Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Methylglyoxal

From Wikipedia, the free encyclopedia
Methylglyoxal
Skeletal formula
Skeletal formula
Ball-and-stick model of methylglyoxal
Names
Preferred IUPAC name
2-Oxopropanal
Other names
Pyruvaldehyde
Identifiers
3D model (JSmol)
906750
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard100.001.059Edit this at Wikidata
KEGG
MeSHMethylglyoxal
UNII
  • InChI=1S/C3H4O2/c1-3(5)2-4/h2H,1H3 checkY
    Key: AIJULSRZWUXGPQ-UHFFFAOYSA-N checkY
  • InChI=1/C3H4O2/c1-3(5)2-4/h2H,1H3
    Key: AIJULSRZWUXGPQ-UHFFFAOYAZ
  • CC(=O)C=O
Properties
C3H4O2
Molar mass72.063 g·mol−1
AppearanceYellow liquid
Density1.046 g/cm3
Melting point25 °C (77 °F; 298 K)
Boiling point72 °C (162 °F; 345 K)
Hazards
GHS labelling:
GHS05: CorrosiveGHS06: ToxicGHS08: Health hazard
Danger
H290,H302,H315,H317,H318,H319,H335,H341
P201,P202,P234,P261,P264,P270,P271,P272,P280,P281,P301+P312,P302+P352,P304+P340,P305+P351+P338,P308+P313,P310,P312,P321,P330,P332+P313,P333+P313,P337+P313,P362,P363,P390,P403+P233,P404,P405,P501
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Methylglyoxal (MGO) is theorganic compound with the formula CH3C(O)CHO. It is a reduced derivative ofpyruvic acid. It is a reactive compound that is implicated in the biology ofdiabetes. Methylglyoxal is produced industrially by degradation of carbohydrates using overexpressedmethylglyoxal synthase.[1]

Chemical structure

[edit]

Gaseous methylglyoxal has twocarbonyl groups: analdehyde and aketone. In the presence of water, it exists as hydrates andoligomers. The formation of these hydrates is indicative of the high reactivity of MGO, which is relevant to its biological behavior.[2]

Biochemistry

[edit]

Biosynthesis and biodegradation

[edit]

In organisms, methylglyoxal is formed as a side-product of severalmetabolic pathways.[3] Methylglyoxal mainly arises as side products ofglycolysis involvingglyceraldehyde-3-phosphate anddihydroxyacetone phosphate. It is also thought to arise via the degradation ofacetone andthreonine.[4] Illustrative of the myriad pathways to MGO,aristolochic acid caused 12-fold increase of methylglyoxal from 18 to 231 μg/mg of kidney protein in poisoned mice.[5] It may form from3-aminoacetone, which is an intermediate of threoninecatabolism, as well as throughlipid peroxidation. However, the most important source isglycolysis. Here, methylglyoxal arises from nonenzymatic phosphate elimination from glyceraldehyde phosphate anddihydroxyacetone phosphate (DHAP), two intermediates of glycolysis. This conversion is the basis of a potential biotechnological route to the commodity chemical1,2-propanediol.[6]

Since methylglyoxal is highlycytotoxic, several detoxification mechanisms have evolved. One of these is theglyoxalase system. Methylglyoxal is detoxified byglutathione. Glutathione reacts with methylglyoxal to give ahemithioacetal, which converted intoS-D-lactoyl-glutathione byglyoxalase I.[7] Thisthioester is hydrolyzed toD-lactate byglyoxalase II.[8]

Biochemical function

[edit]

Methylglyoxal is involved in the formation ofadvanced glycation end products (AGEs).[4] In this process, methylglyoxal reacts with free amino groups oflysine andarginine and with thiol groups ofcysteine forming AGEs.Argpyrimidine is one example.Histones are also heavily susceptible to modification by methylglyoxal and these modifications are elevated in breast cancer.[9][10]

AGEs derived from the action of methylglyoxal on arginine.[11]

DNA damages are induced by reactivecarbonyls, principally methylglyoxal andglyoxal, at a frequency similar to that ofoxidative DNA damages.[12] Such damage, referred to as DNAglycation, can causemutation, breaks in DNA andcytotoxicity.[12] In humans, a protein DJ-1 (also namedPARK7), has a key role in the repair of glycated DNA bases.

Biomedical aspects

[edit]

Due to increased blood glucose levels, methylglyoxal has higher concentrations indiabetics and has been linked toarterialatherogenesis. Damage by methylglyoxal tolow-density lipoprotein through glycation causes a fourfold increase of atherogenesis in diabetics.[13] Methylglyoxal binds directly to the nerve endings and by that increases the chronic extremity soreness indiabetic neuropathy.[14][15]

Occurrence, other

[edit]

Methylglyoxal is a component of some kinds of honey, includingmanuka honey; it appears to have activity againstE. coli andS. aureus and may help prevent formation ofbiofilms formed byP. aeruginosa.[16]

Research suggests that methylglyoxal contained in honey does not cause an increased formation of advanced glycation end products (AGEs) in healthy persons.[17][18]

See also

[edit]

References

[edit]
  1. ^Lichtenthaler, Frieder W. (2010). "Carbohydrates as Organic Raw Materials".Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.doi:10.1002/14356007.n05_n07.ISBN 978-3-527-30673-2.
  2. ^Loeffler, Kirsten W.; Koehler, Charles A.; Paul, Nichole M.; De Haan, David O. (2006). "Oligomer Formation in Evaporating Aqueous Glyoxal and Methyl Glyoxal Solutions".Environmental Science & Technology.40 (20):6318–23.Bibcode:2006EnST...40.6318L.doi:10.1021/es060810w.PMID 17120559.
  3. ^Inoue Y, Kimura A (1995). "Methylglyoxal and regulation of its metabolism in microorganisms".Adv. Microb. Physiol. Advances in Microbial Physiology.37:177–227.doi:10.1016/S0065-2911(08)60146-0.ISBN 978-0-12-027737-7.PMID 8540421.
  4. ^abBellier, Justine; Nokin, Marie-Julie; Lardé, Eva; Karoyan, Philippe; Peulen, Olivier; Castronovo, Vincent; Bellahcène, Akeila (2019). "Methylglyoxal, a Potent Inducer of AGEs, Connects between Diabetes and Cancer".Diabetes Research and Clinical Practice.148:200–211.doi:10.1016/j.diabres.2019.01.002.PMID 30664892.S2CID 58631777.
  5. ^Li, YC; Tsai, SH; Chen, SM; Chang, YM; Huang, TC; Huang, YP; Chang, CT; Lee, JA (2012). "Aristolochic acid-induced accumulation of methylglyoxal and Nε-(carboxymethyl)lysine: an important and novel pathway in the pathogenic mechanism for aristolochic acid nephropathy".Biochem Biophys Res Commun.423 (4):832–7.doi:10.1016/j.bbrc.2012.06.049.PMID 22713464.
  6. ^Sullivan, Carl J.; Kuenz, Anja; Vorlop, Klaus‐Dieter (2018). "Propanediols".Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.doi:10.1002/14356007.a22_163.pub2.ISBN 978-3-527-30673-2.
  7. ^Thornalley PJ (2003). "Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation".Biochem. Soc. Trans.31 (Pt 6):1343–8.doi:10.1042/BST0311343.PMID 14641060.
  8. ^Vander Jagt DL (1993). "Glyoxalase II: molecular characteristics, kinetics and mechanism".Biochem. Soc. Trans.21 (2):522–7.doi:10.1042/bst0210522.PMID 8359524.
  9. ^Galligan JJ, Wepy JA, Streeter MD, Kingsley PJ, Mitchener MM, Wauchope OR, Beavers WN, Rose KL, Wang T, Spiegel DA, Marnett LJ (September 2018)."Methylglyoxal-derived posttranslational arginine modifications are abundant histone marks".Proc Natl Acad Sci USA.115 (37):9228–33.Bibcode:2018PNAS..115.9228G.doi:10.1073/pnas.1802901115.PMC 6140490.PMID 30150385.
  10. ^Zheng Q, Omans ND, Leicher R, Osunsade A, Agustinus AS, Finkin-Groner E, D'Ambrosio H, Liu B, Chandarlapaty S, Liu S, David Y (March 2019)."Reversible histone glycation is associated with disease-related changes in chromatin architecture".Nat Commun.10 (1) 1289.Bibcode:2019NatCo..10.1289Z.doi:10.1038/s41467-019-09192-z.PMC 6426841.PMID 30894531.
  11. ^Oya, Tomoko; Hattori, Nobutaka; Mizuno, Yoshikuni; Miyata, Satoshi; Maeda, Sakan; Osawa, Toshihiko; Uchida, Koji (1999)."Methylglyoxal Modification of Protein".Journal of Biological Chemistry.274 (26):18492–502.doi:10.1074/jbc.274.26.18492.PMID 10373458.
  12. ^abRicharme G, Liu C, Mihoub M, Abdallah J, Leger T, Joly N, Liebart JC, Jurkunas UV, Nadal M, Bouloc P, Dairou J, Lamouri A. Guanine glycation repair by DJ-1/Park7 and its bacterial homologs. Science. 2017 Jul 14;357(6347):208-211. doi: 10.1126/science.aag1095. Epub 2017 Jun 8. PMID 28596309
  13. ^Rabbani N; Godfrey, L; Xue, M; Shaheen, F; Geoffrion, M; Milne, R; Thornalley, PJ (May 26, 2011)."Glycation of LDL by methylglyoxal increases arterial atherogenicity. A possible contributor to increased risk of cardiovascular disease in diabetes".Diabetes.60 (7):1973–80.doi:10.2337/db11-0085.PMC 3121424.PMID 21617182.
  14. ^Spektrum: Diabetische Neuropathie: Methylglyoxal verstärkt den Schmerz: DAZ.onlineArchived 2015-10-10 at theWayback Machine. Deutsche-apotheker-zeitung.de (2012-05-21). Retrieved on 2012-06-11.
  15. ^Bierhaus, Angelika; Fleming, Thomas; Stoyanov, Stoyan; Leffler, Andreas; Babes, Alexandru; Neacsu, Cristian; Sauer, Susanne K; Eberhardt, Mirjam; et al. (2012). "Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy".Nature Medicine.18 (6):926–33.doi:10.1038/nm.2750.PMID 22581285.S2CID 205389296.
  16. ^Israili, ZH (2014). "Antimicrobial properties of honey".American Journal of Therapeutics.21 (4):304–23.doi:10.1097/MJT.0b013e318293b09b.PMID 23782759.
  17. ^Wallace A, Eady S, Miles M, Martin H, McLachlan A, Rodier M, Willis J, Scott R, Sutherland J (April 2010)."Demonstrating the safety of manuka honey UMF® 20+ in a human clinical trial with healthy individuals".Br J Nutr.103 (7):1023–8.doi:10.1017/S0007114509992777.PMID 20064284.
  18. ^Degen J, Vogel M, Richter D, Hellwig M, Henle T (October 2013). "Metabolic transit of dietary methylglyoxal".J Agric Food Chem.61 (43):10253–60.Bibcode:2013JAFC...6110253D.doi:10.1021/jf304946p.PMID 23451712.
Ionotropic
GABAATooltip γ-Aminobutyric acid A receptor
GABAATooltip γ-Aminobutyric acid A-rho receptor
Metabotropic
GABABTooltip γ-Aminobutyric acid B receptor
TRPA
Activators
Blockers
TRPC
Activators
Blockers
TRPM
Activators
Blockers
TRPML
Activators
Blockers
TRPP
Activators
Blockers
TRPV
Activators
Blockers
Authority control databasesEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Methylglyoxal&oldid=1335514818"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp