Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Maxwell's equations in curved spacetime

From Wikipedia, the free encyclopedia
Electromagnetism in general relativity
For background material used in this article, seeCovariant formulation of classical electromagnetism andIntroduction to the mathematics of general relativity.
Induced spacetime curvature
Electromagnetism
Solenoid

Inphysics,Maxwell's equations in curved spacetime govern the dynamics of theelectromagnetic field incurvedspacetime (where themetric may deviate from theMinkowski metric) or where one uses an arbitrary (not necessarilyCartesian) coordinate system. These equations can be viewed as a generalization of thevacuum Maxwell's equations which are normally formulated in thelocal coordinates offlat spacetime. But becausegeneral relativity dictates that the presence of electromagnetic fields (orenergy/matter in general) induce curvature in spacetime,[1] Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

When working in the presence of bulk matter, distinguishing between free and bound electric charges may facilitate analysis. When the distinction is made, they are called themacroscopic Maxwell's equations. Without this distinction, they are sometimes called the "microscopic" Maxwell's equations for contrast.

The electromagnetic field admits a coordinate-independent geometric description, and Maxwell's equations expressed in terms of these geometric objects are the same in any spacetime, curved or not. Also, the same modifications are made to the equations of flatMinkowski space when using local coordinates that are not rectilinear. For example, the equations in this article can be used to write Maxwell's equations inspherical coordinates. For these reasons, it may be useful to think of Maxwell's equations in Minkowski space as aspecial case of the general formulation.

Summary

[edit]

Ingeneral relativity, themetric tensorgαβ{\displaystyle g_{\alpha \beta }} is no longer a constant (likeηαβ{\displaystyle \eta _{\alpha \beta }} as inExamples of metric tensor) but can vary in space and time, and the equations of electromagnetism in vacuum become[citation needed]

Fαβ=αAββAα,Dμν=1μ0gμαFαβgβνgc,Jμ=νDμν,fμ=FμνJν,{\displaystyle {\begin{aligned}F_{\alpha \beta }&=\partial _{\alpha }A_{\beta }-\partial _{\beta }A_{\alpha },\\{\mathcal {D}}^{\mu \nu }&={\frac {1}{\mu _{0}}}\,g^{\mu \alpha }\,F_{\alpha \beta }\,g^{\beta \nu }\,{\frac {\sqrt {-g}}{c}},\\J^{\mu }&=\partial _{\nu }{\mathcal {D}}^{\mu \nu },\\f_{\mu }&=F_{\mu \nu }\,J^{\nu },\end{aligned}}}

wherefμ{\displaystyle f_{\mu }} is the density of theLorentz force,gαβ{\displaystyle g^{\alpha \beta }} is the inverse of themetric tensorgαβ{\displaystyle g_{\alpha \beta }}, andg{\displaystyle g} is thedeterminant of the metric tensor. Notice thatAα{\displaystyle A_{\alpha }} andFαβ{\displaystyle F_{\alpha \beta }} are (ordinary) tensors, whileDμν{\displaystyle {\mathcal {D}}^{\mu \nu }},Jν{\displaystyle J^{\nu }}, andfμ{\displaystyle f_{\mu }} aretensordensities of weight +1. Despite the use ofpartial derivatives, these equations are invariant under arbitrary curvilinear coordinate transformations. Thus, if one replaced the partial derivatives withcovariant derivatives, the extra terms thereby introduced would cancel out (seeManifest covariance § Example).

Electromagnetic potential

[edit]

Theelectromagnetic potential is a covariant vectorAα, which is the undefined primitive of electromagnetism. Being a covariant vector, its components transform from one coordinate system to another according to

A¯β(x¯)=xγx¯βAγ(x).{\displaystyle {\bar {A}}_{\beta }({\bar {x}})={\frac {\partial x^{\gamma }}{\partial {\bar {x}}^{\beta }}}A_{\gamma }(x).}

Electromagnetic field

[edit]

Theelectromagnetic field is a covariantantisymmetric tensor of degree 2, which can be defined in terms of the electromagnetic potential byFαβ=αAββAα.{\displaystyle F_{\alpha \beta }=\partial _{\alpha }A_{\beta }-\partial _{\beta }A_{\alpha }.}

To see that this equation is invariant, we transform the coordinates as described in theclassical treatment of tensors:F¯αβ=A¯βx¯αA¯αx¯β=x¯α(xγx¯βAγ)x¯β(xδx¯αAδ)=2xγx¯αx¯βAγ+xγx¯βAγx¯α2xδx¯βx¯αAδxδx¯αAδx¯β=xγx¯βxδx¯αAγxδxδx¯αxγx¯βAδxγ=xδx¯αxγx¯β(AγxδAδxγ)=xδx¯αxγx¯βFδγ.{\displaystyle {\begin{aligned}{\bar {F}}_{\alpha \beta }&={\frac {\partial {\bar {A}}_{\beta }}{\partial {\bar {x}}^{\alpha }}}-{\frac {\partial {\bar {A}}_{\alpha }}{\partial {\bar {x}}^{\beta }}}\\&={\frac {\partial }{\partial {\bar {x}}^{\alpha }}}\left({\frac {\partial x^{\gamma }}{\partial {\bar {x}}^{\beta }}}A_{\gamma }\right)-{\frac {\partial }{\partial {\bar {x}}^{\beta }}}\left({\frac {\partial x^{\delta }}{\partial {\bar {x}}^{\alpha }}}A_{\delta }\right)\\&={\frac {\partial ^{2}x^{\gamma }}{\partial {\bar {x}}^{\alpha }\partial {\bar {x}}^{\beta }}}A_{\gamma }+{\frac {\partial x^{\gamma }}{\partial {\bar {x}}^{\beta }}}{\frac {\partial A_{\gamma }}{\partial {\bar {x}}^{\alpha }}}-{\frac {\partial ^{2}x^{\delta }}{\partial {\bar {x}}^{\beta }\partial {\bar {x}}^{\alpha }}}A_{\delta }-{\frac {\partial x^{\delta }}{\partial {\bar {x}}^{\alpha }}}{\frac {\partial A_{\delta }}{\partial {\bar {x}}^{\beta }}}\\&={\frac {\partial x^{\gamma }}{\partial {\bar {x}}^{\beta }}}{\frac {\partial x^{\delta }}{\partial {\bar {x}}^{\alpha }}}{\frac {\partial A_{\gamma }}{\partial x^{\delta }}}-{\frac {\partial x^{\delta }}{\partial {\bar {x}}^{\alpha }}}{\frac {\partial x^{\gamma }}{\partial {\bar {x}}^{\beta }}}{\frac {\partial A_{\delta }}{\partial x^{\gamma }}}\\&={\frac {\partial x^{\delta }}{\partial {\bar {x}}^{\alpha }}}{\frac {\partial x^{\gamma }}{\partial {\bar {x}}^{\beta }}}\left({\frac {\partial A_{\gamma }}{\partial x^{\delta }}}-{\frac {\partial A_{\delta }}{\partial x^{\gamma }}}\right)\\&={\frac {\partial x^{\delta }}{\partial {\bar {x}}^{\alpha }}}{\frac {\partial x^{\gamma }}{\partial {\bar {x}}^{\beta }}}F_{\delta \gamma }.\end{aligned}}}

This definition implies that the electromagnetic field satisfiesλFμν+μFνλ+νFλμ=0,{\displaystyle \partial _{\lambda }F_{\mu \nu }+\partial _{\mu }F_{\nu \lambda }+\partial _{\nu }F_{\lambda \mu }=0,}which incorporatesFaraday's law of induction andGauss's law for magnetism. This is seen fromλFμν+μFνλ+νFλμ=λμAνλνAμ+μνAλμλAν+νλAμνμAλ=0.{\displaystyle \partial _{\lambda }F_{\mu \nu }+\partial _{\mu }F_{\nu \lambda }+\partial _{\nu }F_{\lambda \mu }=\partial _{\lambda }\partial _{\mu }A_{\nu }-\partial _{\lambda }\partial _{\nu }A_{\mu }+\partial _{\mu }\partial _{\nu }A_{\lambda }-\partial _{\mu }\partial _{\lambda }A_{\nu }+\partial _{\nu }\partial _{\lambda }A_{\mu }-\partial _{\nu }\partial _{\mu }A_{\lambda }=0.}

Thus, the right-hand side of that Maxwell law is zero identically, meaning that the classic EM field theory leaves no room for magnetic monopoles or currents of such to act as sources of the field.

Although there appear to be 64 equations in Faraday–Gauss, it actually reduces to just four independent equations. Using the antisymmetry of the electromagnetic field, one can either reduce to an identity (0 = 0) or render redundant all the equations except for those with {λ,μ,ν} being either {1, 2, 3}, {2, 3, 0}, {3, 0, 1}, or {0, 1, 2}.

The Faraday–Gauss equation is sometimes writtenF[μν;λ]=F[μν,λ]=16(λFμν+μFνλ+νFλμλFνμμFλννFμλ)=13(λFμν+μFνλ+νFλμ)=0,{\displaystyle F_{[\mu \nu ;\lambda ]}=F_{[\mu \nu ,\lambda ]}={\frac {1}{6}}(\partial _{\lambda }F_{\mu \nu }+\partial _{\mu }F_{\nu \lambda }+\partial _{\nu }F_{\lambda \mu }-\partial _{\lambda }F_{\nu \mu }-\partial _{\mu }F_{\lambda \nu }-\partial _{\nu }F_{\mu \lambda })={\frac {1}{3}}(\partial _{\lambda }F_{\mu \nu }+\partial _{\mu }F_{\nu \lambda }+\partial _{\nu }F_{\lambda \mu })=0,}where a semicolon indicates a covariant derivative, a comma indicates a partial derivative, and square brackets indicate anti-symmetrization (seeRicci calculus for the notation). The covariant derivative of the electromagnetic field isFαβ;γ=Fαβ,γΓμαγFμβΓμβγFαμ,{\displaystyle F_{\alpha \beta ;\gamma }=F_{\alpha \beta ,\gamma }-{\Gamma ^{\mu }}_{\alpha \gamma }F_{\mu \beta }-{\Gamma ^{\mu }}_{\beta \gamma }F_{\alpha \mu },}where Γαβγ is theChristoffel symbol, which is symmetric in its lower indices.

Electromagnetic displacement

[edit]

Theelectric displacement fieldD and theauxiliary magnetic fieldH form an antisymmetric contravariant rank-2tensor density of weight +1. In vacuum, this is given by

Dμν=1μ0gμαFαβgβνgc.{\displaystyle {\mathcal {D}}^{\mu \nu }={\frac {1}{\mu _{0}}}\,g^{\mu \alpha }\,F_{\alpha \beta }\,g^{\beta \nu }\,{\frac {\sqrt {-g}}{c}}.}

This equation is the only place where the metric (and thus gravity) enters into the theory of electromagnetism. Furthermore, the equation is invariant under a change of scale, that is, multiplying the metric by a constant has no effect on this equation. Consequently, gravity can only affect electromagnetism by changing thespeed of light relative to the global coordinate system being used. Light is only deflected by gravity because it is slower near massive bodies. So it is as if gravity increased the index of refraction of space near massive bodies.

More generally, in materials where themagnetizationpolarization tensor is non-zero, we have

Dμν=1μ0gμαFαβgβνgcMμν.{\displaystyle {\mathcal {D}}^{\mu \nu }={\frac {1}{\mu _{0}}}\,g^{\mu \alpha }\,F_{\alpha \beta }\,g^{\beta \nu }\,{\frac {\sqrt {-g}}{c}}-{\mathcal {M}}^{\mu \nu }.}

The transformation law for electromagnetic displacement is

D¯μν=x¯μxαx¯νxβDαβdet[xσx¯ρ],{\displaystyle {\bar {\mathcal {D}}}^{\mu \nu }={\frac {\partial {\bar {x}}^{\mu }}{\partial x^{\alpha }}}\,{\frac {\partial {\bar {x}}^{\nu }}{\partial x^{\beta }}}\,{\mathcal {D}}^{\alpha \beta }\,\det \left[{\frac {\partial x^{\sigma }}{\partial {\bar {x}}^{\rho }}}\right],}

where theJacobian determinant is used. If the magnetization-polarization tensor is used, it has the same transformation law as the electromagnetic displacement.

Electric current

[edit]

The electric current is the divergence of the electromagnetic displacement. In vacuum,

Jμ=νDμν.{\displaystyle J^{\mu }=\partial _{\nu }{\mathcal {D}}^{\mu \nu }.}

If magnetization–polarization is used, then this just gives the free portion of the current

Jfreeμ=νDμν.{\displaystyle J_{\text{free}}^{\mu }=\partial _{\nu }{\mathcal {D}}^{\mu \nu }.}

This incorporatesAmpere's law andGauss's law.

In either case, the fact that the electromagnetic displacement is antisymmetric implies that the electric current is automatically conserved:

μJμ=μνDμν=0,{\displaystyle \partial _{\mu }J^{\mu }=\partial _{\mu }\partial _{\nu }{\mathcal {D}}^{\mu \nu }=0,}

because the partial derivativescommute.

The Ampere–Gauss definition of the electric current is not sufficient to determine its value because the electromagnetic potential (from which it was ultimately derived) has not been given a value. Instead, the usual procedure is to equate the electric current to some expression in terms of other fields, mainly the electron and proton, and then solve for the electromagnetic displacement, electromagnetic field, and electromagnetic potential.

The electric current is a contravariant vector density, and as such it transforms as follows:

J¯μ=x¯μxαJαdet[xσx¯ρ].{\displaystyle {\bar {J}}^{\mu }={\frac {\partial {\bar {x}}^{\mu }}{\partial x^{\alpha }}}J^{\alpha }\det \left[{\frac {\partial x^{\sigma }}{\partial {\bar {x}}^{\rho }}}\right].}

Verification of this transformation law:J¯μ=x¯ν(D¯μν)=x¯ν(x¯μxαx¯νxβDαβdet[xσx¯ρ])=2x¯μx¯νxαx¯νxβDαβdet[xσx¯ρ]+x¯μxα2x¯νx¯νxβDαβdet[xσx¯ρ]+x¯μxαx¯νxβDαβx¯νdet[xσx¯ρ]+x¯μxαx¯νxβDαβx¯νdet[xσx¯ρ]=2x¯μxβxαDαβdet[xσx¯ρ]+x¯μxα2x¯νx¯νxβDαβdet[xσx¯ρ]+x¯μxαDαβxβdet[xσx¯ρ]+x¯μxαx¯νxβDαβdet[xσx¯ρ]x¯ρxσ2xσx¯νx¯ρ=0+x¯μxα2x¯νx¯νxβDαβdet[xσx¯ρ]+x¯μxαJαdet[xσx¯ρ]+x¯μxαDαβdet[xσx¯ρ]x¯ρxσ2xσxβx¯ρ=x¯μxαJαdet[xσx¯ρ]+x¯μxαDαβdet[xσx¯ρ](2x¯νx¯νxβ+x¯ρxσ2xσxβx¯ρ).{\displaystyle {\begin{aligned}{\bar {J}}^{\mu }&={\frac {\partial }{\partial {\bar {x}}^{\nu }}}\left({\bar {\mathcal {D}}}^{\mu \nu }\right)\\[6pt]&={\frac {\partial }{\partial {\bar {x}}^{\nu }}}\left({\frac {\partial {\bar {x}}^{\mu }}{\partial x^{\alpha }}}{\frac {\partial {\bar {x}}^{\nu }}{\partial x^{\beta }}}{\mathcal {D}}^{\alpha \beta }\det \left[{\frac {\partial x^{\sigma }}{\partial {\bar {x}}^{\rho }}}\right]\right)\\[6pt]&={\frac {\partial ^{2}{\bar {x}}^{\mu }}{\partial {\bar {x}}^{\nu }\partial x^{\alpha }}}{\frac {\partial {\bar {x}}^{\nu }}{\partial x^{\beta }}}{\mathcal {D}}^{\alpha \beta }\det \left[{\frac {\partial x^{\sigma }}{\partial {\bar {x}}^{\rho }}}\right]+{\frac {\partial {\bar {x}}^{\mu }}{\partial x^{\alpha }}}{\frac {\partial ^{2}{\bar {x}}^{\nu }}{\partial {\bar {x}}^{\nu }\partial x^{\beta }}}{\mathcal {D}}^{\alpha \beta }\det \left[{\frac {\partial x^{\sigma }}{\partial {\bar {x}}^{\rho }}}\right]+{\frac {\partial {\bar {x}}^{\mu }}{\partial x^{\alpha }}}{\frac {\partial {\bar {x}}^{\nu }}{\partial x^{\beta }}}{\frac {\partial {\mathcal {D}}^{\alpha \beta }}{\partial {\bar {x}}^{\nu }}}\det \left[{\frac {\partial x^{\sigma }}{\partial {\bar {x}}^{\rho }}}\right]+{\frac {\partial {\bar {x}}^{\mu }}{\partial x^{\alpha }}}{\frac {\partial {\bar {x}}^{\nu }}{\partial x^{\beta }}}{\mathcal {D}}^{\alpha \beta }{\frac {\partial }{\partial {\bar {x}}^{\nu }}}\det \left[{\frac {\partial x^{\sigma }}{\partial {\bar {x}}^{\rho }}}\right]\\[6pt]&={\frac {\partial ^{2}{\bar {x}}^{\mu }}{\partial x^{\beta }\partial x^{\alpha }}}{\mathcal {D}}^{\alpha \beta }\det \left[{\frac {\partial x^{\sigma }}{\partial {\bar {x}}^{\rho }}}\right]+{\frac {\partial {\bar {x}}^{\mu }}{\partial x^{\alpha }}}{\frac {\partial ^{2}{\bar {x}}^{\nu }}{\partial {\bar {x}}^{\nu }\partial x^{\beta }}}{\mathcal {D}}^{\alpha \beta }\det \left[{\frac {\partial x^{\sigma }}{\partial {\bar {x}}^{\rho }}}\right]+{\frac {\partial {\bar {x}}^{\mu }}{\partial x^{\alpha }}}{\frac {\partial {\mathcal {D}}^{\alpha \beta }}{\partial x^{\beta }}}\det \left[{\frac {\partial x^{\sigma }}{\partial {\bar {x}}^{\rho }}}\right]+{\frac {\partial {\bar {x}}^{\mu }}{\partial x^{\alpha }}}{\frac {\partial {\bar {x}}^{\nu }}{\partial x^{\beta }}}{\mathcal {D}}^{\alpha \beta }\det \left[{\frac {\partial x^{\sigma }}{\partial {\bar {x}}^{\rho }}}\right]{\frac {\partial {\bar {x}}^{\rho }}{\partial x^{\sigma }}}{\frac {\partial ^{2}x^{\sigma }}{\partial {\bar {x}}^{\nu }\partial {\bar {x}}^{\rho }}}\\[6pt]&=0+{\frac {\partial {\bar {x}}^{\mu }}{\partial x^{\alpha }}}{\frac {\partial ^{2}{\bar {x}}^{\nu }}{\partial {\bar {x}}^{\nu }\partial x^{\beta }}}{\mathcal {D}}^{\alpha \beta }\det \left[{\frac {\partial x^{\sigma }}{\partial {\bar {x}}^{\rho }}}\right]+{\frac {\partial {\bar {x}}^{\mu }}{\partial x^{\alpha }}}J^{\alpha }\det \left[{\frac {\partial x^{\sigma }}{\partial {\bar {x}}^{\rho }}}\right]+{\frac {\partial {\bar {x}}^{\mu }}{\partial x^{\alpha }}}{\mathcal {D}}^{\alpha \beta }\det \left[{\frac {\partial x^{\sigma }}{\partial {\bar {x}}^{\rho }}}\right]{\frac {\partial {\bar {x}}^{\rho }}{\partial x^{\sigma }}}{\frac {\partial ^{2}x^{\sigma }}{\partial x^{\beta }\partial {\bar {x}}^{\rho }}}\\[6pt]&={\frac {\partial {\bar {x}}^{\mu }}{\partial x^{\alpha }}}J^{\alpha }\det \left[{\frac {\partial x^{\sigma }}{\partial {\bar {x}}^{\rho }}}\right]+{\frac {\partial {\bar {x}}^{\mu }}{\partial x^{\alpha }}}{\mathcal {D}}^{\alpha \beta }\det \left[{\frac {\partial x^{\sigma }}{\partial {\bar {x}}^{\rho }}}\right]\left({\frac {\partial ^{2}{\bar {x}}^{\nu }}{\partial {\bar {x}}^{\nu }\partial x^{\beta }}}+{\frac {\partial {\bar {x}}^{\rho }}{\partial x^{\sigma }}}{\frac {\partial ^{2}x^{\sigma }}{\partial x^{\beta }\partial {\bar {x}}^{\rho }}}\right).\end{aligned}}}

So all that remains is to show that

2x¯νx¯νxβ+x¯ρxσ2xσxβx¯ρ=0,{\displaystyle {\frac {\partial ^{2}{\bar {x}}^{\nu }}{\partial {\bar {x}}^{\nu }\partial x^{\beta }}}+{\frac {\partial {\bar {x}}^{\rho }}{\partial x^{\sigma }}}{\frac {\partial ^{2}x^{\sigma }}{\partial x^{\beta }\partial {\bar {x}}^{\rho }}}=0,}

which is a version of a known theorem (seeInverse functions and differentiation § Higher derivatives).2x¯νx¯νxβ+x¯ρxσ2xσxβx¯ρ=xσx¯ν2x¯νxσxβ+x¯νxσ2xσxβx¯ν=xσx¯ν2x¯νxβxσ+2xσxβx¯νx¯νxσ=xβ(xσx¯νx¯νxσ)=xβ(x¯νx¯ν)=xβ(4)=0.{\displaystyle {\begin{aligned}&{\frac {\partial ^{2}{\bar {x}}^{\nu }}{\partial {\bar {x}}^{\nu }\partial x^{\beta }}}+{\frac {\partial {\bar {x}}^{\rho }}{\partial x^{\sigma }}}{\frac {\partial ^{2}x^{\sigma }}{\partial x^{\beta }\partial {\bar {x}}^{\rho }}}\\[6pt]{}={}&{\frac {\partial x^{\sigma }}{\partial {\bar {x}}^{\nu }}}{\frac {\partial ^{2}{\bar {x}}^{\nu }}{\partial x^{\sigma }\partial x^{\beta }}}+{\frac {\partial {\bar {x}}^{\nu }}{\partial x^{\sigma }}}{\frac {\partial ^{2}x^{\sigma }}{\partial x^{\beta }\partial {\bar {x}}^{\nu }}}\\[6pt]{}={}&{\frac {\partial x^{\sigma }}{\partial {\bar {x}}^{\nu }}}{\frac {\partial ^{2}{\bar {x}}^{\nu }}{\partial x^{\beta }\partial x^{\sigma }}}+{\frac {\partial ^{2}x^{\sigma }}{\partial x^{\beta }\partial {\bar {x}}^{\nu }}}{\frac {\partial {\bar {x}}^{\nu }}{\partial x^{\sigma }}}\\[6pt]{}={}&{\frac {\partial }{\partial x^{\beta }}}\left({\frac {\partial x^{\sigma }}{\partial {\bar {x}}^{\nu }}}{\frac {\partial {\bar {x}}^{\nu }}{\partial x^{\sigma }}}\right)\\[6pt]{}={}&{\frac {\partial }{\partial x^{\beta }}}\left({\frac {\partial {\bar {x}}^{\nu }}{\partial {\bar {x}}^{\nu }}}\right)\\[6pt]{}={}&{\frac {\partial }{\partial x^{\beta }}}\left(\mathbf {4} \right)\\[6pt]{}={}&0.\end{aligned}}}

Lorentz force density

[edit]

The density of theLorentz force is a covariant vector density given byfμ=FμνJν.{\displaystyle f_{\mu }=F_{\mu \nu }J^{\nu }.}

The force on a test particle subject only to gravity and electromagnetism isdpαdt=Γαγβpβdxγdt+qFαγdxγdt,{\displaystyle {\frac {dp_{\alpha }}{dt}}=\Gamma _{\alpha \gamma }^{\beta }p_{\beta }{\frac {dx^{\gamma }}{dt}}+qF_{\alpha \gamma }{\frac {dx^{\gamma }}{dt}},}wherepα is the linear 4-momentum of the particle,t is any time coordinate parameterizing the world line of the particle, Γβαγ is theChristoffel symbol (gravitational force field), andq is the electric charge of the particle.

This equation is invariant under a change in the time coordinate; just multiply bydt/dt¯{\displaystyle dt/d{\bar {t}}} and use thechain rule. It is also invariant under a change in thex coordinate system.

Using the transformation law for the Christoffel symbol,Γ¯αγβ=x¯βxϵxδx¯αxζx¯γΓδζϵ+x¯βxη2xηx¯αx¯γ,{\displaystyle {\bar {\Gamma }}_{\alpha \gamma }^{\beta }={\frac {\partial {\bar {x}}^{\beta }}{\partial x^{\epsilon }}}{\frac {\partial x^{\delta }}{\partial {\bar {x}}^{\alpha }}}{\frac {\partial x^{\zeta }}{\partial {\bar {x}}^{\gamma }}}\Gamma _{\delta \zeta }^{\epsilon }+{\frac {\partial {\bar {x}}^{\beta }}{\partial x^{\eta }}}{\frac {\partial ^{2}x^{\eta }}{\partial {\bar {x}}^{\alpha }\partial {\bar {x}}^{\gamma }}},}we getdp¯αdtΓ¯αγβp¯βdx¯γdtqF¯αγdx¯γdt=ddt(xδx¯αpδ)(x¯βxθxδx¯αxιx¯γΓδιθ+x¯βxη2xηx¯αx¯γ)xϵx¯βpϵx¯γxζdxζdtqxδx¯αFδζdxζdt=xδx¯α(dpδdtΓδζϵpϵdxζdtqFδζdxζdt)+ddt(xδx¯α)pδ(x¯βxη2xηx¯αx¯γ)xϵx¯βpϵx¯γxζdxζdt=0+ddt(xδx¯α)pδ2xϵx¯αx¯γpϵdx¯γdt=0.{\displaystyle {\begin{aligned}&{\frac {d{\bar {p}}_{\alpha }}{dt}}-{\bar {\Gamma }}_{\alpha \gamma }^{\beta }{\bar {p}}_{\beta }{\frac {d{\bar {x}}^{\gamma }}{dt}}-q{\bar {F}}_{\alpha \gamma }{\frac {d{\bar {x}}^{\gamma }}{dt}}\\[6pt]{}={}&{\frac {d}{dt}}\left({\frac {\partial x^{\delta }}{\partial {\bar {x}}^{\alpha }}}p_{\delta }\right)-\left({\frac {\partial {\bar {x}}^{\beta }}{\partial x^{\theta }}}{\frac {\partial x^{\delta }}{\partial {\bar {x}}^{\alpha }}}{\frac {\partial x^{\iota }}{\partial {\bar {x}}^{\gamma }}}\Gamma _{\delta \iota }^{\theta }+{\frac {\partial {\bar {x}}^{\beta }}{\partial x^{\eta }}}{\frac {\partial ^{2}x^{\eta }}{\partial {\bar {x}}^{\alpha }\partial {\bar {x}}^{\gamma }}}\right){\frac {\partial x^{\epsilon }}{\partial {\bar {x}}^{\beta }}}p_{\epsilon }{\frac {\partial {\bar {x}}^{\gamma }}{\partial x^{\zeta }}}{\frac {dx^{\zeta }}{dt}}-q{\frac {\partial x^{\delta }}{\partial {\bar {x}}^{\alpha }}}F_{\delta \zeta }{\frac {dx^{\zeta }}{dt}}\\[6pt]{}={}&{\frac {\partial x^{\delta }}{\partial {\bar {x}}^{\alpha }}}\left({\frac {dp_{\delta }}{dt}}-\Gamma _{\delta \zeta }^{\epsilon }p_{\epsilon }{\frac {dx^{\zeta }}{dt}}-qF_{\delta \zeta }{\frac {dx^{\zeta }}{dt}}\right)+{\frac {d}{dt}}\left({\frac {\partial x^{\delta }}{\partial {\bar {x}}^{\alpha }}}\right)p_{\delta }-\left({\frac {\partial {\bar {x}}^{\beta }}{\partial x^{\eta }}}{\frac {\partial ^{2}x^{\eta }}{\partial {\bar {x}}^{\alpha }\partial {\bar {x}}^{\gamma }}}\right){\frac {\partial x^{\epsilon }}{\partial {\bar {x}}^{\beta }}}p_{\epsilon }{\frac {\partial {\bar {x}}^{\gamma }}{\partial x^{\zeta }}}{\frac {dx^{\zeta }}{dt}}\\[6pt]{}={}&0+{\frac {d}{dt}}\left({\frac {\partial x^{\delta }}{\partial {\bar {x}}^{\alpha }}}\right)p_{\delta }-{\frac {\partial ^{2}x^{\epsilon }}{\partial {\bar {x}}^{\alpha }\partial {\bar {x}}^{\gamma }}}p_{\epsilon }{\frac {d{\bar {x}}^{\gamma }}{dt}}\\[6pt]{}={}&0.\end{aligned}}}

Lagrangian

[edit]

In vacuum, theLagrangian density for classical electrodynamics (in joules per cubic meter) is a scalardensityL=14μ0FαβFαβgc+AαJα,{\displaystyle {\mathcal {L}}=-{\frac {1}{4\mu _{0}}}\,F_{\alpha \beta }\,F^{\alpha \beta }\,{\frac {\sqrt {-g}}{c}}+A_{\alpha }\,J^{\alpha },}whereFαβ=gαγFγδgδβ.{\displaystyle F^{\alpha \beta }=g^{\alpha \gamma }F_{\gamma \delta }g^{\delta \beta }.}

The 4-current should be understood as an abbreviation of many terms expressing the electric currents of other charged fields in terms of their variables.

If we separate free currents from bound currents, the Lagrangian becomesL=14μ0FαβFαβgc+AαJfreeα+12FαβMαβ.{\displaystyle {\mathcal {L}}=-{\frac {1}{4\mu _{0}}}\,F_{\alpha \beta }\,F^{\alpha \beta }\,{\frac {\sqrt {-g}}{c}}+A_{\alpha }\,J_{\text{free}}^{\alpha }+{\frac {1}{2}}\,F_{\alpha \beta }\,{\mathcal {M}}^{\alpha \beta }.}

Electromagnetic stress–energy tensor

[edit]
Main article:Electromagnetic stress–energy tensor

As part of the source term in theEinstein field equations, the electromagneticstress–energy tensor is a covariant symmetric tensorTμν=1μ0(FμαgαβFβν14gμνFσαgαβFβρgρσ),{\displaystyle T_{\mu \nu }=-{\frac {1}{\mu _{0}}}\left(F_{\mu \alpha }g^{\alpha \beta }F_{\beta \nu }-{\frac {1}{4}}g_{\mu \nu }F_{\sigma \alpha }g^{\alpha \beta }F_{\beta \rho }g^{\rho \sigma }\right),}using a metric of signature(−, +, +, +). If using the metric with signature(+, −, −, −), the expression forTμν{\displaystyle T_{\mu \nu }} will have opposite sign. The stress–energy tensor is trace-free:Tμνgμν=0{\displaystyle T_{\mu \nu }g^{\mu \nu }=0}because electromagnetism propagates at the localinvariant speed, and is conformally invariant.[citation needed]

In the expression for the conservation of energy and linear momentum, the electromagnetic stress–energy tensor is best represented as a mixed tensor densityTμν=Tμγgγνgc.{\displaystyle {\mathfrak {T}}_{\mu }^{\nu }=T_{\mu \gamma }g^{\gamma \nu }{\frac {\sqrt {-g}}{c}}.}

From the equations above, one can show thatTμν;ν+fμ=0,{\displaystyle {{\mathfrak {T}}_{\mu }^{\nu }}_{;\nu }+f_{\mu }=0,}where the semicolon indicates acovariant derivative.

This can be rewritten asTμν,ν=ΓμνσTσν+fμ,{\displaystyle -{{\mathfrak {T}}_{\mu }^{\nu }}_{,\nu }=-\Gamma _{\mu \nu }^{\sigma }{\mathfrak {T}}_{\sigma }^{\nu }+f_{\mu },}which says that the decrease in the electromagnetic energy is the same as the work done by the electromagnetic field on the gravitational field plus the work done on matter (via the Lorentz force), and similarly the rate of decrease in the electromagnetic linear momentum is the electromagnetic force exerted on the gravitational field plus the Lorentz force exerted on matter.

Derivation of conservation law:Tμν;ν+fμ=1μ0(Fμα;νgαβFβγgγν+FμαgαβFβγ;νgγν12δμνFσα;νgαβFβρgρσ)gc+1μ0FμαgαβFβγ;νgγνgc=1μ0(Fμα;νFαν12Fσα;μFασ)gc=1μ0((Fνμ;αFαν;μ)Fαν12Fσα;μFασ)gc=1μ0(Fμν;αFανFαν;μFαν+12Fσα;μFσα)gc=1μ0(Fμα;νFνα12Fαν;μFαν)gc=1μ0(Fμα;νFαν+12Fσα;μFασ)gc,{\displaystyle {\begin{aligned}{{\mathfrak {T}}_{\mu }^{\nu }}_{;\nu }+f_{\mu }&=-{\frac {1}{\mu _{0}}}\left(F_{\mu \alpha ;\nu }g^{\alpha \beta }F_{\beta \gamma }g^{\gamma \nu }+F_{\mu \alpha }g^{\alpha \beta }F_{\beta \gamma ;\nu }g^{\gamma \nu }-{\frac {1}{2}}\delta _{\mu }^{\nu }F_{\sigma \alpha ;\nu }g^{\alpha \beta }F_{\beta \rho }g^{\rho \sigma }\right){\frac {\sqrt {-g}}{c}}+{\frac {1}{\mu _{0}}}F_{\mu \alpha }g^{\alpha \beta }F_{\beta \gamma ;\nu }g^{\gamma \nu }{\frac {\sqrt {-g}}{c}}\\&=-{\frac {1}{\mu _{0}}}\left(F_{\mu \alpha ;\nu }F^{\alpha \nu }-{\frac {1}{2}}F_{\sigma \alpha ;\mu }F^{\alpha \sigma }\right){\frac {\sqrt {-g}}{c}}\\&=-{\frac {1}{\mu _{0}}}\left(\left(-F_{\nu \mu ;\alpha }-F_{\alpha \nu ;\mu }\right)F^{\alpha \nu }-{\frac {1}{2}}F_{\sigma \alpha ;\mu }F^{\alpha \sigma }\right){\frac {\sqrt {-g}}{c}}\\&=-{\frac {1}{\mu _{0}}}\left(F_{\mu \nu ;\alpha }F^{\alpha \nu }-F_{\alpha \nu ;\mu }F^{\alpha \nu }+{\frac {1}{2}}F_{\sigma \alpha ;\mu }F^{\sigma \alpha }\right){\frac {\sqrt {-g}}{c}}\\&=-{\frac {1}{\mu _{0}}}\left(F_{\mu \alpha ;\nu }F^{\nu \alpha }-{\frac {1}{2}}F_{\alpha \nu ;\mu }F^{\alpha \nu }\right){\frac {\sqrt {-g}}{c}}\\&=-{\frac {1}{\mu _{0}}}\left(-F_{\mu \alpha ;\nu }F^{\alpha \nu }+{\frac {1}{2}}F_{\sigma \alpha ;\mu }F^{\alpha \sigma }\right){\frac {\sqrt {-g}}{c}},\end{aligned}}}

which is zero because it is the negative of itself (see four lines above).

Electromagnetic wave equation

[edit]

Thenonhomogeneous electromagnetic wave equation in terms of the field tensor is modified from thespecial-relativity form to[2]

Fab =def Fab;dd=2RacbdFcd+RaeFebRbeFea+Ja;bJb;a,{\displaystyle \Box F_{ab}\ {\stackrel {\text{def}}{=}}\ F_{ab;}{}^{d}{}_{d}=-2R_{acbd}F^{cd}+R_{ae}F^{e}{}_{b}-R_{be}F^{e}{}_{a}+J_{a;b}-J_{b;a},}

whereRacbd is the covariant form of theRiemann tensor, and{\displaystyle \Box } is a generalization of thed'Alembertian operator for covariant derivatives. Using

Aa=Aa;bb.{\displaystyle \Box A^{a}={{A^{a;}}^{b}}_{b}.}

Maxwell's source equations can be written in terms of the4-potential [ref. 2[clarification needed], p. 569] as

AaAb;ab=μ0Ja{\displaystyle \Box A^{a}-{A^{b;a}}_{b}=-\mu _{0}J^{a}}

or, assuming the generalization of theLorenz gauge in curved spacetime,

Aa;a=0,Aa=μ0Ja+RabAb,{\displaystyle {\begin{aligned}{A^{a}}_{;a}&=0,\\\Box A^{a}&=-\mu _{0}J^{a}+{R^{a}}_{b}A^{b},\end{aligned}}}

whereRab =def Rsasb{\displaystyle R_{ab}\ {\stackrel {\text{def}}{=}}\ {R^{s}}_{asb}} is theRicci curvature tensor.

This is the same form of the wave equation as in flat spacetime, except that the derivatives are replaced by covariant derivatives and there is an additional term proportional to the curvature. The wave equation in this form also bears some resemblance to the Lorentz force in curved spacetime, whereAa plays the role of the 4-position.

For the case of a metric signature in the form(+, −, −, −), the derivation of the wave equation in curved spacetime is carried out in the article.[citation needed]

Nonlinearity of Maxwell's equations in a dynamic spacetime

[edit]

When Maxwell's equations are treated in abackground-independent manner, that is, when the spacetime metric is taken to be a dynamical variable that depends on the electromagnetic field, then the electromagnetic wave equation and Maxwell's equations are nonlinear. This can be seen through the dependence of the curvature tensor on the stress–energy tensor through theEinstein field equation

Gab=κTab,{\displaystyle G_{ab}=\kappa T_{ab},}

where

Gab =def Rab12Rgab{\displaystyle G_{ab}~{\stackrel {\text{def}}{=}}~R_{ab}-{\frac {1}{2}}Rg_{ab}}

is theEinstein tensor,κ is theEinstein gravitational constant,gab is themetric tensor, andR is thescalar curvature, equal to the trace of the Ricci curvature tensor. The stress–energy tensor is composed of the stress–energy of all matter and fields, including the electromagnetic field. This mutual dependency is the origin of the nonlinearity.

Geometric formulation

[edit]
icon
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(April 2022) (Learn how and when to remove this message)

In the differential geometric formulation of the electromagnetic field, the antisymmetric Faraday tensor can be considered as theFaraday 2-formF{\displaystyle \mathbf {F} }. In this view, one of Maxwell's two equations is

dF=0,{\displaystyle \mathrm {d} \mathbf {F} =0,}

whered{\displaystyle \mathrm {d} } is theexterior derivative operator. This equation is coordinate- and metric-independent and says that the electromagnetic flux through a closed two-dimensional surface in spacetime is topological, more precisely, constrained by itshomology class (a generalization of the integral form of Gauss law and Maxwell–Faraday equation, as the homology class in Minkowski space is automatically 0). By thePoincaré lemma, this equation implies that there exists locally a 1-formA{\displaystyle \mathbf {A} } satisfying

F=dA.{\displaystyle \mathbf {F} =\mathrm {d} \mathbf {A} .}

The other equation is

dF=J.{\displaystyle \mathrm {d} {\star }\mathbf {F} =\mathbf {J} .}

In this context,J{\displaystyle \mathbf {J} } is thecurrent 3-form, and the star{\displaystyle \star } denotes theHodge star operator. The dependence of Maxwell's equation on the metric of spacetime lies in the Hodge star operator{\displaystyle \star } on 2-forms, which isconformally invariant. Written this way, Maxwell's equation is the same in any spacetime, manifestly coordinate-invariant, and convenient to use (even in Minkowski space or Euclidean space and time, especially with curvilinear coordinates).

An alternative geometric interpretation is that the Faraday 2-formF{\displaystyle \mathbf {F} } is (up to a factori{\displaystyle i}) thecurvature 2-formF(){\displaystyle F(\nabla )} of a U(1)-connection{\displaystyle \nabla } on aprincipal U(1)-bundle whose sections represent charged fields. The connection is much like the vector potential, since every connection can be written as=0+iA{\displaystyle \nabla =\nabla _{0}+iA} for a "base" connection0{\displaystyle \nabla _{0}}, and

F=F0+dA.{\displaystyle \mathbf {F} =\mathbf {F} _{0}+\mathrm {d} \mathbf {A} .}

In this view, the Maxwell "equation"dF=0{\displaystyle \mathrm {d} \mathbf {F} =0} is a mathematical identity known as theBianchi identity. The equationdF=J{\displaystyle \mathrm {d} {\star }\mathbf {F} =\mathbf {J} } is the only equation with any physical content in this formulation.[citation needed] This point of view is particularly natural when considering charged fields or quantum mechanics. It can be interpreted as saying that, much like gravity can be understood as being the result of the necessity of a connection to parallel transport vectors at different points, electromagnetic phenomena, or more subtle quantum effects like theAharonov–Bohm effect, can be understood as a result from the necessity of a connection to parallel transport charged fields or wave sections at different points. In fact, just as the Riemann tensor is theholonomy of theLevi-Civita connection along an infinitesimal closed curve, the curvature of the connection is the holonomy of the U(1)-connection.

See also

[edit]

Notes

[edit]
  1. ^Hall, G. S. (1984). "The significance of curvature in general relativity".General Relativity and Gravitation.16 (5):495–500.Bibcode:1984GReGr..16..495H.doi:10.1007/BF00762342.S2CID 123346295.
  2. ^Ehlers J. Generalized Electromagnetic Null Fields and Geometrical Optics, in Perspectives in Geometry and Relativity, ed. by B. Hoffmann, p. 127–133, Indiana University Press, Bloomington and London, 1966.

References

[edit]

External links

[edit]
Divisions
Approaches
Classical
Modern
Interdisciplinary
Related
Scope
Mathematics
Notation
Tensor
definitions
Operations
Related
abstractions
Notable tensors
Mathematics
Physics
Mathematicians
Retrieved from "https://en.wikipedia.org/w/index.php?title=Maxwell%27s_equations_in_curved_spacetime&oldid=1332078876"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp