Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Minkowski inequality

From Wikipedia, the free encyclopedia
Triangle inequality in Lp spaces
This article is about Minkowski's inequality for norms. For Minkowski's inequality in convex geometry, seeMinkowski's first inequality for convex bodies.

Inmathematical analysis, theMinkowski inequality establishes that theLp{\displaystyle L^{p}} spaces satisfy thetriangle inequality in the definition ofnormed vector spaces. The inequality is named after the German mathematicianHermann Minkowski.

LetS{\textstyle S} be ameasure space, let1p{\textstyle 1\leq p\leq \infty } and letf{\textstyle f} andg{\textstyle g} be elements ofLp(S).{\textstyle L^{p}(S).} Thenf+g{\textstyle f+g} is inLp(S),{\textstyle L^{p}(S),} and we have the triangle inequality

f+gpfp+gp{\displaystyle \|f+g\|_{p}\leq \|f\|_{p}+\|g\|_{p}}

with equality for1<p<{\textstyle 1<p<\infty } if and only iff{\textstyle f} andg{\textstyle g} are positivelylinearly dependent; that is,f=λg{\textstyle f=\lambda g} for someλ0{\textstyle \lambda \geq 0} org=0.{\textstyle g=0.} Here, the norm is given by:

fp=(|f|pdμ)1p{\displaystyle \|f\|_{p}=\left(\int |f|^{p}d\mu \right)^{\frac {1}{p}}}

ifp<,{\textstyle p<\infty ,} or in the casep={\textstyle p=\infty } by theessential supremum

f=ess supxS|f(x)|.{\displaystyle \|f\|_{\infty }=\operatorname {ess\ sup} _{x\in S}|f(x)|.}

The Minkowski inequality is the triangle inequality inLp(S).{\textstyle L^{p}(S).} In fact, it is a special case of the more general fact

fp=supgq=1|fg|dμ,1p+1q=1{\displaystyle \|f\|_{p}=\sup _{\|g\|_{q}=1}\int |fg|d\mu ,\qquad {\tfrac {1}{p}}+{\tfrac {1}{q}}=1}

where it is easy to see that the right-hand side satisfies the triangular inequality.

LikeHölder's inequality, the Minkowski inequality can be specialized to sequences and vectors by using thecounting measure:

(k=1n|xk+yk|p)1/p(k=1n|xk|p)1/p+(k=1n|yk|p)1/p{\displaystyle \left(\sum _{k=1}^{n}|x_{k}+y_{k}|^{p}\right)^{1/p}\leq \left(\sum _{k=1}^{n}|x_{k}|^{p}\right)^{1/p}+\left(\sum _{k=1}^{n}|y_{k}|^{p}\right)^{1/p}}

for allreal (orcomplex) numbersx1,,xn,y1,,yn{\textstyle x_{1},\dots ,x_{n},y_{1},\dots ,y_{n}} and wheren{\textstyle n} is thecardinality ofS{\textstyle S} (the number of elements inS{\textstyle S}).

In probabilistic terms, given theprobability space(Ω,F,P),{\displaystyle (\Omega ,{\mathcal {F}},\mathbb {P} ),} andE{\displaystyle \mathbb {E} } denote theexpectation operator for every real- or complex-valuedrandom variablesX{\displaystyle X} andY{\displaystyle Y} onΩ,{\displaystyle \Omega ,} Minkowski's inequality reads

(E[|X+Y|p])1p(E[|X|p])1p+(E[|Y|p])1p.{\displaystyle \left(\mathbb {E} [|X+Y|^{p}]\right)^{\frac {1}{p}}\leqslant \left(\mathbb {E} [|X|^{p}]\right)^{\frac {1}{p}}+\left(\mathbb {E} [|Y|^{p}]\right)^{\frac {1}{p}}.}

Proof

[edit]

Proof by Hölder's inequality

[edit]

First, we prove thatf+g{\textstyle f+g} has finitep{\textstyle p}-norm iff{\textstyle f} andg{\textstyle g} both do, which follows by

|f+g|p2p1(|f|p+|g|p).{\displaystyle |f+g|^{p}\leq 2^{p-1}(|f|^{p}+|g|^{p}).}

Indeed, here we use the fact thath(x)=|x|p{\textstyle h(x)=|x|^{p}} isconvex overR+{\textstyle \mathbb {R} ^{+}} (forp>1{\textstyle p>1}) and so, by the definition of convexity,

|12f+12g|p|12|f|+12|g||p12|f|p+12|g|p.{\displaystyle \left|{\tfrac {1}{2}}f+{\tfrac {1}{2}}g\right|^{p}\leq \left|{\tfrac {1}{2}}|f|+{\tfrac {1}{2}}|g|\right|^{p}\leq {\tfrac {1}{2}}|f|^{p}+{\tfrac {1}{2}}|g|^{p}.}

This means that

|f+g|p12|2f|p+12|2g|p=2p1|f|p+2p1|g|p.{\displaystyle |f+g|^{p}\leq {\tfrac {1}{2}}|2f|^{p}+{\tfrac {1}{2}}|2g|^{p}=2^{p-1}|f|^{p}+2^{p-1}|g|^{p}.}

Now, we can legitimately talk aboutf+gp{\textstyle \|f+g\|_{p}}. If it is zero, then Minkowski's inequality holds. We now assume thatf+gp{\textstyle \|f+g\|_{p}} is not zero. Using the triangle inequality and thenHölder's inequality, we find that

f+gpp=|f+g|pdμ=|f+g||f+g|p1dμ(|f|+|g|)|f+g|p1dμ=|f||f+g|p1dμ+|g||f+g|p1dμ((|f|pdμ)1p+(|g|pdμ)1p)(|f+g|(p1)(pp1)dμ)11p Hölder's inequality=(fp+gp)f+gppf+gp{\displaystyle {\begin{aligned}\|f+g\|_{p}^{p}&=\int |f+g|^{p}\,\mathrm {d} \mu \\&=\int |f+g|\cdot |f+g|^{p-1}\,\mathrm {d} \mu \\&\leq \int (|f|+|g|)|f+g|^{p-1}\,\mathrm {d} \mu \\&=\int |f||f+g|^{p-1}\,\mathrm {d} \mu +\int |g||f+g|^{p-1}\,\mathrm {d} \mu \\&\leq \left(\left(\int |f|^{p}\,\mathrm {d} \mu \right)^{\frac {1}{p}}+\left(\int |g|^{p}\,\mathrm {d} \mu \right)^{\frac {1}{p}}\right)\left(\int |f+g|^{(p-1)\left({\frac {p}{p-1}}\right)}\,\mathrm {d} \mu \right)^{1-{\frac {1}{p}}}&&{\text{ Hölder's inequality}}\\&=\left(\|f\|_{p}+\|g\|_{p}\right){\frac {\|f+g\|_{p}^{p}}{\|f+g\|_{p}}}\end{aligned}}}

We obtain Minkowski's inequality by multiplying both sides by

f+gpf+gpp.{\displaystyle {\frac {\|f+g\|_{p}}{\|f+g\|_{p}^{p}}}.}

Proof by a direct convexity argument

[edit]

Givent(0,1){\displaystyle t\in (0,1)}, one has, by convexity (Jensen's inequality), for everyxS{\displaystyle x\in S}

|f(x)+g(x)|p=|(1t)f(x)1t+tg(x)t|p(1t)|f(x)1t|p+t|g(x)t|p=|f(x)|p(1t)p1+|g(x)|ptp1.{\displaystyle |f(x)+g(x)|^{p}={\Bigl |}(1-t){\frac {f(x)}{1-t}}+t{\frac {g(x)}{t}}{\Bigr |}^{p}\leq (1-t){\Bigl |}{\frac {f(x)}{1-t}}{\Bigr |}^{p}+t{\Bigl |}{\frac {g(x)}{t}}{\Bigr |}^{p}={\frac {|f(x)|^{p}}{(1-t)^{p-1}}}+{\frac {|g(x)|^{p}}{t^{p-1}}}.}

By integration this leads to

S|f+g|pdμ1(1t)p1S|f|pdμ+1tp1S|g|pdμ.{\displaystyle \int _{S}|f+g|^{p}\,\mathrm {d} \mu \leq {\frac {1}{(1-t)^{p-1}}}\int _{S}|f|^{p}\,\mathrm {d} \mu +{\frac {1}{t^{p-1}}}\int _{S}|g|^{p}\,\mathrm {d} \mu .}

One takes then

t=gpfp+gp{\displaystyle t={\frac {\Vert g\Vert _{p}}{\Vert f\Vert _{p}+\Vert g\Vert _{p}}}}

to reach the conclusion.

Minkowski's integral inequality

[edit]

Suppose that(S1,μ1){\textstyle (S_{1},\mu _{1})} and(S2,μ2){\textstyle (S_{2},\mu _{2})} are two 𝜎-finite measure spaces andF:S1×S2R{\textstyle F:S_{1}\times S_{2}\to \mathbb {R} } is measurable. Then Minkowski's integral inequality is:[1][2]

[S2|S1F(x,y)μ1(dx)|pμ2(dy)]1p  S1(S2|F(x,y)|pμ2(dy))1pμ1(dx),p[1,){\displaystyle \left[\int _{S_{2}}\left|\int _{S_{1}}F(x,y)\,\mu _{1}(\mathrm {d} x)\right|^{p}\mu _{2}(\mathrm {d} y)\right]^{\frac {1}{p}}~\leq ~\int _{S_{1}}\left(\int _{S_{2}}|F(x,y)|^{p}\,\mu _{2}(\mathrm {d} y)\right)^{\frac {1}{p}}\mu _{1}(\mathrm {d} x),\quad p\in [1,\infty )}

with obvious modifications in the casep=.{\textstyle p=\infty .} Ifp>1,{\textstyle p>1,} and both sides are finite, then equality holds only if|F(x,y)|=φ(x)ψ(y){\textstyle |F(x,y)|=\varphi (x)\,\psi (y)} a.e. for some non-negative measurable functionsφ{\textstyle \varphi } andψ{\textstyle \psi }.

Ifμ1{\textstyle \mu _{1}} is the counting measure on a two-point setS1={1,2},{\textstyle S_{1}=\{1,2\},} then Minkowski's integral inequality gives the usual Minkowski inequality as a special case: for puttingfi(y)=F(i,y){\textstyle f_{i}(y)=F(i,y)} fori=1,2,{\textstyle i=1,2,} the integral inequality gives

f1+f2p=(S2|S1F(x,y)μ1(dx)|pμ2(dy))1pS1(S2|F(x,y)|pμ2(dy))1pμ1(dx)=f1p+f2p.{\displaystyle \|f_{1}+f_{2}\|_{p}=\left(\int _{S_{2}}\left|\int _{S_{1}}F(x,y)\,\mu _{1}(\mathrm {d} x)\right|^{p}\mu _{2}(\mathrm {d} y)\right)^{\frac {1}{p}}\leq \int _{S_{1}}\left(\int _{S_{2}}|F(x,y)|^{p}\,\mu _{2}(\mathrm {d} y)\right)^{\frac {1}{p}}\mu _{1}(\mathrm {d} x)=\|f_{1}\|_{p}+\|f_{2}\|_{p}.}

If the measurable functionF:S1×S2R{\textstyle F:S_{1}\times S_{2}\to \mathbb {R} } is non-negative then for all1pq,{\textstyle 1\leq p\leq q\leq \infty ,}[3]

F(,s2)Lp(S1,μ1)Lq(S2,μ2)  F(s1,)Lq(S2,μ2)Lp(S1,μ1) .{\displaystyle \left\|\left\|F(\,\cdot ,s_{2})\right\|_{L^{p}(S_{1},\mu _{1})}\right\|_{L^{q}(S_{2},\mu _{2})}~\leq ~\left\|\left\|F(s_{1},\cdot )\right\|_{L^{q}(S_{2},\mu _{2})}\right\|_{L^{p}(S_{1},\mu _{1})}\ .}

This notation has been generalized to

fp,q=(Rm[Rn|f(x,y)|qdy]pqdx)1p{\displaystyle \|f\|_{p,q}=\left(\int _{\mathbb {R} ^{m}}\left[\int _{\mathbb {R} ^{n}}|f(x,y)|^{q}\mathrm {d} y\right]^{\frac {p}{q}}\mathrm {d} x\right)^{\frac {1}{p}}}

forf:Rm+nE,{\textstyle f:\mathbb {R} ^{m+n}\to E,} withLp,q(Rm+n,E)={fERm+n:fp,q<}.{\textstyle {\mathcal {L}}_{p,q}(\mathbb {R} ^{m+n},E)=\{f\in E^{\mathbb {R} ^{m+n}}:\|f\|_{p,q}<\infty \}.} Using this notation, manipulation of the exponents reveals that, ifp<q,{\textstyle p<q,} thenfq,pfp,q{\textstyle \|f\|_{q,p}\leq \|f\|_{p,q}}.

Reverse inequality

[edit]

Whenp<1{\textstyle p<1} the reverse inequality holds:

f+gpfp+gp.{\displaystyle \|f+g\|_{p}\geq \|f\|_{p}+\|g\|_{p}.}

We further need the restriction that bothf{\textstyle f} andg{\textstyle g}are non-negative, as we can see from the examplef=1,g=1{\textstyle f=-1,g=1} andp=1{\textstyle p=1}

f+g1=0<2=f1+g1.{\textstyle \|f+g\|_{1}=0<2=\|f\|_{1}+\|g\|_{1}.}

The reverse inequality follows from the same argument as the standard Minkowski, but uses that Holder's inequality is also reversed in this range.

Using the Reverse Minkowski, we may prove that power means withp1,{\textstyle p\leq 1,} such as theharmonic mean and thegeometric mean are concave.

Generalizations to other functions

[edit]

The Minkowski inequality can be generalized to other functionsϕ(x){\textstyle \phi (x)} beyond the power functionxp{\textstyle x^{p}}. The generalized inequality has the form

ϕ1(i=1nϕ(xi+yi))ϕ1(i=1nϕ(xi))+ϕ1(i=1nϕ(yi)).{\displaystyle \phi ^{-1}\left(\textstyle \sum \limits _{i=1}^{n}\phi (x_{i}+y_{i})\right)\leq \phi ^{-1}\left(\textstyle \sum \limits _{i=1}^{n}\phi (x_{i})\right)+\phi ^{-1}\left(\textstyle \sum \limits _{i=1}^{n}\phi (y_{i})\right).}

Various sufficient conditions onϕ{\textstyle \phi } have been found by Mulholland[4] and others. For example, forx0{\textstyle x\geq 0} one set of sufficient conditions from Mulholland is

  1. ϕ(x){\textstyle \phi (x)} is continuous and strictly increasing withϕ(0)=0.{\textstyle \phi (0)=0.}
  2. ϕ(x){\textstyle \phi (x)} is a convex function ofx.{\textstyle x.}
  3. logϕ(x){\textstyle \log \phi (x)} is a convex function oflog(x).{\textstyle \log(x).}

See also

[edit]

References

[edit]
  1. ^Stein 1970, §A.1.
  2. ^Hardy, Littlewood & Pólya 1988, Theorem 202.
  3. ^Bahouri, Chemin & Danchin 2011, p. 4.
  4. ^Mulholland, H. P. (1949). "On Generalizations of Minkowski's Inequality in the Form of a Triangle Inequality".Proceedings of the London Mathematical Society. s2-51 (1):294–307.doi:10.1112/plms/s2-51.4.294.

Further reading

[edit]
Basic concepts
L1 spaces
L2 spaces
L{\displaystyle L^{\infty }} spaces
Maps
Inequalities
Results
ForLebesgue measure
Applications & related
Basic concepts
Sets
Types ofmeasures
Particular measures
Maps
Main results
Other results
ForLebesgue measure
Applications & related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Minkowski_inequality&oldid=1322457546"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp