Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Matrixt-distribution

From Wikipedia, the free encyclopedia
Concept in statistics
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Matrix t-distribution" – news ·newspapers ·books ·scholar ·JSTOR
(April 2016) (Learn how and when to remove this message)
Matrixt
NotationTn,p(ν,M,Σ,Ω){\displaystyle {\rm {T}}_{n,p}(\nu ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})}
Parameters

M{\displaystyle \mathbf {M} }location (realn×p{\displaystyle n\times p}matrix)
Ω{\displaystyle {\boldsymbol {\Omega }}}scale (positive-definiterealn×n{\displaystyle n\times n}matrix)
Σ{\displaystyle {\boldsymbol {\Sigma }}}scale (positive-definite realp×p{\displaystyle p\times p}matrix)

ν>0{\displaystyle \nu >0}degrees of freedom (real)
SupportXRn×p{\displaystyle \mathbf {X} \in \mathbb {R} ^{n\times p}}
PDF

Γp(ν+n+p12)(π)np2Γp(ν+p12)|Ω|n2|Σ|p2{\displaystyle {\frac {\Gamma _{p}\left({\frac {\nu +n+p-1}{2}}\right)}{(\pi )^{\frac {np}{2}}\Gamma _{p}\left({\frac {\nu +p-1}{2}}\right)}}|{\boldsymbol {\Omega }}|^{-{\frac {n}{2}}}|{\boldsymbol {\Sigma }}|^{-{\frac {p}{2}}}}

×|Ip+Σ1(XM)Ω1(XM)T|ν+n+p12{\displaystyle \times \left|\mathbf {I} _{p}+{\boldsymbol {\Sigma }}^{-1}(\mathbf {X} -\mathbf {M} ){\boldsymbol {\Omega }}^{-1}(\mathbf {X} -\mathbf {M} )^{\rm {T}}\right|^{-{\frac {\nu +n+p-1}{2}}}}
CDFNo analytic expression
MeanM{\displaystyle \mathbf {M} } ifν>1{\displaystyle \nu >1}, else undefined
ModeM{\displaystyle \mathbf {M} }
Variancecov(vec(X))=ΣΩν2{\displaystyle \mathrm {cov} (\mathrm {vec} (\mathbf {X} ))={\frac {{\boldsymbol {\Sigma }}\otimes {\boldsymbol {\Omega }}}{\nu -2}}} ifν>2{\displaystyle \nu >2}, else undefined
CFsee below

Instatistics, thematrixt-distribution (ormatrix variatet-distribution) is the generalization of themultivariatet-distribution from vectors tomatrices.[1][2]

The matrixt-distribution shares the same relationship with the multivariatet-distribution that thematrix normal distribution shares with themultivariate normal distribution: If the matrix has only one row, or only one column, the distributions become equivalent to the corresponding (vector-)multivariate distribution. The matrixt-distribution is thecompound distribution that results from an infinitemixture of a matrix normal distribution with aninverse Wishart distribution placed over either of its covariance matrices,[1] and the multivariatet-distribution can be generated in a similar way.[2]

In aBayesian analysis of amultivariate linear regression model based on the matrix normal distribution, the matrixt-distribution is theposterior predictive distribution.[3]

Definition

[edit]

For a matrixt-distribution, theprobability density function at the pointX{\displaystyle \mathbf {X} } of ann×p{\displaystyle n\times p} space is

f(X;ν,M,Σ,Ω)=K×|In+Σ1(XM)Ω1(XM)T|ν+n+p12,{\displaystyle f(\mathbf {X} ;\nu ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})=K\times \left|\mathbf {I} _{n}+{\boldsymbol {\Sigma }}^{-1}(\mathbf {X} -\mathbf {M} ){\boldsymbol {\Omega }}^{-1}(\mathbf {X} -\mathbf {M} )^{\rm {T}}\right|^{-{\frac {\nu +n+p-1}{2}}},}

where the constant of integrationK is given by

K=Γp(ν+n+p12)(π)np2Γp(ν+p12)|Ω|n2|Σ|p2.{\displaystyle K={\frac {\Gamma _{p}\left({\frac {\nu +n+p-1}{2}}\right)}{(\pi )^{\frac {np}{2}}\Gamma _{p}\left({\frac {\nu +p-1}{2}}\right)}}|{\boldsymbol {\Omega }}|^{-{\frac {n}{2}}}|{\boldsymbol {\Sigma }}|^{-{\frac {p}{2}}}.}

HereΓp{\displaystyle \Gamma _{p}} is themultivariate gamma function.

Properties

[edit]

IfXTn×p(ν,M,Σ,Ω){\displaystyle \mathbf {X} \sim {\mathcal {T}}_{n\times p}(\nu ,\mathbf {M} ,\mathbf {\Sigma } ,\mathbf {\Omega } )}, then we have the following properties:[2]

Expected values

[edit]

The mean, orexpected value is, ifν>1{\displaystyle \nu >1}:

E[X]=M{\displaystyle E[\mathbf {X} ]=\mathbf {M} }

and we have the following second-order expectations, ifν>2{\displaystyle \nu >2}:

E[(XM)(XM)T]=Σtr(Ω)ν2{\displaystyle E[(\mathbf {X} -\mathbf {M} )(\mathbf {X} -\mathbf {M} )^{T}]={\frac {\mathbf {\Sigma } \operatorname {tr} (\mathbf {\Omega } )}{\nu -2}}}
E[(XM)T(XM)]=Ωtr(Σ)ν2{\displaystyle E[(\mathbf {X} -\mathbf {M} )^{T}(\mathbf {X} -\mathbf {M} )]={\frac {\mathbf {\Omega } \operatorname {tr} (\mathbf {\Sigma } )}{\nu -2}}}

wheretr{\displaystyle \operatorname {tr} } denotestrace.

More generally, for appropriately dimensioned matricesA,B,C:

E[(XM)A(XM)T]=Σtr(ATΩ)ν2E[(XM)TB(XM)]=Ωtr(BTΣ)ν2E[(XM)C(XM)]=ΣCTΩν2{\displaystyle {\begin{aligned}E[(\mathbf {X} -\mathbf {M} )\mathbf {A} (\mathbf {X} -\mathbf {M} )^{T}]&={\frac {\mathbf {\Sigma } \operatorname {tr} (\mathbf {A} ^{T}\mathbf {\Omega } )}{\nu -2}}\\E[(\mathbf {X} -\mathbf {M} )^{T}\mathbf {B} (\mathbf {X} -\mathbf {M} )]&={\frac {\mathbf {\Omega } \operatorname {tr} (\mathbf {B} ^{T}\mathbf {\Sigma } )}{\nu -2}}\\E[(\mathbf {X} -\mathbf {M} )\mathbf {C} (\mathbf {X} -\mathbf {M} )]&={\frac {\mathbf {\Sigma } \mathbf {C} ^{T}\mathbf {\Omega } }{\nu -2}}\end{aligned}}}

Transformation

[edit]

Transpose transform:

XTTp×n(ν,MT,Ω,Σ){\displaystyle \mathbf {X} ^{T}\sim {\mathcal {T}}_{p\times n}(\nu ,\mathbf {M} ^{T},\mathbf {\Omega } ,\mathbf {\Sigma } )}

Linear transform: letA (r-by-n), be of fullrankr ≤ n andB (p-by-s), be of full ranks ≤ p, then:

AXBTr×s(ν,AMB,AΣAT,BTΩB){\displaystyle \mathbf {AXB} \sim {\mathcal {T}}_{r\times s}(\nu ,\mathbf {AMB} ,\mathbf {A\Sigma A} ^{T},\mathbf {B} ^{T}\mathbf {\Omega B} )}

Thecharacteristic function and various other properties can be derived from the re-parameterised formulation (see below).

Re-parameterized matrixt-distribution

[edit]
Re-parameterized matrix t
NotationTn,p(α,β,M,Σ,Ω){\displaystyle {\rm {T}}_{n,p}(\alpha ,\beta ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})}
Parameters

M{\displaystyle \mathbf {M} }location (realn×p{\displaystyle n\times p}matrix)
Ω{\displaystyle {\boldsymbol {\Omega }}}scale (positive-definiterealp×p{\displaystyle p\times p}matrix)
Σ{\displaystyle {\boldsymbol {\Sigma }}}scale (positive-definiterealn×n{\displaystyle n\times n}matrix)
α>(p1)/2{\displaystyle \alpha >(p-1)/2}shape parameter

β>0{\displaystyle \beta >0}scale parameter
SupportXRn×p{\displaystyle \mathbf {X} \in \mathbb {R} ^{n\times p}}
PDF

Γp(α+n/2)(2π/β)np2Γp(α)|Ω|n2|Σ|p2{\displaystyle {\frac {\Gamma _{p}(\alpha +n/2)}{(2\pi /\beta )^{\frac {np}{2}}\Gamma _{p}(\alpha )}}|{\boldsymbol {\Omega }}|^{-{\frac {n}{2}}}|{\boldsymbol {\Sigma }}|^{-{\frac {p}{2}}}}

×|In+β2Σ1(XM)Ω1(XM)T|(α+n/2){\displaystyle \times \left|\mathbf {I} _{n}+{\frac {\beta }{2}}{\boldsymbol {\Sigma }}^{-1}(\mathbf {X} -\mathbf {M} ){\boldsymbol {\Omega }}^{-1}(\mathbf {X} -\mathbf {M} )^{\rm {T}}\right|^{-(\alpha +n/2)}}
CDFNo analytic expression
MeanM{\displaystyle \mathbf {M} } ifα>p/2{\displaystyle \alpha >p/2}, else undefined
Variance2(ΣΩ)β(2αp1){\displaystyle {\frac {2({\boldsymbol {\Sigma }}\otimes {\boldsymbol {\Omega }})}{\beta (2\alpha -p-1)}}} ifα>(p+1)/2{\displaystyle \alpha >(p+1)/2}, else undefined
CFsee below

An alternative parameterisation of the matrixt-distribution uses two parametersα{\displaystyle \alpha } andβ{\displaystyle \beta } in place ofν{\displaystyle \nu }.[3]

This formulation reduces to the standard matrixt-distribution withβ=2,α=ν+p12.{\displaystyle \beta =2,\alpha ={\frac {\nu +p-1}{2}}.}

This formulation of the matrixt-distribution can be derived as thecompound distribution that results from an infinitemixture of a matrix normal distribution with aninverse multivariate gamma distribution placed over either of its covariance matrices.

Properties

[edit]

IfXTn,p(α,β,M,Σ,Ω){\displaystyle \mathbf {X} \sim {\rm {T}}_{n,p}(\alpha ,\beta ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})} then[2][3]

XTTp,n(α,β,MT,Ω,Σ).{\displaystyle \mathbf {X} ^{\rm {T}}\sim {\rm {T}}_{p,n}(\alpha ,\beta ,\mathbf {M} ^{\rm {T}},{\boldsymbol {\Omega }},{\boldsymbol {\Sigma }}).}

The property above comes fromSylvester's determinant theorem:

det(In+β2Σ1(XM)Ω1(XM)T)={\displaystyle \det \left(\mathbf {I} _{n}+{\frac {\beta }{2}}{\boldsymbol {\Sigma }}^{-1}(\mathbf {X} -\mathbf {M} ){\boldsymbol {\Omega }}^{-1}(\mathbf {X} -\mathbf {M} )^{\rm {T}}\right)=}
det(Ip+β2Ω1(XTMT)Σ1(XTMT)T).{\displaystyle \det \left(\mathbf {I} _{p}+{\frac {\beta }{2}}{\boldsymbol {\Omega }}^{-1}(\mathbf {X} ^{\rm {T}}-\mathbf {M} ^{\rm {T}}){\boldsymbol {\Sigma }}^{-1}(\mathbf {X} ^{\rm {T}}-\mathbf {M} ^{\rm {T}})^{\rm {T}}\right).}

IfXTn,p(α,β,M,Σ,Ω){\displaystyle \mathbf {X} \sim {\rm {T}}_{n,p}(\alpha ,\beta ,\mathbf {M} ,{\boldsymbol {\Sigma }},{\boldsymbol {\Omega }})} andA(n×n){\displaystyle \mathbf {A} (n\times n)} andB(p×p){\displaystyle \mathbf {B} (p\times p)} arenonsingular matrices then[2][3]

AXBTn,p(α,β,AMB,AΣAT,BTΩB).{\displaystyle \mathbf {AXB} \sim {\rm {T}}_{n,p}(\alpha ,\beta ,\mathbf {AMB} ,\mathbf {A} {\boldsymbol {\Sigma }}\mathbf {A} ^{\rm {T}},\mathbf {B} ^{\rm {T}}{\boldsymbol {\Omega }}\mathbf {B} ).}

Thecharacteristic function is[3]

ϕT(Z)=exp(tr(iZM))|Ω|αΓp(α)(2β)αp|ZΣZ|αBα(12βZΣZΩ),{\displaystyle \phi _{T}(\mathbf {Z} )={\frac {\exp({\rm {tr}}(i\mathbf {Z} '\mathbf {M} ))|{\boldsymbol {\Omega }}|^{\alpha }}{\Gamma _{p}(\alpha )(2\beta )^{\alpha p}}}|\mathbf {Z} '{\boldsymbol {\Sigma }}\mathbf {Z} |^{\alpha }B_{\alpha }\left({\frac {1}{2\beta }}\mathbf {Z} '{\boldsymbol {\Sigma }}\mathbf {Z} {\boldsymbol {\Omega }}\right),}

where

Bδ(WZ)=|W|δS>0exp(tr(SWS1Z))|S|δ12(p+1)dS,{\displaystyle B_{\delta }(\mathbf {WZ} )=|\mathbf {W} |^{-\delta }\int _{\mathbf {S} >0}\exp \left({\rm {tr}}(-\mathbf {SW} -\mathbf {S^{-1}Z} )\right)|\mathbf {S} |^{-\delta -{\frac {1}{2}}(p+1)}d\mathbf {S} ,}

and whereBδ{\displaystyle B_{\delta }} is the type-twoBessel function of Herz[clarification needed] of a matrix argument.

See also

[edit]

Notes

[edit]
  1. ^abZhu, Shenghuo and Kai Yu and Yihong Gong (2007)."Predictive Matrix-Variatet Models." In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors,NIPS '07: Advances in Neural Information Processing Systems 20, pages 1721–1728. MIT Press, Cambridge, MA, 2008. The notation is changed a bit in this article for consistency with thematrix normal distribution article.
  2. ^abcdeGupta, Arjun K and Nagar, Daya K (1999).Matrix variate distributions. CRC Press. pp. Chapter 4.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. ^abcdeIranmanesh, Anis, M. Arashi and S. M. M. Tabatabaey (2010)."On Conditional Applications of Matrix Variate Normal Distribution"Archived 2016-03-04 at theWayback Machine.Iranian Journal of Mathematical Sciences and Informatics, 5:2, pp. 33–43.

External links

[edit]


Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Concepts
Ensembles
Laws
Techniques
Retrieved from "https://en.wikipedia.org/w/index.php?title=Matrix_t-distribution&oldid=1335203223"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp