Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Minkowski functional

From Wikipedia, the free encyclopedia
Function made from a set

Inmathematics, in the field offunctional analysis, aMinkowski functional (afterHermann Minkowski) orgauge function is a function that recovers a notion of distance on a linear space.

IfK{\textstyle K} is a subset of areal orcomplexvector spaceX,{\textstyle X,} then theMinkowski functional orgauge ofK{\textstyle K} is defined to be thefunctionpK:X[0,],{\textstyle p_{K}:X\to [0,\infty ],} valued in theextended real numbers, defined bypK(x):=inf{rR:r>0 and xrK} for every xX,{\displaystyle p_{K}(x):=\inf\{r\in \mathbb {R} :r>0{\text{ and }}x\in rK\}\quad {\text{ for every }}x\in X,}where theinfimum of the empty set is defined to bepositive infinity{\textstyle \,\infty \,} (which isnot a real number so thatpK(x){\textstyle p_{K}(x)} would thennot be real-valued).

The setK{\textstyle K} is often assumed/picked to have properties, such as being an absorbingdisk inX{\textstyle X}, that guarantee thatpK{\textstyle p_{K}} will be a real-valuedseminorm onX.{\textstyle X.} In fact, every seminormp{\textstyle p} onX{\textstyle X} is equal to the Minkowski functional (that is,p=pK{\textstyle p=p_{K}}) of any subsetK{\textstyle K} ofX{\textstyle X} satisfying

{xX:p(x)<1}K{xX:p(x)1}{\displaystyle \{x\in X:p(x)<1\}\subseteq K\subseteq \{x\in X:p(x)\leq 1\}}

(where all three of these sets are necessarily absorbing inX{\textstyle X} and the first and last are also disks).

Thus every seminorm (which is afunction defined by purely algebraic properties) can be associated (non-uniquely) with an absorbing disk (which is aset with certain geometric properties) and conversely, every absorbing disk can be associated with its Minkowski functional (which will necessarily be a seminorm). These relationships between seminorms, Minkowski functionals, and absorbing disks is a major reason why Minkowski functionals are studied and used in functional analysis. In particular, through these relationships, Minkowski functionals allow one to "translate" certaingeometric properties of a subset ofX{\textstyle X} into certainalgebraic properties of a function onX.{\textstyle X.}

The Minkowski function is always non-negative (meaningpK0{\textstyle p_{K}\geq 0}). This property of being nonnegative stands in contrast to other classes of functions, such assublinear functions and reallinear functionals, that do allow negative values. However,pK{\textstyle p_{K}} might not be real-valued since for any givenxX,{\textstyle x\in X,} the valuepK(x){\textstyle p_{K}(x)} is a real number if and only if{r>0:xrK}{\textstyle \{r>0:x\in rK\}} is notempty.Consequently,K{\textstyle K} is usually assumed to have properties (such as beingabsorbing inX,{\textstyle X,} for instance) that will guarantee thatpK{\textstyle p_{K}} is real-valued.

Definition

[edit]

LetK{\textstyle K} be a subset of a real or complex vector spaceX.{\textstyle X.} Define thegauge ofK{\textstyle K} or theMinkowski functional associated with or induced byK{\textstyle K} as being the functionpK:X[0,],{\textstyle p_{K}:X\to [0,\infty ],} valued in theextended real numbers, defined by

pK(x):=inf{r>0:xrK},{\displaystyle p_{K}(x):=\inf\{r>0:x\in rK\},}

(recall that theinfimum of the empty set is{\textstyle \,\infty }, that is,inf={\textstyle \inf \varnothing =\infty }). Here,{r>0:xrK}{\textstyle \{r>0:x\in rK\}} is shorthand for{rR:r>0 and xrK}.{\textstyle \{r\in \mathbb {R} :r>0{\text{ and }}x\in rK\}.}

For anyxX,{\textstyle x\in X,}pK(x){\textstyle p_{K}(x)\neq \infty } if and only if{r>0:xrK}{\textstyle \{r>0:x\in rK\}} is not empty. The arithmetic operations onR{\textstyle \mathbb {R} }can be extended to operate on±,{\textstyle \pm \infty ,} wherer±:=0{\textstyle {\frac {r}{\pm \infty }}:=0} for all non-zero real<r<.{\textstyle -\infty <r<\infty .} The products0{\textstyle 0\cdot \infty } and0{\textstyle 0\cdot -\infty } remain undefined.

Some conditions making a gauge real-valued

[edit]

In the field ofconvex analysis, the mappK{\textstyle p_{K}} taking on the value of{\textstyle \,\infty \,} is not necessarily an issue. However, in functional analysispK{\textstyle p_{K}} is almost always real-valued (that is, to never take on the value of{\textstyle \,\infty \,}), which happens if and only if the set{r>0:xrK}{\textstyle \{r>0:x\in rK\}} is non-empty for everyxX.{\textstyle x\in X.}

In order forpK{\textstyle p_{K}} to be real-valued, it suffices for the origin ofX{\textstyle X} to belong to thealgebraic interior orcore ofK{\textstyle K} inX.{\textstyle X.}[1] IfK{\textstyle K} isabsorbing inX,{\textstyle X,} where recall that this implies that0K,{\textstyle 0\in K,} then the origin belongs to thealgebraic interior ofK{\textstyle K} inX{\textstyle X} and thuspK{\textstyle p_{K}} is real-valued. Characterizations of whenpK{\textstyle p_{K}} is real-valued are given below.

Motivating examples

[edit]

Example 1

[edit]

Consider anormed vector space(X,),{\textstyle (X,\|\,\cdot \,\|),} with the norm{\textstyle \|\,\cdot \,\|} and letU:={xX:x1}{\textstyle U:=\{x\in X:\|x\|\leq 1\}} be the unit ball inX.{\textstyle X.} Then for everyxX,{\textstyle x\in X,}x=pU(x).{\textstyle \|x\|=p_{U}(x).} Thus the Minkowski functionalpU{\textstyle p_{U}} is just the norm onX.{\textstyle X.}

Example 2

[edit]

LetX{\textstyle X} be a vector space without topology with underlying scalar fieldK.{\textstyle \mathbb {K} .}Letf:XK{\textstyle f:X\to \mathbb {K} } be anylinear functional onX{\textstyle X} (not necessarily continuous). Fixa>0.{\textstyle a>0.} LetK{\textstyle K} be the setK:={xX:|f(x)|a}{\displaystyle K:=\{x\in X:|f(x)|\leq a\}}and letpK{\textstyle p_{K}} be the Minkowski functional ofK.{\textstyle K.} ThenpK(x)=1a|f(x)| for all xX.{\displaystyle p_{K}(x)={\frac {1}{a}}|f(x)|\quad {\text{ for all }}x\in X.}The functionpK{\textstyle p_{K}} has the following properties:

  1. It issubadditive:pK(x+y)pK(x)+pK(y).{\textstyle p_{K}(x+y)\leq p_{K}(x)+p_{K}(y).}
  2. It isabsolutely homogeneous:pK(sx)=|s|pK(x){\textstyle p_{K}(sx)=|s|p_{K}(x)} for all scalarss.{\textstyle s.}
  3. It isnonnegative:pK0.{\textstyle p_{K}\geq 0.}

Therefore,pK{\textstyle p_{K}} is aseminorm onX,{\textstyle X,} with an induced topology. This is characteristic of Minkowski functionals defined via "nice" sets. There is a one-to-one correspondence between seminorms and the Minkowski functional given by such sets. What is meant precisely by "nice" is discussed in the section below.

Notice that, in contrast to a stronger requirement for a norm,pK(x)=0{\textstyle p_{K}(x)=0} need not implyx=0.{\textstyle x=0.} In the above example, one can take a nonzerox{\textstyle x} from the kernel off.{\textstyle f.} Consequently, the resulting topology need not beHausdorff.

Common conditions guaranteeing gauges are seminorms

[edit]

To guarantee thatpK(0)=0,{\textstyle p_{K}(0)=0,} it will henceforth be assumed that0K.{\textstyle 0\in K.}

In order forpK{\textstyle p_{K}} to be a seminorm, it suffices forK{\textstyle K} to be adisk (that is, convex and balanced) and absorbing inX,{\textstyle X,} which are the most common assumption placed onK.{\textstyle K.}

Theorem[2]IfK{\textstyle K} is anabsorbingdisk in a vector spaceX{\textstyle X} then the Minkowski functional ofK,{\textstyle K,} which is the mappK:X[0,){\textstyle p_{K}:X\to [0,\infty )} defined bypK(x):=inf{r>0:xrK},{\displaystyle p_{K}(x):=\inf\{r>0:x\in rK\},}is a seminorm onX.{\textstyle X.}Moreover,pK(x)=1sup{r>0:rxK}.{\displaystyle p_{K}(x)={\frac {1}{\sup\{r>0:rx\in K\}}}.}

More generally, ifK{\textstyle K} is convex and the origin belongs to thealgebraic interior ofK,{\textstyle K,} thenpK{\textstyle p_{K}} is a nonnegativesublinear functional onX,{\textstyle X,} which implies in particular that it issubadditive andpositive homogeneous.IfK{\textstyle K} is absorbing inX{\textstyle X} thenp[0,1]K{\textstyle p_{[0,1]K}} is positive homogeneous, meaning thatp[0,1]K(sx)=sp[0,1]K(x){\textstyle p_{[0,1]K}(sx)=sp_{[0,1]K}(x)} for all reals0,{\textstyle s\geq 0,} where[0,1]K={tk:t[0,1],kK}.{\textstyle [0,1]K=\{tk:t\in [0,1],k\in K\}.}[3]Ifq{\textstyle q} is a nonnegative real-valued function onX{\textstyle X} that is positive homogeneous, then the setsU:={xX:q(x)<1}{\textstyle U:=\{x\in X:q(x)<1\}} andD:={xX:q(x)1}{\textstyle D:=\{x\in X:q(x)\leq 1\}} satisfy[0,1]U=U{\textstyle [0,1]U=U} and[0,1]D=D;{\textstyle [0,1]D=D;} if in additionq{\textstyle q} is absolutely homogeneous then bothU{\textstyle U} andD{\textstyle D} arebalanced.[3]

Gauges of absorbing disks

[edit]

Arguably the most common requirements placed on a setK{\textstyle K} to guarantee thatpK{\textstyle p_{K}} is a seminorm are thatK{\textstyle K} be anabsorbingdisk inX.{\textstyle X.}Due to how common these assumptions are, the properties of a Minkowski functionalpK{\textstyle p_{K}} whenK{\textstyle K} is an absorbing disk will now be investigated. Since all of the results mentioned above made few (if any) assumptions onK,{\textstyle K,} they can be applied in this special case.

TheoremAssume thatK{\textstyle K} is an absorbing subset ofX.{\textstyle X.}It is shown that:

  1. IfK{\textstyle K} isconvex thenpK{\textstyle p_{K}} is subadditive.
  2. IfK{\textstyle K} isbalanced thenpK{\textstyle p_{K}} isabsolutely homogeneous; that is,pK(sx)=|s|pK(x){\textstyle p_{K}(sx)=|s|p_{K}(x)} for all scalarss.{\textstyle s.}
Proof that the Gauge of an absorbing disk is a seminorm

Convexity and subadditivity

A simple geometric argument that shows convexity ofK{\textstyle K} implies subadditivity is as follows. Suppose for the moment thatpK(x)=pK(y)=r.{\textstyle p_{K}(x)=p_{K}(y)=r.} Then for alle>0,{\textstyle e>0,}x,yKe:=(r,e)K.{\textstyle x,y\in K_{e}:=(r,e)K.} SinceK{\textstyle K} is convex andr+e0,{\textstyle r+e\neq 0,}Ke{\textstyle K_{e}} is also convex. Therefore,12x+12yKe.{\textstyle {\frac {1}{2}}x+{\frac {1}{2}}y\in K_{e}.} By definition of the Minkowski functionalpK,{\textstyle p_{K},}pK(12x+12y)r+e=12pK(x)+12pK(y)+e.{\displaystyle p_{K}\left({\frac {1}{2}}x+{\frac {1}{2}}y\right)\leq r+e={\frac {1}{2}}p_{K}(x)+{\frac {1}{2}}p_{K}(y)+e.}

But the left hand side is12pK(x+y),{\textstyle {\frac {1}{2}}p_{K}(x+y),} so thatpK(x+y)pK(x)+pK(y)+2e.{\displaystyle p_{K}(x+y)\leq p_{K}(x)+p_{K}(y)+2e.}

Sincee>0{\textstyle e>0} was arbitrary, it follows thatpK(x+y)pK(x)+pK(y),{\textstyle p_{K}(x+y)\leq p_{K}(x)+p_{K}(y),} which is the desired inequality. The general casepK(x)>pK(y){\textstyle p_{K}(x)>p_{K}(y)} is obtained after the obvious modification.

Convexity ofK,{\textstyle K,} together with the initial assumption that the set{r>0:xrK}{\textstyle \{r>0:x\in rK\}} is nonempty, implies thatK{\textstyle K} isabsorbing.

Balancedness and absolute homogeneity

Notice thatK{\textstyle K} being balanced implies thatλxrKif and only ifxr|λ|K.{\displaystyle \lambda x\in rK\quad {\mbox{if and only if}}\quad x\in {\frac {r}{|\lambda |}}K.}

ThereforepK(λx)=inf{r>0:λxrK}=inf{r>0:xr|λ|K}=inf{|λ|r|λ|>0:xr|λ|K}=|λ|pK(x).{\displaystyle p_{K}(\lambda x)=\inf \left\{r>0:\lambda x\in rK\right\}=\inf \left\{r>0:x\in {\frac {r}{|\lambda |}}K\right\}=\inf \left\{|\lambda |{\frac {r}{|\lambda |}}>0:x\in {\frac {r}{|\lambda |}}K\right\}=|\lambda |p_{K}(x).}

Algebraic properties

[edit]

LetX{\textstyle X} be a real or complex vector space and letK{\textstyle K} be an absorbing disk inX.{\textstyle X.}

Topological properties

[edit]

Assume thatX{\textstyle X} is a (real or complex)topological vector space (TVS) (not necessarilyHausdorff orlocally convex) and letK{\textstyle K} be an absorbing disk inX.{\textstyle X.} Then

IntXK{xX:pK(x)<1}K{xX:pK(x)1}ClXK,{\displaystyle \operatorname {Int} _{X}K\;\subseteq \;\{x\in X:p_{K}(x)<1\}\;\subseteq \;K\;\subseteq \;\{x\in X:p_{K}(x)\leq 1\}\;\subseteq \;\operatorname {Cl} _{X}K,}

whereIntXK{\textstyle \operatorname {Int} _{X}K} is thetopological interior andClXK{\textstyle \operatorname {Cl} _{X}K} is thetopological closure ofK{\textstyle K} inX.{\textstyle X.}[6] Importantly, it wasnot assumed thatpK{\textstyle p_{K}} was continuous nor was it assumed thatK{\textstyle K} had any topological properties.

Moreover, the Minkowski functionalpK{\textstyle p_{K}} is continuous if and only ifK{\textstyle K} is a neighborhood of the origin inX.{\textstyle X.}[6] IfpK{\textstyle p_{K}} is continuous then[6]IntXK={xX:pK(x)<1} and ClXK={xX:pK(x)1}.{\displaystyle \operatorname {Int} _{X}K=\{x\in X:p_{K}(x)<1\}\quad {\text{ and }}\quad \operatorname {Cl} _{X}K=\{x\in X:p_{K}(x)\leq 1\}.}

Minimal requirements on the set

[edit]

This section will investigate the most general case of the gauge ofany subsetK{\textstyle K} ofX.{\textstyle X.} The more common special case whereK{\textstyle K} is assumed to be anabsorbingdisk inX{\textstyle X} was discussed above.

Properties

[edit]

All results in this section may be applied to the case whereK{\textstyle K} is an absorbing disk.

Throughout,K{\textstyle K} is any subset ofX.{\textstyle X.}

SummarySuppose thatK{\textstyle K} is a subset of a real or complex vector spaceX.{\textstyle X.}

  1. Strict positive homogeneity:pK(rx)=rpK(x){\textstyle p_{K}(rx)=rp_{K}(x)} for allxX{\textstyle x\in X} and allpositive realr>0.{\textstyle r>0.}
  2. Real-values:(0,)K{\textstyle (0,\infty )K} is the set of all points on whichpK{\textstyle p_{K}} is real valued. SopK{\textstyle p_{K}} is real-valued if and only if(0,)K=X,{\textstyle (0,\infty )K=X,} in which case0K.{\textstyle 0\in K.}
  3. Comparison to a constant: If0r{\textstyle 0\leq r\leq \infty } then for anyxX,{\textstyle x\in X,}pK(x)<r{\textstyle p_{K}(x)<r} if and only ifx(0,r)K;{\textstyle x\in (0,r)K;} this can be restated as: If0r{\textstyle 0\leq r\leq \infty } thenpK1([0,r))=(0,r)K.{\textstyle p_{K}^{-1}([0,r))=(0,r)K.}
  4. Gauge comparison: For any subsetLX,{\textstyle L\subseteq X,}pKpL{\textstyle p_{K}\leq p_{L}} if and only if(0,1)L(0,1)K;{\textstyle (0,1)L\subseteq (0,1)K;} thuspL=pK{\textstyle p_{L}=p_{K}} if and only if(0,1)L=(0,1)K.{\textstyle (0,1)L=(0,1)K.}
  5. Subadditive/Triangle inequality:pK{\textstyle p_{K}} is subadditive if and only if(0,1)K{\textstyle (0,1)K} is convex. IfK{\textstyle K} is convex then so are both(0,1)K{\textstyle (0,1)K} and(0,1]K{\textstyle (0,1]K} and moreover,pK{\textstyle p_{K}} is subadditive.
  6. Scaling the set: Ifs0{\textstyle s\neq 0} is a scalar thenpsK(y)=pK(1sy){\textstyle p_{sK}(y)=p_{K}\left({\tfrac {1}{s}}y\right)} for allyX.{\textstyle y\in X.} Thus if0<r<{\textstyle 0<r<\infty } is real thenprK(y)=pK(1ry)=1rpK(y).{\textstyle p_{rK}(y)=p_{K}\left({\tfrac {1}{r}}y\right)={\tfrac {1}{r}}p_{K}(y).}
  7. Symmetric:pK{\textstyle p_{K}} is symmetric (meaning thatpK(y)=pK(y){\textstyle p_{K}(-y)=p_{K}(y)} for allyX{\textstyle y\in X}) if and only if(0,1)K{\textstyle (0,1)K} is asymmetric set (meaning that(0,1)K=(0,1)K{\textstyle (0,1)K=-(0,1)K}), which happens if and only ifpK=pK.{\textstyle p_{K}=p_{-K}.}
  8. Absolute homogeneity:pK(ux)=pK(x){\textstyle p_{K}(ux)=p_{K}(x)} for allxX{\textstyle x\in X} and all unit length scalarsu{\textstyle u}[note 2] if and only if(0,1)uK(0,1)K{\textstyle (0,1)uK\subseteq (0,1)K} for all unit length scalarsu,{\textstyle u,} in which casepK(sx)=|s|pK(x){\textstyle p_{K}(sx)=|s|p_{K}(x)} for allxX{\textstyle x\in X} and allnon-zero scalarss0.{\textstyle s\neq 0.} If in additionpK{\textstyle p_{K}} is also real-valued then this holds forall scalarss{\textstyle s} (that is,pK{\textstyle p_{K}} is absolutely homogeneous[note 3]).
  9. Absorbing: IfK{\textstyle K} is convexor balanced and if(0,)K=X{\textstyle (0,\infty )K=X} thenK{\textstyle K} is absorbing inX.{\textstyle X.}
  10. Restriction to a vector subspace: IfS{\textstyle S} is a vector subspace ofX{\textstyle X} and ifpKS:S[0,]{\textstyle p_{K\cap S}:S\to [0,\infty ]} denotes the Minkowski functional ofKS{\textstyle K\cap S} onS,{\textstyle S,} thenpK|S=pKS,{\textstyle p_{K}{\big \vert }_{S}=p_{K\cap S},} wherepK|S{\textstyle p_{K}{\big \vert }_{S}} denotes therestriction ofpK{\textstyle p_{K}} toS.{\textstyle S.}
Proof

The proofs of these basic properties are straightforward exercises so only the proofs of the most important statements are given.

The proof that a convex subsetAX{\textstyle A\subseteq X} that satisfies(0,)A=X{\textstyle (0,\infty )A=X} is necessarilyabsorbing inX{\textstyle X} is straightforward and can be found in the article onabsorbing sets.

For any realt>0,{\textstyle t>0,}

{r>0:txrK}={t(r/t):x(r/t)K}=t{s>0:xsK}{\displaystyle \{r>0:tx\in rK\}=\{t(r/t):x\in (r/t)K\}=t\{s>0:x\in sK\}}

so that taking the infimum of both sides shows that

pK(tx)=inf{r>0:txrK}=tinf{s>0:xsK}=tpK(x).{\displaystyle p_{K}(tx)=\inf\{r>0:tx\in rK\}=t\inf\{s>0:x\in sK\}=tp_{K}(x).}

This proves that Minkowski functionals are strictly positive homogeneous. For0pK(x){\textstyle 0\cdot p_{K}(x)} to be well-defined, it is necessary and sufficient thatpK(x);{\textstyle p_{K}(x)\neq \infty ;} thuspK(tx)=tpK(x){\textstyle p_{K}(tx)=tp_{K}(x)} for allxX{\textstyle x\in X} and allnon-negative realt0{\textstyle t\geq 0} if and only ifpK{\textstyle p_{K}} is real-valued.

The hypothesis of statement (7) allows us to conclude thatpK(sx)=pK(x){\textstyle p_{K}(sx)=p_{K}(x)} for allxX{\textstyle x\in X} and all scalarss{\textstyle s} satisfying|s|=1.{\textstyle |s|=1.} Every scalars{\textstyle s} is of the formreit{\textstyle re^{it}} for some realt{\textstyle t} wherer:=|s|0{\textstyle r:=|s|\geq 0} andeit{\textstyle e^{it}} is real if and only ifs{\textstyle s} is real. The results in the statement about absolute homogeneity follow immediately from the aforementioned conclusion, from the strict positive homogeneity ofpK,{\textstyle p_{K},} and from the positive homogeneity ofpK{\textstyle p_{K}} whenpK{\textstyle p_{K}} is real-valued.{\textstyle \blacksquare }

Examples

[edit]
  1. IfL{\textstyle {\mathcal {L}}} is a non-empty collection of subsets ofX{\textstyle X} thenpL(x)=inf{pL(x):LL}{\textstyle p_{\cup {\mathcal {L}}}(x)=\inf \left\{p_{L}(x):L\in {\mathcal {L}}\right\}} for allxX,{\textstyle x\in X,} whereL =def LLL.{\textstyle \cup {\mathcal {L}}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~{\textstyle \bigcup \limits _{L\in {\mathcal {L}}}}L.}
  2. IfL{\textstyle {\mathcal {L}}} is a non-empty collection of subsets ofX{\textstyle X} andIX{\textstyle I\subseteq X} satisfies

{xX:pL(x)<1 for all LL}I{xX:pL(x)1 for all LL}{\displaystyle \left\{x\in X:p_{L}(x)<1{\text{ for all }}L\in {\mathcal {L}}\right\}\quad \subseteq \quad I\quad \subseteq \quad \left\{x\in X:p_{L}(x)\leq 1{\text{ for all }}L\in {\mathcal {L}}\right\}} thenpI(x)=sup{pL(x):LL}{\textstyle p_{I}(x)=\sup \left\{p_{L}(x):L\in {\mathcal {L}}\right\}} for allxX.{\textstyle x\in X.}

The following examples show that the containment(0,R]Ke>0(0,R+e)K{\textstyle (0,R]K\;\subseteq \;{\textstyle \bigcap \limits _{e>0}}(0,R+e)K} could be proper.

Example: IfR=0{\textstyle R=0} andK=X{\textstyle K=X} then(0,R]K=(0,0]X=X={\textstyle (0,R]K=(0,0]X=\varnothing X=\varnothing } bute>0(0,e)K=e>0X=X,{\textstyle {\textstyle \bigcap \limits _{e>0}}(0,e)K={\textstyle \bigcap \limits _{e>0}}X=X,} which shows that its possible for(0,R]K{\textstyle (0,R]K} to be a proper subset ofe>0(0,R+e)K{\textstyle {\textstyle \bigcap \limits _{e>0}}(0,R+e)K} whenR=0.{\textstyle R=0.}{\textstyle \blacksquare }

The next example shows that the containment can be proper whenR=1;{\textstyle R=1;} the example may be generalized to any realR>0.{\textstyle R>0.} Assuming that[0,1]KK,{\textstyle [0,1]K\subseteq K,} the following example is representative of how it happens thatxX{\textstyle x\in X} satisfiespK(x)=1{\textstyle p_{K}(x)=1} butx(0,1]K.{\textstyle x\not \in (0,1]K.}

Example: LetxX{\textstyle x\in X} be non-zero and letK=[0,1)x{\textstyle K=[0,1)x} so that[0,1]K=K{\textstyle [0,1]K=K} andxK.{\textstyle x\not \in K.} Fromx(0,1)K=K{\textstyle x\not \in (0,1)K=K} it follows thatpK(x)1.{\textstyle p_{K}(x)\geq 1.} ThatpK(x)1{\textstyle p_{K}(x)\leq 1} follows from observing that for everye>0,{\textstyle e>0,}(0,1+e)K=[0,1+e)([0,1)x)=[0,1+e)x,{\textstyle (0,1+e)K=[0,1+e)([0,1)x)=[0,1+e)x,} which containsx.{\textstyle x.} ThuspK(x)=1{\textstyle p_{K}(x)=1} andxe>0(0,1+e)K.{\textstyle x\in {\textstyle \bigcap \limits _{e>0}}(0,1+e)K.} However,(0,1]K=(0,1]([0,1)x)=[0,1)x=K{\textstyle (0,1]K=(0,1]([0,1)x)=[0,1)x=K} so thatx(0,1]K,{\textstyle x\not \in (0,1]K,} as desired.{\textstyle \blacksquare }

Positive homogeneity characterizes Minkowski functionals

[edit]

The next theorem shows that Minkowski functionals areexactly those functionsf:X[0,]{\textstyle f:X\to [0,\infty ]} that have a certain purely algebraic property that is commonly encountered.

TheoremLetf:X[0,]{\textstyle f:X\to [0,\infty ]} be any function. The following statements are equivalent:

  1. Strict positive homogeneity:f(tx)=tf(x){\textstyle \;f(tx)=tf(x)} for allxX{\textstyle x\in X} and allpositive realt>0.{\textstyle t>0.}
  2. f{\textstyle f} is a Minkowski functional: meaning that there exists a subsetSX{\textstyle S\subseteq X} such thatf=pS.{\textstyle f=p_{S}.}
  3. f=pK{\textstyle f=p_{K}} whereK:={xX:f(x)1}.{\textstyle K:=\{x\in X:f(x)\leq 1\}.}
  4. f=pV{\textstyle f=p_{V}\,} whereV:={xX:f(x)<1}.{\textstyle V\,:=\{x\in X:f(x)<1\}.}

Moreover, iff{\textstyle f} never takes on the value{\textstyle \,\infty \,} (so that the product0f(x){\textstyle 0\cdot f(x)} is always well-defined) then this list may be extended to include:

  1. Positive/Nonnegative homogeneity:f(tx)=tf(x){\textstyle f(tx)=tf(x)} for allxX{\textstyle x\in X} and allnonnegative realt0{\textstyle t\geq 0}.
Proof

Iff(tx)tf(x){\textstyle f(tx)\leq tf(x)} holds for allxX{\textstyle x\in X} and realt>0{\textstyle t>0} thentf(x)=tf(1t(tx))t1tf(tx)=f(tx)tf(x){\textstyle tf(x)=tf\left({\tfrac {1}{t}}(tx)\right)\leq t{\tfrac {1}{t}}f(tx)=f(tx)\leq tf(x)} so thattf(x)=f(tx).{\textstyle tf(x)=f(tx).}

Only (1) implies (3) will be proven because afterwards, the rest of the theorem follows immediately from the basic properties of Minkowski functionals described earlier; properties that will henceforth be used without comment. So assume thatf:X[0,]{\textstyle f:X\to [0,\infty ]} is a function such thatf(tx)=tf(x){\textstyle f(tx)=tf(x)} for allxX{\textstyle x\in X} and all realt>0{\textstyle t>0} and letK:={yX:f(y)1}.{\textstyle K:=\{y\in X:f(y)\leq 1\}.}

For all realt>0,{\textstyle t>0,}f(0)=f(t0)=tf(0){\textstyle f(0)=f(t0)=tf(0)} so by takingt=2{\textstyle t=2} for instance, it follows that eitherf(0)=0{\textstyle f(0)=0} orf(0)=.{\textstyle f(0)=\infty .} LetxX.{\textstyle x\in X.} It remains to show thatf(x)=pK(x).{\textstyle f(x)=p_{K}(x).}

It will now be shown that iff(x)=0{\textstyle f(x)=0} orf(x)={\textstyle f(x)=\infty } thenf(x)=pK(x),{\textstyle f(x)=p_{K}(x),} so that in particular, it will follow thatf(0)=pK(0).{\textstyle f(0)=p_{K}(0).} So suppose thatf(x)=0{\textstyle f(x)=0} orf(x)=;{\textstyle f(x)=\infty ;} in either casef(tx)=tf(x)=f(x){\textstyle f(tx)=tf(x)=f(x)} for all realt>0.{\textstyle t>0.} Now iff(x)=0{\textstyle f(x)=0} then this implies that thattxK{\textstyle tx\in K} for all realt>0{\textstyle t>0} (sincef(tx)=01{\textstyle f(tx)=0\leq 1}), which implies thatpK(x)=0,{\textstyle p_{K}(x)=0,} as desired. Similarly, iff(x)={\textstyle f(x)=\infty } thentxK{\textstyle tx\not \in K} for all realt>0,{\textstyle t>0,} which implies thatpK(x)=,{\textstyle p_{K}(x)=\infty ,} as desired. Thus, it will henceforth be assumed thatR:=f(x){\textstyle R:=f(x)} a positive real number and thatx0{\textstyle x\neq 0} (importantly, however, the possibility thatpK(x){\textstyle p_{K}(x)} is0{\textstyle 0} or{\textstyle \,\infty \,} has not yet been ruled out).

Recall that just likef,{\textstyle f,} the functionpK{\textstyle p_{K}} satisfiespK(tx)=tpK(x){\textstyle p_{K}(tx)=tp_{K}(x)} for all realt>0.{\textstyle t>0.} Since0<1R<,{\textstyle 0<{\tfrac {1}{R}}<\infty ,}pK(x)=R=f(x){\textstyle p_{K}(x)=R=f(x)} if and only ifpK(1Rx)=1=f(1Rx){\textstyle p_{K}\left({\tfrac {1}{R}}x\right)=1=f\left({\tfrac {1}{R}}x\right)} so assume without loss of generality thatR=1{\textstyle R=1} and it remains to show thatpK(1Rx)=1.{\textstyle p_{K}\left({\tfrac {1}{R}}x\right)=1.} Sincef(x)=1,{\textstyle f(x)=1,}xK(0,1]K,{\textstyle x\in K\subseteq (0,1]K,} which implies thatpK(x)1{\textstyle p_{K}(x)\leq 1} (so in particular,pK(x){\textstyle p_{K}(x)\neq \infty } is guaranteed). It remains to show thatpK(x)1,{\textstyle p_{K}(x)\geq 1,} which recall happens if and only ifx(0,1)K.{\textstyle x\not \in (0,1)K.} So assume for the sake of contradiction thatx(0,1)K{\textstyle x\in (0,1)K} and let0<r<1{\textstyle 0<r<1} andkK{\textstyle k\in K} be such thatx=rk,{\textstyle x=rk,} where note thatkK{\textstyle k\in K} implies thatf(k)1.{\textstyle f(k)\leq 1.} Then1=f(x)=f(rk)=rf(k)r<1.{\textstyle 1=f(x)=f(rk)=rf(k)\leq r<1.}{\textstyle \blacksquare }

This theorem can be extended to characterize certain classes of[,]{\textstyle [-\infty ,\infty ]}-valued maps (for example, real-valuedsublinear functions) in terms of Minkowski functionals. For instance, it can be used to describe how every real homogeneous functionf:XR{\textstyle f:X\to \mathbb {R} } (such as linear functionals) can be written in terms of a unique Minkowski functional having a certain property.

Characterizing Minkowski functionals on star sets

[edit]

Proposition[10]Letf:X[0,]{\textstyle f:X\to [0,\infty ]} be any function andKX{\textstyle K\subseteq X} be any subset. The following statements are equivalent:

  1. f{\textstyle f} is (strictly) positive homogeneous,f(0)=0,{\textstyle f(0)=0,} and

    {xX:f(x)<1}K{xX:f(x)1}.{\displaystyle \{x\in X:f(x)<1\}\;\subseteq \;K\;\subseteq \;\{x\in X:f(x)\leq 1\}.}

  2. f{\textstyle f} is the Minkowski functional ofK{\textstyle K} (that is,f=pK{\textstyle f=p_{K}}),K{\textstyle K} contains the origin, andK{\textstyle K} isstar-shaped at the origin.

Characterizing Minkowski functionals that are seminorms

[edit]

In this next theorem, which follows immediately from the statements above,K{\textstyle K} isnot assumed to be absorbing inX{\textstyle X} and instead, it is deduced that(0,1)K{\textstyle (0,1)K} is absorbing whenpK{\textstyle p_{K}} is a seminorm. It is also not assumed thatK{\textstyle K} isbalanced (which is a property thatK{\textstyle K} is often required to have); in its place is the weaker condition that(0,1)sK(0,1)K{\textstyle (0,1)sK\subseteq (0,1)K} for all scalarss{\textstyle s} satisfying|s|=1.{\textstyle |s|=1.} The common requirement thatK{\textstyle K} be convex is also weakened to only requiring that(0,1)K{\textstyle (0,1)K} be convex.

TheoremLetK{\textstyle K} be a subset of a real or complex vector spaceX.{\textstyle X.} ThenpK{\textstyle p_{K}} is aseminorm onX{\textstyle X} if and only if all of the following conditions hold:

  1. (0,)K=X{\textstyle (0,\infty )K=X} (or equivalently,pK{\textstyle p_{K}} is real-valued).
  2. (0,1)K{\textstyle (0,1)K} is convex (or equivalently,pK{\textstyle p_{K}} issubadditive).
  3. (0,1)uK(0,1)K{\textstyle (0,1)uK\subseteq (0,1)K} for all unit scalarsu.{\textstyle u.}

in which case0K{\textstyle 0\in K} and both(0,1)K={xX:p(x)<1}{\textstyle (0,1)K=\{x\in X:p(x)<1\}} ande>0(0,1+e)K={xX:pK(x)1}{\textstyle \bigcap _{e>0}(0,1+e)K=\left\{x\in X:p_{K}(x)\leq 1\right\}} will be convex, balanced, andabsorbing subsets ofX.{\textstyle X.}

Conversely, iff{\textstyle f} is a seminorm onX{\textstyle X} then the setV:={xX:f(x)<1}{\textstyle V:=\{x\in X:f(x)<1\}} satisfies all three of the above conditions (and thus also the conclusions) and alsof=pV;{\textstyle f=p_{V};} moreover,V{\textstyle V} is necessarily convex, balanced, absorbing, and satisfies(0,1)V=V=[0,1]V.{\textstyle (0,1)V=V=[0,1]V.}

CorollaryIfK{\textstyle K} is a convex, balanced, and absorbing subset of a real or complex vector spaceX,{\textstyle X,} thenpK{\textstyle p_{K}} is aseminorm onX.{\textstyle X.}

Positive sublinear functions and Minkowski functionals

[edit]

It may be shown that a real-valuedsubadditive functionf:XR{\textstyle f:X\to \mathbb {R} } on an arbitrarytopological vector spaceX{\textstyle X} is continuous at the origin if and only if it is uniformly continuous, where if in additionf{\textstyle f} is nonnegative, thenf{\textstyle f} is continuous if and only ifV:={xX:f(x)<1}{\textstyle V:=\{x\in X:f(x)<1\}} is an open neighborhood inX.{\textstyle X.}[11] Iff:XR{\textstyle f:X\to \mathbb {R} } is subadditive and satisfiesf(0)=0,{\textstyle f(0)=0,} thenf{\textstyle f} is continuous if and only if its absolute value|f|:X[0,){\textstyle |f|:X\to [0,\infty )} is continuous.

Anonnegativesublinear function is anonnegative homogeneous functionf:X[0,){\textstyle f:X\to [0,\infty )} that satisfies the triangle inequality. It follows immediately from the results below that for such a functionf,{\textstyle f,} ifV:={xX:f(x)<1}{\textstyle V:=\{x\in X:f(x)<1\}} thenf=pV.{\textstyle f=p_{V}.} GivenKX,{\textstyle K\subseteq X,} the Minkowski functionalpK{\textstyle p_{K}} is a sublinear function if and only if it is real-valued and subadditive, which is happens if and only if(0,)K=X{\textstyle (0,\infty )K=X} and(0,1)K{\textstyle (0,1)K} is convex.

Correspondence between open convex sets and positive continuous sublinear functions

[edit]

Theorem[11]Suppose thatX{\textstyle X} is atopological vector space (not necessarilylocally convex or Hausdorff) over the real or complex numbers. Then the non-empty open convex subsets ofX{\textstyle X} are exactly those sets that are of the formz+{xX:p(x)<1}={xX:p(xz)<1}{\textstyle z+\{x\in X:p(x)<1\}=\{x\in X:p(x-z)<1\}} for somezX{\textstyle z\in X} and some positive continuoussublinear functionp{\textstyle p} onX.{\textstyle X.}

Proof

LetV{\textstyle V\neq \varnothing } be an open convex subset ofX.{\textstyle X.} If0V{\textstyle 0\in V} then letz:=0{\textstyle z:=0} and otherwise letzV{\textstyle z\in V} be arbitrary. Letp=pK:X[0,){\textstyle p=p_{K}:X\to [0,\infty )} be the Minkowski functional ofK:=Vz{\textstyle K:=V-z} where this convex open neighborhood of the origin satisfies(0,1)K=K.{\textstyle (0,1)K=K.} Thenp{\textstyle p} is a continuous sublinear function onX{\textstyle X} sinceVz{\textstyle V-z} is convex, absorbing, and open (however,p{\textstyle p} is not necessarily a seminorm since it is not necessarily absolutely homogeneous). From the properties of Minkowski functionals, we havepK1([0,1))=(0,1)K,{\textstyle p_{K}^{-1}([0,1))=(0,1)K,} from which it follows thatVz={xX:p(x)<1}{\textstyle V-z=\{x\in X:p(x)<1\}} and soV=z+{xX:p(x)<1}.{\textstyle V=z+\{x\in X:p(x)<1\}.} Sincez+{xX:p(x)<1}={xX:p(xz)<1},{\textstyle z+\{x\in X:p(x)<1\}=\{x\in X:p(x-z)<1\},} this completes the proof.{\textstyle \blacksquare }

See also

[edit]

Notes

[edit]
  1. ^It is in generalfalse thatxrD{\textstyle x\in rD} if and only ifpD(x)=r{\textstyle p_{D}(x)=r} (for example, consider whenpK{\textstyle p_{K}} is anorm or a seminorm). The correct statement is: If0<r<{\textstyle 0<r<\infty } thenxrD{\textstyle x\in rD} if and only ifpD(x)=r{\textstyle p_{D}(x)=r} orpD(x)=0.{\textstyle p_{D}(x)=0.}
  2. ^u{\textstyle u} is having unit length means that|u|=1.{\textstyle |u|=1.}
  3. ^The mappK{\textstyle p_{K}} is calledabsolutely homogeneous if|s|pK(x){\textstyle |s|p_{K}(x)} is well-defined andpK(sx)=|s|pK(x){\textstyle p_{K}(sx)=|s|p_{K}(x)} for allxX{\textstyle x\in X} and all scalarss{\textstyle s} (not just non-zero scalars).

References

[edit]
  1. ^Narici & Beckenstein 2011, p. 109.
  2. ^Narici & Beckenstein 2011, p. 119.
  3. ^abJarchow 1981, pp. 104–108.
  4. ^abNarici & Beckenstein 2011, pp. 115–154.
  5. ^abSchaefer 1999, p. 40.
  6. ^abcNarici & Beckenstein 2011, p. 119-120.
  7. ^Kubrusly 2011, p. 200.
  8. ^abSchechter 1996, p. 316.
  9. ^Schechter 1996, p. 303.
  10. ^Schechter 1996, pp. 313–317.
  11. ^abNarici & Beckenstein 2011, pp. 192–193.

Further reading

[edit]
  • F. Simeski, A. M. P. Boelens, and M. Ihme. "Modeling Adsorption in Silica Pores via Minkowski Functionals and Molecular Electrostatic Moments".Energies13 (22) 5976 (2020).doi:10.3390/en13225976.
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs
Basic concepts
Topics (list)
Maps
Mainresults (list)
Sets
Series
Duality
Applications and related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Minkowski_functional&oldid=1261282181"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp