Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Mills' constant

From Wikipedia, the free encyclopedia
Prime-generating mathematical constant

Innumber theory,Mills' constant is defined as the smallest positivereal numberA such that thefloor function of thedouble exponential function

A3n{\displaystyle \left\lfloor A^{3^{n}}\right\rfloor }

is aprime number for all positivenatural numbersn. This constant is named afterWilliam Harold Mills who proved in 1947 the existence ofA based on results ofGuido Hoheisel andAlbert Ingham on theprime gaps.[1] Its value is unproven, but if theRiemann hypothesis is true, it is approximately 1.3063778838630806904686144926... (sequenceA051021 in theOEIS).

Mills primes

[edit]

The primes generated by Mills' constant are known as Mills primes; if the Riemann hypothesis is true, the sequence begins

2,11,1361,2521008887,16022236204009818131831320183,{\displaystyle 2,11,1361,2521008887,16022236204009818131831320183,}
4113101149215104800030529537915953170486139623539759933135949994882770404074832568499,{\displaystyle 4113101149215104800030529537915953170486139623539759933135949994882770404074832568499,\ldots } (sequenceA051254 in theOEIS).

Ifai{\displaystyle a_{i}} denotes theith prime in this sequence, thenai{\displaystyle a_{i}} can be calculated as the smallest prime number larger thanai13{\displaystyle a_{i-1}^{3}}. In order to ensure that roundingA3n{\displaystyle A^{3^{n}}}, forn = 1, 2, 3, ..., produces this sequence of primes, it must be the case thatai<(ai1+1)3{\displaystyle a_{i}<(a_{i-1}+1)^{3}}. The Hoheisel–Ingham results guarantee that there exists a prime between any two sufficiently largecube numbers, which is sufficient to prove this inequality if we start from a sufficiently large first primea1{\displaystyle a_{1}}. The Riemann hypothesis implies that there exists a prime between any two consecutive cubes, allowing thesufficiently large condition to be removed, and allowing the sequence of Mills primes to begin ata1 = 2.

For allai>ee32.537{\displaystyle a_{i}>e^{e^{32.537}}}, there is at least one prime betweenai3{\displaystyle a_{i}^{3}} and(ai+1)3{\displaystyle (a_{i}+1)^{3}}.[2] This upper bound is much too large to be practical, as it is infeasible to check every number below that figure. However, the value of Mills' constant can be verified by calculating the first prime in the sequence that is greater than that figure.

As of April 2017, the 11th number in the sequence is the largest one that has beenproved prime. It is

(((((((((23+3)3+30)3+6)3+80)3+12)3+450)3+894)3+3636)3+70756)3+97220{\displaystyle \displaystyle (((((((((2^{3}+3)^{3}+30)^{3}+6)^{3}+80)^{3}+12)^{3}+450)^{3}+894)^{3}+3636)^{3}+70756)^{3}+97220}

and has 20562 digits.[3]

As of 2024[update], the largest known Millsprobable prime (under the Riemann hypothesis) is

(((((((((((((23+3)3+30)3+6)3+80)3+12)3+450)3+894)3+3636)3+70756)3+97220)3+66768)3+300840)3+1623568)3+8436308{\displaystyle {\begin{aligned}\displaystyle &(((((((((((((2^{3}+3)^{3}+30)^{3}+6)^{3}+80)^{3}+12)^{3}+450)^{3}+894)^{3}+3636)^{3}+{}\\[3mu]&\qquad 70756)^{3}+97220)^{3}+66768)^{3}+300840)^{3}+1623568)^{3}+8436308\end{aligned}}}

(sequenceA108739 in theOEIS), which is 1,665,461 digits long.

Numerical calculation

[edit]

By calculating the sequence of Mills primes, one can approximate Mills' constant as

Aan1/3n.{\displaystyle A\approx a_{n}^{1/3^{n}}.}

Caldwell and Cheng used this method to compute 6850 base 10 digits of Mills' constant under the assumption that theRiemann hypothesis is true.[4] Mills' constant is not known to have aclosed-form formula,[5] but it is known to beirrational.[6]

Generalisations

[edit]

There is nothing special about the middle exponent value of 3. It is possible to produce similar prime-generatingfunctions for different middle exponent values. In fact, for any real number above 2.106..., it is possible to find a different constantA that will work with this middle exponent to always produce primes. Moreover, ifLegendre's conjecture is true, the middle exponent can be replaced[7] with value 2 (sequenceA059784 in theOEIS).

Matomäki showed unconditionally (without assuming Legendre's conjecture) the existence of a (possibly large) constantA such thatA2n{\displaystyle \lfloor A^{2^{n}}\rfloor } is prime for alln.[8]

Additionally, Tóth proved that the floor function in the formula could be replaced with theceiling function, so that there exists a constantB{\displaystyle B} such that

Brn{\displaystyle \lceil B^{r^{n}}\rceil }

is also prime-representing forr>2.106, rN{\displaystyle r>2.106,\ r\in N\ldots }.[9]In the caser=3{\displaystyle r=3}, the value of the constantB{\displaystyle B} begins with 1.24055470525201424067... The first few primes generated are:

2,7,337,38272739,56062005704198360319209,176199995814327287356671209104585864397055039072110696028654438846269,{\displaystyle 2,7,337,38272739,56062005704198360319209,176199995814327287356671209104585864397055039072110696028654438846269,\ldots }

Without assuming the Riemann hypothesis, Elsholtz proved thatA1010n{\displaystyle \lfloor A^{10^{10n}}\rfloor } is prime for all positive integersn, whereA1.00536773279814724017{\displaystyle A\approx 1.00536773279814724017}, and thatB313n{\displaystyle \lfloor B^{3^{13n}}\rfloor } is prime for all positive integersn, whereB3.8249998073439146171615551375{\displaystyle B\approx 3.8249998073439146171615551375}.[10]

Duc-Son Tran proved that in Tóth's result above, the number r can be replaced by any real number>8/3{\displaystyle >8/3}.Moreover, he demonstrated another result stating that for any given real number B>1, there exists a number r such thatBrn{\displaystyle \lceil B^{r^{n}}\rceil }is also prime-representing.[11]

See also

[edit]

References

[edit]
  1. ^Mills, W. H. (1947)."A prime-representing function"(PDF).Bulletin of the American Mathematical Society.53 (6): 604.doi:10.1090/S0002-9904-1947-08849-2.
  2. ^Cully-Hugill, Michaela (2023).Explicit estimates for the distribution of primes (Ph.D. thesis). UNSW Canberra.doi:10.26190/unsworks/24916.hdl:1959.4/101209.
  3. ^Caldwell, Chris (7 July 2006)."The Prime Database".Primes. Retrieved2017-05-11.
  4. ^Caldwell, Chris K.; Cheng, Yuanyou (2005)."Determining Mills' Constant and a Note on Honaker's Problem".Journal of Integer Sequences.8. p. 5.4.1.Bibcode:2005JIntS...8...41S.MR 2165330.
  5. ^Finch, Steven R. (2003). "Mills' Constant".Mathematical Constants. Cambridge University Press.pp. 130–133.ISBN 0-521-81805-2.
  6. ^Saito, Kota (2025)."Mills' constant is irrational".Mathematika.71 (3) e70027.arXiv:2404.19461.doi:10.1112/mtk.70027.ISSN 2041-7942.
  7. ^Warren Jr., Henry S. (2013).Hacker's Delight (2nd ed.). Addison-Wesley Professional.ISBN 978-0-321-84268-8.
  8. ^Matomäki, K. (2010)."Prime-representing functions"(PDF).Acta Mathematica Hungarica.128 (4):307–314.doi:10.1007/s10474-010-9191-x.S2CID 18960874.
  9. ^Tóth, László (2017)."A Variation on Mills-Like Prime-Representing Functions"(PDF).Journal of Integer Sequences.20. p. 17.9.8.arXiv:1801.08014.
  10. ^Elsholtz, Christian (2020). "Unconditional Prime-Representing Functions, Following Mills".American Mathematical Monthly.127 (7):639–642.arXiv:2004.01285.doi:10.1080/00029890.2020.1751560.S2CID 214795216.
  11. ^Tran, Duc-Son (2024)."The Prime-Representing Functions"(PDF).Mathematical Reports.26 (76):251–254.doi:10.59277/mrar.2024.26.76.3.4.251.MR 4836217.

Further reading

[edit]

External links

[edit]
Prime number classes
By formula
By integer sequence
By property
Base-dependent
Patterns
k-tuples
By size
Complex numbers
Composite numbers
Related topics
First 60 primes
Retrieved from "https://en.wikipedia.org/w/index.php?title=Mills%27_constant&oldid=1335544780"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp