{\Vert f\Vert _{p}+\Vert g\Vert _{p}}}} to reach the conclusion.
Minkowski's integral inequality[ edit ] Suppose that( S 1 , μ 1 ) {\textstyle (S_{1},\mu _{1})} and( S 2 , μ 2 ) {\textstyle (S_{2},\mu _{2})} are two 𝜎-finite measure spaces andF : S 1 × S 2 → R {\textstyle F:S_{1}\times S_{2}\to \mathbb {R} } is measurable. Then Minkowski's integral inequality is:[ 1] [ 2]
[ ∫ S 2 | ∫ S 1 F ( x , y ) μ 1 ( d x ) | p μ 2 ( d y ) ] 1 p ≤ ∫ S 1 ( ∫ S 2 | F ( x , y ) | p μ 2 ( d y ) ) 1 p μ 1 ( d x ) , p ∈ [ 1 , ∞ ) {\displaystyle \left[\int _{S_{2}}\left|\int _{S_{1}}F(x,y)\,\mu _{1}(\mathrm {d} x)\right|^{p}\mu _{2}(\mathrm {d} y)\right]^{\frac {1}{p}}~\leq ~\int _{S_{1}}\left(\int _{S_{2}}|F(x,y)|^{p}\,\mu _{2}(\mathrm {d} y)\right)^{\frac {1}{p}}\mu _{1}(\mathrm {d} x),\quad p\in [1,\infty )}
with obvious modifications in the casep = ∞ . {\textstyle p=\infty .} Ifp > 1 , {\textstyle p>1,} and both sides are finite, then equality holds only if| F ( x , y ) | = φ ( x ) ψ ( y ) {\textstyle |F(x,y)|=\varphi (x)\,\psi (y)} a.e. for some non-negative measurable functionsφ {\textstyle \varphi } andψ {\textstyle \psi } .
Ifμ 1 {\textstyle \mu _{1}} is the counting measure on a two-point setS 1 = { 1 , 2 } , {\textstyle S_{1}=\{1,2\},} then Minkowski's integral inequality gives the usual Minkowski inequality as a special case: for puttingf i ( y ) = F ( i , y ) {\textstyle f_{i}(y)=F(i,y)} fori = 1 , 2 , {\textstyle i=1,2,} the integral inequality gives
‖ f 1 + f 2 ‖ p = ( ∫ S 2 | ∫ S 1 F ( x , y ) μ 1 ( d x ) | p μ 2 ( d y ) ) 1 p ≤ ∫ S 1 ( ∫ S 2 | F ( x , y ) | p μ 2 ( d y ) ) 1 p μ 1 ( d x ) = ‖ f 1 ‖ p + ‖ f 2 ‖ p . {\displaystyle \|f_{1}+f_{2}\|_{p}=\left(\int _{S_{2}}\left|\int _{S_{1}}F(x,y)\,\mu _{1}(\mathrm {d} x)\right|^{p}\mu _{2}(\mathrm {d} y)\right)^{\frac {1}{p}}\leq \int _{S_{1}}\left(\int _{S_{2}}|F(x,y)|^{p}\,\mu _{2}(\mathrm {d} y)\right)^{\frac {1}{p}}\mu _{1}(\mathrm {d} x)=\|f_{1}\|_{p}+\|f_{2}\|_{p}.}
If the measurable functionF : S 1 × S 2 → R {\textstyle F:S_{1}\times S_{2}\to \mathbb {R} } is non-negative then for all1 ≤ p ≤ q ≤ ∞ , {\textstyle 1\leq p\leq q\leq \infty ,} [ 3]
‖ ‖ F ( ⋅ , s 2 ) ‖ L p ( S 1 , μ 1 ) ‖ L q ( S 2 , μ 2 ) ≤ ‖ ‖ F ( s 1 , ⋅ ) ‖ L q ( S 2 , μ 2 ) ‖ L p ( S 1 , μ 1 ) . {\displaystyle \left\|\left\|F(\,\cdot ,s_{2})\right\|_{L^{p}(S_{1},\mu _{1})}\right\|_{L^{q}(S_{2},\mu _{2})}~\leq ~\left\|\left\|F(s_{1},\cdot )\right\|_{L^{q}(S_{2},\mu _{2})}\right\|_{L^{p}(S_{1},\mu _{1})}\ .}
This notation has been generalized to
‖ f ‖ p , q = ( ∫ R m [ ∫ R n | f ( x , y ) | q d y ] p q d x ) 1 p {\displaystyle \|f\|_{p,q}=\left(\int _{\mathbb {R} ^{m}}\left[\int _{\mathbb {R} ^{n}}|f(x,y)|^{q}\mathrm {d} y\right]^{\frac {p}{q}}\mathrm {d} x\right)^{\frac {1}{p}}}
forf : R m + n → E , {\textstyle f:\mathbb {R} ^{m+n}\to E,} withL p , q ( R m + n , E ) = { f ∈ E R m + n : ‖ f ‖ p , q < ∞ } . {\textstyle {\mathcal {L}}_{p,q}(\mathbb {R} ^{m+n},E)=\{f\in E^{\mathbb {R} ^{m+n}}:\|f\|_{p,q}<\infty \}.} Using this notation, manipulation of the exponents reveals that, ifp < q , {\textstyle p<q,} then‖ f ‖ q , p ≤ ‖ f ‖ p , q {\textstyle \|f\|_{q,p}\leq \|f\|_{p,q}} .
Whenp < 1 {\textstyle p<1} the reverse inequality holds:
‖ f + g ‖ p ≥ ‖ f ‖ p + ‖ g ‖ p . {\displaystyle \|f+g\|_{p}\geq \|f\|_{p}+\|g\|_{p}.}
We further need the restriction that bothf {\textstyle f} andg {\textstyle g} are non-negative, as we can see from the examplef = − 1 , g = 1 {\textstyle f=-1,g=1} andp = 1 {\textstyle p=1}
‖ f + g ‖ 1 = 0 < 2 = ‖ f ‖ 1 + ‖ g ‖ 1 . {\textstyle \|f+g\|_{1}=0<2=\|f\|_{1}+\|g\|_{1}.} The reverse inequality follows from the same argument as the standard Minkowski, but uses that Holder's inequality is also reversed in this range.
Using the Reverse Minkowski, we may prove that power means withp ≤ 1 , {\textstyle p\leq 1,} such as theharmonic mean and thegeometric mean are concave.
Generalizations to other functions [ edit ] The Minkowski inequality can be generalized to other functionsϕ ( x ) {\textstyle \phi (x)} beyond the power functionx p {\textstyle x^{p}} . The generalized inequality has the form
ϕ − 1 ( ∑ i = 1 n ϕ ( x i + y i ) ) ≤ ϕ − 1 ( ∑ i = 1 n ϕ ( x i ) ) + ϕ − 1 ( ∑ i = 1 n ϕ ( y i ) ) . {\displaystyle \phi ^{-1}\left(\textstyle \sum \limits _{i=1}^{n}\phi (x_{i}+y_{i})\right)\leq \phi ^{-1}\left(\textstyle \sum \limits _{i=1}^{n}\phi (x_{i})\right)+\phi ^{-1}\left(\textstyle \sum \limits _{i=1}^{n}\phi (y_{i})\right).}
Various sufficient conditions onϕ {\textstyle \phi } have been found by Mulholland[ 4] and others. For example, forx ≥ 0 {\textstyle x\geq 0} one set of sufficient conditions from Mulholland is
ϕ ( x ) {\textstyle \phi (x)} is continuous and strictly increasing withϕ ( 0 ) = 0. {\textstyle \phi (0)=0.} ϕ ( x ) {\textstyle \phi (x)} is a convex function ofx . {\textstyle x.} log ϕ ( x ) {\textstyle \log \phi (x)} is a convex function oflog ( x ) . {\textstyle \log(x).} Bahouri, Hajer ;Chemin, Jean-Yves ;Danchin, Raphaël (2011).Fourier Analysis and Nonlinear Partial Differential Equations . Grundlehren der mathematischen Wissenschaften. Vol. 343. Berlin, Heidelberg: Springer.ISBN 978-3-642-16830-7 .OCLC 704397128 .Hardy, G. H. ;Littlewood, J. E. ;Pólya, G. (1988).Inequalities . Cambridge Mathematical Library (second ed.). Cambridge: Cambridge University Press.ISBN 0-521-35880-9 .Minkowski, H. (1953).Geometrie der Zahlen . Chelsea. .Stein, Elias (1970).Singular integrals and differentiability properties of functions . Princeton University Press. .M.I. Voitsekhovskii (2001) [1994],"Minkowski inequality" ,Encyclopedia of Mathematics ,EMS Press Lohwater, Arthur J. (1982)."Introduction to Inequalities" .