Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Metallicity

From Wikipedia, the free encyclopedia
Relative abundance of heavy elements in a star or other astronomical object
For metallic and nonmetallic compounds, seeMetal andNonmetallic material.
Theglobular clusterM80. Stars in globular clusters are mainly older metal-poor members ofpopulation II.

Inastronomy,metallicity is theabundance ofelements present in an object that are heavier thanhydrogen andhelium. Most of the normal currently detectable (i.e. non-dark)matter in the universe is either hydrogen or helium, andastronomers use the wordmetals as convenient shorthand forall elements except hydrogen and helium. This word-use is distinct from the conventional chemical or physical definition of ametal as an electrically conducting solid.Stars andnebulae with relatively high abundances of heavier elements are calledmetal-rich when discussing metallicity, even though many of those elements are callednonmetals in chemistry.

Metals in early spectroscopy

[edit]
Solar spectrum with Fraunhofer lines as it appears visually.

In 1802,William Hyde Wollaston[1] noted the appearance of a number of dark features in the solar spectrum.[2] In 1814,Joseph von Fraunhofer independently rediscovered the lines and began to systematically study and measure theirwavelengths, and they are now calledFraunhofer lines. He mapped over 570 lines, designating the most prominent with the letters A through K and weaker lines with other letters.[3][4][5]

About 45 years later,Gustav Kirchhoff andRobert Bunsen[6] noticed that several Fraunhofer lines coincide with characteristicemission lines identifies in the spectra of heated chemical elements.[7] They inferred that dark lines in the solar spectrum are caused byabsorption bychemical elements in the solar atmosphere.[8] Their observations[9] were in the visible range where the strongest lines come from metals such as sodium, potassium, and iron.[10] In the early work on the chemical composition of the sun the only elements that were detected in spectra were hydrogen and various metals,[11]: 23–24  with the termmetallic frequently used when describing them.[11]: Part 2  In contemporary usage in astronomy all the extra elements beyond just hydrogen and helium are termed metallic.

Origin of metallic elements

[edit]
See also:Stellar nucleosynthesis andBig Bang nucleosynthesis

The presence of heavier elements results from stellar nucleosynthesis, where the majority of elements heavier than hydrogen and helium in the Universe (metals, hereafter) are formed in the cores of stars as theyevolve. Over time,stellar winds andsupernovae deposit the metals into the surrounding environment, enriching theinterstellar medium and providing recycling materials for thebirth of new stars. It follows that older generations of stars, which formed in the metal-poorearly Universe, generally have lower metallicities than those of younger generations, which formed in a more metal-rich Universe.

Stellar populations

[edit]
Population I starRigel withreflection nebulaIC 2118

Observed changes in the chemical abundances of different types of stars, based on the spectral peculiarities that were later attributed to metallicity, led astronomerWalter Baade in 1944 to propose the existence of two differentpopulations of stars.[12]These became commonly known aspopulation I (metal-rich) andpopulation II (metal-poor) stars. A third, earlieststellar population was hypothesized in 1978, known aspopulation III stars.[13][14][15] These "extremely metal-poor" (XMP) stars are theorized to have been the "first-born" stars created in the Universe.

Common methods of calculation

[edit]

Astronomers use several different methods to describe and approximate metal abundances, depending on the available tools and the object of interest. Some methods include determining the fraction of mass that is attributed togas versus metals, or measuring the ratios of the number of atoms of two different elements as compared to the ratios found in theSun.

Mass fraction

[edit]

Stellar composition is often simply defined by the parametersX,Y, andZ. HereX represents the mass fraction ofhydrogen,Y is the mass fraction ofhelium, andZ is the mass fraction of all the remaining chemical elements. Thus

X+Y+Z=1{\displaystyle X+Y+Z=1}

In moststars,nebulae,H II regions, and other astronomical sources, hydrogen and helium are the two dominant elements. The hydrogen mass fraction is generally expressed as XmHM ,{\displaystyle \ X\equiv {\tfrac {m_{{\ce {H}}}}{M}}\ ,} whereM is the total mass of the system, and mH {\displaystyle \ m_{{\ce {H}}}\ } is the mass of the hydrogen it contains. Similarly, the helium mass fraction is denoted as YmHeM .{\displaystyle \ Y\equiv {\tfrac {m_{{\ce {He}}}}{M}}~.} The remainder of the elements are collectively referred to as "metals", and the mass fraction of metals is calculated as

Z=e>HemeM=1XY .{\displaystyle Z=\sum _{e>{\ce {He}}}{\tfrac {m_{e}}{M}}=1-X-Y~.}

For the surface of the Sun (symbol{\displaystyle \odot }), these parameters are measured to have the following values:[16]

DescriptionSolar value
Hydrogen mass fraction X=0.7381 {\displaystyle \ X_{\odot }=0.7381\ }
Helium mass fraction Y=0.2485 {\displaystyle \ Y_{\odot }=0.2485\ }
Metal mass fraction Z=0.0134 {\displaystyle \ Z_{\odot }=0.0134\ }

Due to the effects ofstellar evolution, neither the initial composition nor the present day bulk composition of the Sun is the same as its present-day surface composition.

Chemical abundance ratios

[edit]

The overall stellar metallicity is conventionally defined using the total hydrogen content, since its abundance is considered to be relatively constant in the Universe, or theiron content of the star, which has an abundance that is generally linearly increasing in time in the Universe.[17]Hence, iron can be used as a chronological indicator of nucleosynthesis.Iron is relatively easy to measure with spectral observations in the star's spectrum given the large number of iron lines in the star's spectra (even though oxygen is themost abundant heavy element – seemetallicities in H II regions below). The abundance ratio is thecommon logarithm of the ratio of a star's iron abundance compared to that of the Sun and is calculated thus:[18]

[FeH] = log10(NFeNH) log10(NFeNH) ,{\displaystyle \left[{\frac {{\ce {Fe}}}{{\ce {H}}}}\right]~=~\log _{10}{\left({\frac {N_{{\ce {Fe}}}}{N_{{\ce {H}}}}}\right)_{\star }}-~\log _{10}{\left({\frac {N_{{\ce {Fe}}}}{N_{{\ce {H}}}}}\right)_{\odot }}\ ,}

where NFe {\displaystyle \ N_{{\ce {Fe}}}\ } and NH {\displaystyle \ N_{{\ce {H}}}\ } are the number of iron and hydrogen atoms per unit of volume respectively,{\displaystyle \odot } is thestandard symbol for the Sun, and{\displaystyle \star } for a star (often omitted below). The unit often used for metallicity is thedex, contraction of "decimal exponent".[19] By this formulation, stars with a higher metallicity than the Sun have a positivecommon logarithm, whereas those more dominated by hydrogen have a corresponding negative value. For example, stars with a [FeH] {\displaystyle \ \left[{\tfrac {{\ce {Fe}}}{{\ce {H}}}}\right]_{\star }\ } value of +1 have 10 times the metallicity of the Sun (10+1); conversely, those with a [FeH] {\displaystyle \ \left[{\tfrac {{\ce {Fe}}}{{\ce {H}}}}\right]_{\star }\ } value of −1 have1/10, while those with a [FeH] {\displaystyle \ \left[{\tfrac {{\ce {Fe}}}{{\ce {H}}}}\right]_{\star }\ } value of 0 have the same metallicity as the Sun, and so on.[20]

Young population I stars have significantly higher iron-to-hydrogen ratios than older population II stars. Primordialpopulation III stars are estimated to have metallicity less than −6, a millionth of the abundance of iron in the Sun.[21][22]The same notation is used to express variations in abundances between other individual elements as compared to solar proportions. For example, the notation [OFe] {\displaystyle \ \left[{\tfrac {{\ce {O}}}{{\ce {Fe}}}}\right]\ } represents the difference in the logarithm of the star's oxygen abundance versus its iron content compared to that of the Sun. In general, a givenstellar nucleosynthetic process alters the proportions of only a few elements or isotopes, so a star or gas sample with certain [?Fe] {\displaystyle \ \left[{\tfrac {\ce {?}}{\ce {Fe}}}\right]_{\star }\ } values may well be indicative of an associated, studied nuclear process.

Photometric colors

[edit]

Astronomers can estimate metallicities through measured and calibrated systems that correlatephotometric measurements andspectroscopic measurements (see alsoSpectrophotometry). For example, theJohnson UVB filters can be used to detect anultraviolet (UV) excess in stars,[23]where a smaller UV excess indicates a larger presence of metals that absorb the UV radiation, thereby making the star appear "redder".[24][25][26]The UV excess,δ(U−B), is defined as the difference between a star's U and B bandmagnitudes, compared to the difference between U and B band magnitudes of metal-rich stars in theHyades cluster.[27]Unfortunately,δ(U−B) is sensitive to both metallicity andtemperature: If two stars are equally metal-rich, but one is cooler than the other, they will likely have differentδ(U−B) values[27] (see alsoBlanketing effect[28][29]).To help mitigate this degeneracy, a star's B−V color index can be used as an indicator for temperature. Furthermore, the UV excess and B−V index can be corrected to relate theδ(U−B) value to iron abundances.[30][31][32]

Otherphotometric systems that can be used to determine metallicities of certain astrophysical objects include the Strӧmgren system,[33][34]the Geneva system,[35][36] the Washington system,[37][38]and the DDO system.[39][40]

Metallicities in various astrophysical objects

[edit]

Stars

[edit]

At a given mass and age, a metal-poor star will be slightly warmer.Population II stars' metallicities are roughly1/1000 to1/10 of the Sun's( [FeH] =3.0 ... 1.0 ) ,{\displaystyle \left(\ \left[{\tfrac {{\ce {Fe}}}{{\ce {H}}}}\right]\ ={-3.0}\ ...\ {-1.0}\ \right)\ ,} but the group appears cooler thanpopulation I overall, as heavy population II stars have long since died. Above 40 solar masses, metallicity influences how a star will die: Outside thepair-instability window, lower metallicity stars will collapse directly to a black hole, while higher metallicity stars undergo atype Ib/c supernova and may leave aneutron star.

Relationship between stellar metallicity and planets

[edit]

A star's metallicity measurement is one parameter that helps determine whether a star may have a giantplanet, as there is a direct correlation between metallicity and the presence of a giant planet. Measurements have demonstrated the connection between a star's metallicity andgas giant planets, likeJupiter andSaturn. The more metals in a star and thus itsplanetary system andprotoplanetary disk, the more likely the system may have gas giant planets. Current models show that the metallicity along with the correct planetary system temperature and distance from the star are key to planet andplanetesimal formation. For two stars that have equal age and mass but different metallicity, the less metallic star isbluer. Among stars of the same color, less metallic stars emit more ultraviolet radiation. The Sun, witheight planets and nine consensusdwarf planets, is used as the reference, with a [FeH] {\displaystyle \ \left[{\tfrac {{\ce {Fe}}}{{\ce {H}}}}\right]\ } of 0.00.[41][42][43][44][45]

H II regions

[edit]

Young, massive and hot stars (typically of spectral typesO andB) inH II regions emitUV photons that ionizeground-state hydrogen atoms, knockingelectrons free; this process is known asphotoionization. The free electrons canstrike other atoms nearby, exciting bound metallic electrons into ametastable state, which eventually decay back into a ground state, emitting photons with energies that correspond toforbidden lines. Through these transitions, astronomers have developed several observational methods to estimate metal abundances in H II regions, where the stronger the forbidden lines in spectroscopic observations, the higher the metallicity.[46][47] These methods are dependent on one or more of the following: the variety of asymmetrical densities inside H II regions, the varied temperatures of the embedded stars, and/or the electron density within the ionized region.[48][49][50][51]

Theoretically, to determine the total abundance of a single element in an H II region, all transition lines should be observed and summed. However, this can be observationally difficult due to variation in line strength.[52][53] Some of the most common forbidden lines used to determine metal abundances in H II regions are fromoxygen (e.g. [OII]λ = (3727, 7318, 7324) Å, and [OIII]λ = (4363, 4959, 5007) Å),nitrogen (e.g. [NII]λ = (5755, 6548, 6584) Å), andsulfur (e.g. [SII]λ = (6717, 6731) Å and [SIII]λ = (6312, 9069, 9531) Å) in theoptical spectrum, and the [OIII]λ = (52, 88) μm and [NIII]λ = 57 μm lines in theinfrared spectrum.Oxygen has some of the stronger, more abundant lines in H II regions, making it a main target for metallicity estimates within these objects. To calculate metal abundances in H II regions using oxygenflux measurements, astronomers often use theR23 method, in which

R23= [ OII]3727 Å+[ OIII]4959 Å+5007 Å [ Hβ]4861 Å ,{\displaystyle R_{23}={\frac {\ \left[\ {\ce {O}}^{{\ce {II}}}\right]_{3727~\mathrm {\AA} }+\left[\ {\ce {O}}^{{\ce {III}}}\right]_{4959~\mathrm {\AA} +5007~\mathrm {\AA} }\ }{\left[\ {\ce {H}}_{{\ce {\beta}}}\right]_{4861~\mathrm {\AA} }}}\ ,}

where [ OII]3727 Å+[ OIII]4959 Å+5007 Å {\displaystyle \ \left[\ {\ce {O}}^{{\ce {II}}}\right]_{3727~\mathrm {\AA} }+\left[\ {\ce {O}}^{{\ce {III}}}\right]_{4959~\mathrm {\AA} +5007~\mathrm {\AA} }\ } is the sum of the fluxes from oxygenemission lines measured at therest frameλ = (3727, 4959 and 5007) Å wavelengths, divided by the flux from theBalmer series Hβ emission line at the rest frameλ = 4861 Å wavelength.[54]This ratio is well defined through models and observational studies,[55][56][57] but caution should be taken, as the ratio is often degenerate, providing both a low and high metallicity solution, which can be broken with additional line measurements.[58]Similarly, other strong forbidden line ratios can be used, e.g. for sulfur, where[59]

S23= [ SII]6716 Å+6731 Å+[ SIII]9069 Å+9532 Å [ Hβ]4861 Å .{\displaystyle S_{23}={\frac {\ \left[\ {\ce {S}}^{{\ce {II}}}\right]_{6716~\mathrm {\AA} +6731~\mathrm {\AA} }+\left[\ {\ce {S}}^{{\ce {III}}}\right]_{9069~\mathrm {\AA} +9532~\mathrm {\AA} }\ }{\left[\ {\ce {H}}_{{\ce {\beta}}}\right]_{4861~\mathrm {\AA} }}}~.}

Metal abundances within H II regions are typically less than 1%, with the percentage decreasing on average with distance from theGalactic Center.[52][60][61][62][63]

See also

[edit]

References

[edit]
  1. ^Melvyn C. Usselman:William Hyde Wollaston Encyclopædia Britannica, retrieved 31 March 2013
  2. ^William Hyde Wollaston (1802)"A method of examining refractive and dispersive powers, by prismatic reflection,"Philosophical Transactions of the Royal Society,92: 365–380; see especially p. 378.
  3. ^Hearnshaw, J.B. (1986).The analysis of starlight. Cambridge:Cambridge University Press. p. 27.ISBN 978-0-521-39916-6.
  4. ^Joseph Fraunhofer (1814 - 1815)"Bestimmung des Brechungs- und des Farben-Zerstreuungs - Vermögens verschiedener Glasarten, in Bezug auf die Vervollkommnung achromatischer Fernröhre" (Determination of the refractive and color-dispersing power of different types of glass, in relation to the improvement of achromatic telescopes),Denkschriften der Königlichen Akademie der Wissenschaften zu München (Memoirs of the Royal Academy of Sciences in Munich),5: 193–226; see especially pages 202–205 and the plate following page 226.
  5. ^Jenkins, Francis A.; White, Harvey E. (1981).Fundamentals of Optics (4th ed.).McGraw-Hill. p. 18.ISBN 978-0-07-256191-3.
  6. ^See:
    • Gustav Kirchhoff (1859)"Ueber die Fraunhofer'schen Linien" (On Fraunhofer's lines),Monatsbericht der Königlichen Preussische Akademie der Wissenschaften zu Berlin (Monthly report of the Royal Prussian Academy of Sciences in Berlin), 662–665.
    • Gustav Kirchhoff (1859)"Ueber das Sonnenspektrum" (On the sun's spectrum),Verhandlungen des naturhistorisch-medizinischen Vereins zu Heidelberg (Proceedings of the Natural History / Medical Association in Heidelberg),1 (7) : 251–255.
  7. ^G. Kirchhoff (1860)."Ueber die Fraunhofer'schen Linien".Annalen der Physik.185 (1):148–150.Bibcode:1860AnP...185..148K.doi:10.1002/andp.18601850115.
  8. ^G. Kirchhoff (1860)."Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht" [On the relation between the emissive power and the absorptive power of bodies towards heat and light].Annalen der Physik.185 (2):275–301.Bibcode:1860AnP...185..275K.doi:10.1002/andp.18601850205.
  9. ^"Kirchhoff and Bunsen on Spectroscopy".www.chemteam.info. Retrieved2024-07-02.
  10. ^"Spectrum analysis in its application to terrestrial substances and the physical constitution of the heavenly bodies : familiarly explained / by H. Schellen ..."HathiTrust.hdl:2027/hvd.hn3317. Retrieved2024-07-02.
  11. ^abMeadows, A. J. (Arthur Jack) (1970).Early solar physics. Internet Archive. Oxford, New York, Pergamon Press.ISBN 978-0-08-006653-0.
  12. ^Baade, Walter (1944)."The Resolution of Messier 32, NGC 205, and the central region of the Andromeda Nebula".Astrophysical Journal.100:121–146.Bibcode:1944ApJ...100..137B.doi:10.1086/144650.
  13. ^Rees, M.J. (1978). "Origin of pregalactic microwave background".Nature.275 (5675):35–37.Bibcode:1978Natur.275...35R.doi:10.1038/275035a0.S2CID 121250998.
  14. ^White, S.D.M.; Rees, M.J. (1978)."Core condensation in heavy halos - a two-stage theory for galaxy formation and clustering".Monthly Notices of the Royal Astronomical Society.183 (3):341–358.Bibcode:1978MNRAS.183..341W.doi:10.1093/mnras/183.3.341.
  15. ^Puget, J.L.; Heyvaerts, J. (1980). "Population III stars and the shape of the cosmological black body radiation".Astronomy and Astrophysics.83 (3):L10 –L12.Bibcode:1980A&A....83L..10P.
  16. ^Asplund, Martin; Grevesse, Nicolas; Sauval, A. Jacques; Scott, Pat (2009). "The chemical composition of the Sun".Annual Review of Astronomy & Astrophysics.47 (1):481–522.arXiv:0909.0948.Bibcode:2009ARA&A..47..481A.doi:10.1146/annurev.astro.46.060407.145222.S2CID 17921922.
  17. ^Hinkel, Natalie; Timmes, Frank; Young, Patrick; Pagano, Michael; Turnbull, Maggie (September 2014)."Stellar abundances in the Solar neighborhood:The Hypatia Catalog".Astronomical Journal.148 (3): 33.arXiv:1405.6719.Bibcode:2014AJ....148...54H.doi:10.1088/0004-6256/148/3/54.S2CID 119221402.
  18. ^Matteucci, Francesca (2001).The Chemical Evolution of the Galaxy. Astrophysics and Space Science Library. Vol. 253. Springer Science & Business Media. p. 7.ISBN 978-0-7923-6552-5.
  19. ^Fenna, Donald (2002).A Dictionary of Weights, Measures, and Units. OUP Oxford.ISBN 9780191078989.
  20. ^Martin, John C."What we learn from a star's metal content". New analysis RR Lyrae kinematics in the solar neighborhood.University of Illinois, Springfield. Archived fromthe original on 2014-10-09. Retrieved7 September 2005.
  21. ^Sobral, David; Matthee, Jorryt; Darvish, Behnam; Schaerer, Daniel; Mobasher, Bahram; Röttgering, Huub J.A.; et al. (4 June 2015). "Evidence for pop III-like stellar populations in the most luminous Lyman-α emitters at the epoch of re-ionisation: Spectroscopic confirmation".The Astrophysical Journal.808 (2): 139.arXiv:1504.01734.Bibcode:2015ApJ...808..139S.doi:10.1088/0004-637x/808/2/139.S2CID 18471887.
  22. ^Overbye, Dennis (17 June 2015)."Astronomers report finding earliest stars that enriched the cosmos".The New York Times. Retrieved17 June 2015.
  23. ^Johnson, H.L.; Morgan, W.W. (May 1953). "Fundamental stellar photometry for standards of spectral type on the revised system of theYerkes Spectral Atlas".The Astrophysical Journal.117: 313.Bibcode:1953ApJ...117..313J.doi:10.1086/145697.ISSN 0004-637X.
  24. ^Roman, Nancy G. (December 1955)."A catalogue of high-velocity stars".The Astrophysical Journal Supplement Series.2: 195.Bibcode:1955ApJS....2..195R.doi:10.1086/190021.ISSN 0067-0049.
  25. ^Sandage, A.R.; Eggen, O.J. (1959-06-01)."On the existence of subdwarfs in the (MBol, log Te)-diagram".Monthly Notices of the Royal Astronomical Society.119 (3):278–296.Bibcode:1959MNRAS.119..278S.doi:10.1093/mnras/119.3.278.ISSN 0035-8711.
  26. ^Wallerstein, George; Carlson, Maurice (September 1960). "Letter to the Editor: On the ultraviolet excess in G dwarfs".The Astrophysical Journal.132: 276.Bibcode:1960ApJ...132..276W.doi:10.1086/146926.ISSN 0004-637X.
  27. ^abWildey, R.L.; Burbidge, E.M.;Sandage, A.R.; Burbidge, G.R. (January 1962)."On the effect of Fraunhofer lines on u, b, V measurements".The Astrophysical Journal.135: 94.Bibcode:1962ApJ...135...94W.doi:10.1086/147251.ISSN 0004-637X.
  28. ^Schwarzschild, M.; Searle, L.; Howard, R. (September 1955)."On the colors of subdwarfs".The Astrophysical Journal.122: 353.Bibcode:1955ApJ...122..353S.doi:10.1086/146094.ISSN 0004-637X.
  29. ^Cameron, L. M. (June 1985). "Metallicities and distances of galactic clusters as determined from UBV data – Part Three – Ages and abundance gradients of open clusters".Astronomy and Astrophysics.147: 47.Bibcode:1985A&A...147...47C.ISSN 0004-6361.
  30. ^Sandage, A.R. (December 1969)."New subdwarfs. II. Radial velocities, photometry, and preliminary space motions for 112 stars with large proper motion".The Astrophysical Journal.158: 1115.Bibcode:1969ApJ...158.1115S.doi:10.1086/150271.ISSN 0004-637X.
  31. ^Carney, B.W. (October 1979)."Subdwarf ultraviolet excesses and metal abundances".The Astrophysical Journal.233: 211.Bibcode:1979ApJ...233..211C.doi:10.1086/157383.ISSN 0004-637X.
  32. ^Laird, John B.; Carney, Bruce W.; Latham, David W. (June 1988). "A survey of proper-motion stars. III - Reddenings, distances, and metallicities".The Astronomical Journal.95: 1843.Bibcode:1988AJ.....95.1843L.doi:10.1086/114782.ISSN 0004-6256.
  33. ^Strömgren, Bengt (1963). "Quantitative classification methods". In Strand, Kaj Aage (ed.).Basic Astronomical Data: Stars and stellar systems (original (re-issued 1968) ed.). Chicago, IL: University of Chicago Press. p. 123.Bibcode:1963bad..book..123S.
  34. ^Crawford, L.D. (1966). "Photo-electric H-beta and U V B Y photometry".Spectral Classification and Multicolour Photometry.24: 170.Bibcode:1966IAUS...24..170C.
  35. ^Cramer, N.; Maeder, A. (October 1979). "Luminosity andTeff determinations for B-type stars".Astronomy and Astrophysics.78: 305.Bibcode:1979A&A....78..305C.ISSN 0004-6361.
  36. ^Kobi, D.; North, P. (November 1990). "A new calibration of the Geneva photometry in terms of Te, log g, (Fe/H) and mass for main sequence A4 to G5 stars".Astronomy and Astrophysics Supplement Series.85: 999.Bibcode:1990A&AS...85..999K.ISSN 0365-0138.
  37. ^Geisler, D. (1986)."The empirical abundance calibrations for Washington photometry of population II giants".Publications of the Astronomical Society of the Pacific.98 (606): 762.Bibcode:1986PASP...98..762G.doi:10.1086/131822.ISSN 1538-3873.
  38. ^Geisler, Doug; Claria, Juan J.; Minniti, Dante (November 1991). "An improved metal abundance calibration for the Washington system".The Astronomical Journal.102: 1836.Bibcode:1991AJ....102.1836G.doi:10.1086/116008.ISSN 0004-6256.
  39. ^Claria, Juan J.; Piatti, Andres E.; Lapasset, Emilio (May 1994)."A revised effective-temperature calibration for the DDO photometric system".Publications of the Astronomical Society of the Pacific.106: 436.Bibcode:1994PASP..106..436C.doi:10.1086/133398.ISSN 0004-6280.
  40. ^James, K.A. (May 1975)."Cyanogen strengths, luminosities, and kinematics of K giant stars".The Astrophysical Journal Supplement Series.29: 161.Bibcode:1975ApJS...29..161J.doi:10.1086/190339.ISSN 0067-0049.
  41. ^Wang, Ji."Planet-metallicity correlation - the rich get richer".Caltech. Archived fromthe original on 2017-07-13. Retrieved2016-09-28.
  42. ^Fischer, Debra A.; Valenti, Jeff (2005)."The planet-metallicity correlation".The Astrophysical Journal.622 (2): 1102.Bibcode:2005ApJ...622.1102F.doi:10.1086/428383.
  43. ^Wang, Ji; Fischer, Debra A. (2013). "Revealing a universal planet-metallicity correlation for planets of different sizes around Solar-type stars".The Astronomical Journal.149 (1): 14.arXiv:1310.7830.Bibcode:2015AJ....149...14W.doi:10.1088/0004-6256/149/1/14.S2CID 118415186.
  44. ^Sanders, Ray (9 April 2012)."When stellar metallicity sparks planet formation".Astrobiology Magazine. Archived fromthe original on 2021-05-07.
  45. ^Hill, Vanessa; François, Patrick;Primas, Francesca (eds.). "The G star problem".From Lithium to Uranium: Elemental tracers of early cosmic evolution.IAU Symposium 228. Proceedings of theInternational Astronomical Union Symposia and Colloquia. Vol. 228. pp. 509–511.[citation not found]
    Missing article's page numbers are imbedded in:
    Arimoto, N. (23–27 May 2005). "Linking the halo to its surroundings". In Hill, Vanessa; François, Patrick;Primas, Francesca (eds.).From Lithium to Uranium: Elemental tracers of early cosmic evolution.IAU Symposium 228. Proceedings of theInternational Astronomical Union Symposia and Colloquia. Vol. 228. Paris, France:IAU / Cambridge University Press (published February 2006). pp. 503–512.Bibcode:2005IAUS..228..503A.doi:10.1017/S1743921305006344.ISBN 978-0-52185199-2.
  46. ^Kewley, L.J.; Dopita, M.A. (September 2002). "Using strong lines to estimate abundances in extragalactic H II regions and starburst galaxies".The Astrophysical Journal Supplement Series.142 (1):35–52.arXiv:astro-ph/0206495.Bibcode:2002ApJS..142...35K.doi:10.1086/341326.ISSN 0067-0049.S2CID 16655590.
  47. ^Nagao, T.; Maiolino, R.; Marconi, A. (2006-09-12). "Gas metallicity diagnostics in star-forming galaxies".Astronomy & Astrophysics.459 (1):85–101.arXiv:astro-ph/0603580.Bibcode:2006A&A...459...85N.doi:10.1051/0004-6361:20065216.ISSN 0004-6361.S2CID 16220272.
  48. ^Peimbert, Manuel (December 1967)."Temperature determinations of H II regions".The Astrophysical Journal.150: 825.Bibcode:1967ApJ...150..825P.doi:10.1086/149385.ISSN 0004-637X.
  49. ^Pagel, B.E.J. (1986)."Nebulae and abundances in galaxies".Publications of the Astronomical Society of the Pacific.98 (608): 1009.Bibcode:1986PASP...98.1009P.doi:10.1086/131863.ISSN 1538-3873.S2CID 120467036.
  50. ^Henry, R.B.C.; Worthey, Guy (August 1999). "The distribution of heavy elements in spiral and elliptical galaxies".Publications of the Astronomical Society of the Pacific.111 (762):919–945.arXiv:astro-ph/9904017.Bibcode:1999PASP..111..919H.doi:10.1086/316403.ISSN 0004-6280.S2CID 17106463.
  51. ^Kobulnicky, Henry A.; Kennicutt, Robert C. Jr.; Pizagno, James L. (April 1999). "On measuring nebular chemical abundances in distant galaxies using global emission-line spectra".The Astrophysical Journal.514 (2):544–557.arXiv:astro-ph/9811006.Bibcode:1999ApJ...514..544K.doi:10.1086/306987.ISSN 0004-637X.S2CID 14643540.
  52. ^abGrazyna, Stasinska (2004). "Abundance determinations in H II regions and planetary nebulae". In Esteban, C.; Garcia Lopez, R.J.; Herrero, A.; Sanchez, F. (eds.).Cosmochemistry: The melting pot of the elements. Cambridge Contemporary Astrophysics. Cambridge University Press. pp. 115–170.arXiv:astro-ph/0207500.Bibcode:2002astro.ph..7500S.
  53. ^Peimbert, Antonio; Peimbert, Manuel; Ruiz, Maria Teresa (December 2005). "Chemical composition of two H II regions in NGC 6822 based on VLT spectroscopy".The Astrophysical Journal.634 (2):1056–1066.arXiv:astro-ph/0507084.Bibcode:2005ApJ...634.1056P.doi:10.1086/444557.ISSN 0004-637X.S2CID 17086551.
  54. ^Pagel, B.E.J.; Edmunds, M.G.; Blackwell, D.E.; Chun, M.S.; Smith, G. (1979-11-01)."On the composition of H II regions in southern galaxies – I. NGC 300 and 1365".Monthly Notices of the Royal Astronomical Society.189 (1):95–113.Bibcode:1979MNRAS.189...95P.doi:10.1093/mnras/189.1.95.ISSN 0035-8711.
  55. ^Dopita, M.A.; Evans, I.N. (August 1986)."Theoretical models for H II regions. II - The extragalactic H II region abundance sequence".The Astrophysical Journal.307: 431.Bibcode:1986ApJ...307..431D.doi:10.1086/164432.ISSN 0004-637X.
  56. ^McGaugh, Stacy S. (October 1991)."H II region abundances - Model oxygen line ratios".The Astrophysical Journal.380: 140.Bibcode:1991ApJ...380..140M.doi:10.1086/170569.ISSN 0004-637X.
  57. ^Pilyugin, L.S. (April 2001)."On the oxygen abundance determination in H II regions".Astronomy & Astrophysics.369 (2):594–604.arXiv:astro-ph/0101446.Bibcode:2001A&A...369..594P.doi:10.1051/0004-6361:20010079.ISSN 0004-6361.S2CID 54527173.
  58. ^Kobulnicky, Henry A.; Zaritsky, Dennis (1999-01-20). "Chemical Properties of Star-forming Emission-Line Galaxies atz=0.1–0.5".The Astrophysical Journal.511 (1):118–135.arXiv:astro-ph/9808081.Bibcode:1999ApJ...511..118K.doi:10.1086/306673.ISSN 0004-637X.S2CID 13094276.
  59. ^Diaz, A.I.; Perez-Montero, E. (2000-02-11)."An empirical calibration of nebular abundances based on the sulphur emission lines".Monthly Notices of the Royal Astronomical Society.312 (1):130–138.arXiv:astro-ph/9909492.Bibcode:2000MNRAS.312..130D.doi:10.1046/j.1365-8711.2000.03117.x.ISSN 0035-8711.S2CID 119504048.
  60. ^Shaver, P.A.; McGee, R.X.; Newton, L.M.; Danks, A.C.; Pottasch, S.R. (1983-09-01)."The galactic abundance gradient".Monthly Notices of the Royal Astronomical Society.204 (1):53–112.Bibcode:1983MNRAS.204...53S.doi:10.1093/mnras/204.1.53.ISSN 0035-8711.
  61. ^Afflerbach, A.; Churchwell, E.; Werner, M. W. (1997-03-20)."Galactic abundance gradients from infrared fine-structure lines in compact H II regions".The Astrophysical Journal.478 (1):190–205.Bibcode:1997ApJ...478..190A.doi:10.1086/303771.ISSN 0004-637X.
  62. ^Pagel, J.; Bernard, E. (1997).Nucleosynthesis and Chemical Evolution of Galaxies. Cambridge University Press. p. 392.Bibcode:1997nceg.book.....P.ISBN 978-0-521-55061-1.
  63. ^Balser, Dana S.; Rood, Robert T.; Bania, T.M.; Anderson, L.D. (2011-08-10). "H II region metallicity distribution in the Milky Way disk".The Astrophysical Journal.738 (1): 27.arXiv:1106.1660.Bibcode:2011ApJ...738...27B.doi:10.1088/0004-637X/738/1/27.ISSN 0004-637X.S2CID 119252119.

Further reading

[edit]
Formation
Evolution
Classification
Remnants
Hypothetical
Nucleosynthesis
Structure
Properties
Star systems
Earth-centric
observations
Lists
Related
Portals:
Retrieved from "https://en.wikipedia.org/w/index.php?title=Metallicity&oldid=1282427437"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp