Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Material conditional

From Wikipedia, the free encyclopedia
Logical connective
"Logical conditional" redirects here. For other related meanings, seeConditional statement.
Not to be confused withMaterial inference orMaterial implication (rule of inference).
Material conditional
IMPLY
Venn diagram of Material conditional
Definitionxy{\displaystyle x\to y}
Truth table(1011){\displaystyle (1011)}
Logic gate
Normal forms
Disjunctivex¯+y{\displaystyle {\overline {x}}+y}
Conjunctivex¯+y{\displaystyle {\overline {x}}+y}
Zhegalkin polynomial1xxy{\displaystyle 1\oplus x\oplus xy}
Post's lattices
0-preservingno
1-preservingyes
Monotoneno
Affineno
Self-dualno
Logical connectives
NOT¬A,A,A¯,A{\displaystyle \neg A,-A,{\overline {A}},{\sim }A}
ANDAB,AB,AB,A&B,A&&B{\displaystyle A\land B,A\cdot B,AB,A\mathop {\&} B,A\mathop {\&\&} B}
NANDA¯B,AB,AB,AB¯{\displaystyle A\mathrel {\overline {\land }} B,A\uparrow B,A\mid B,{\overline {A\cdot B}}}
ORAB,A+B,AB,AB{\displaystyle A\lor B,A+B,A\mid B,A\parallel B}
NORA¯B,AB,A+B¯{\displaystyle A\mathrel {\overline {\lor }} B,A\downarrow B,{\overline {A+B}}}
XNORAB,A¯B¯{\displaystyle A\odot B,{\overline {A\mathrel {\overline {\lor }} B}}}
equivalentAB,AB,AB{\displaystyle A\equiv B,A\Leftrightarrow B,A\leftrightharpoons B}
XORA_B,AB{\displaystyle A\mathrel {\underline {\lor }} B,A\oplus B}
└ nonequivalentAB,AB,AB{\displaystyle A\not \equiv B,A\not \Leftrightarrow B,A\nleftrightarrow B}
impliesAB,AB,AB{\displaystyle A\Rightarrow B,A\supset B,A\rightarrow B}
nonimplication (NIMPLY)AB,AB,AB{\displaystyle A\not \Rightarrow B,A\not \supset B,A\nrightarrow B}
converseAB,AB,AB{\displaystyle A\Leftarrow B,A\subset B,A\leftarrow B}
converse nonimplicationAB,AB,AB{\displaystyle A\not \Leftarrow B,A\not \subset B,A\nleftarrow B}
Related concepts
Applications
Category

Thematerial conditional (also known asmaterial implication) is abinary operation commonly used inlogic. When the conditional symbol{\displaystyle \to } isinterpreted as material implication, a formulaPQ{\displaystyle P\to Q} is true unlessP{\displaystyle P} is true andQ{\displaystyle Q} is false.

Material implication is used in all the basic systems ofclassical logic as well as somenonclassical logics. It is assumed as a model of correct conditional reasoning within mathematics and serves as the basis for commands in manyprogramming languages. However, many logics replace material implication with other operators such as thestrict conditional and thevariably strict conditional. Due to theparadoxes of material implication and related problems, material implication is not generally considered a viable analysis ofconditional sentences innatural language.

Notation

[edit]

In logic and related fields, the material conditional is customarily notated with an infix operator{\displaystyle \to } (U+2192 RIGHTWARDS ARROW).[1] The material conditional is also notated using the infixes{\displaystyle \supset } and{\displaystyle \Rightarrow } (U+2283 SUPERSET OF andU+21D2 RIGHTWARDS DOUBLE ARROW respectively).[2] In the prefixedPolish notation, conditionals are notated asCpq{\displaystyle Cpq}. In a conditional formulapq{\displaystyle p\to q}, the subformulap{\displaystyle p} is referred to as theantecedent andq{\displaystyle q} is termed theconsequent of the conditional. Conditional statements may be nested such that the antecedent or the consequent may themselves be conditional statements, as in the formula(pq)(rs){\displaystyle (p\to q)\to (r\to s)}.

History

[edit]

InArithmetices Principia: Nova Methodo Exposita (1889),Peano expressed the proposition "IfA{\displaystyle A}, thenB{\displaystyle B}" asA{\displaystyle A} ƆB{\displaystyle B} with the symbol Ɔ, which is the opposite of C.[3] He also expressed the propositionAB{\displaystyle A\supset B} asA{\displaystyle A} ƆB{\displaystyle B}.[4][5][citation needed]Hilbert expressed the proposition "IfA, thenB" asAB{\displaystyle A\to B} in 1918.[1]Russell followed Peano in hisPrincipia Mathematica (1910–1913), in which he expressed the proposition "IfA, thenB" asAB{\displaystyle A\supset B}. Following Russell,Gentzen expressed the proposition "IfA, thenB" asAB{\displaystyle A\supset B}.Heyting expressed the proposition "IfA, thenB" asAB{\displaystyle A\supset B} at first but later came to express it asAB{\displaystyle A\to B} with a right-pointing arrow.Bourbaki expressed the proposition "IfA, thenB" asAB{\displaystyle A\Rightarrow B} in 1954.[6][7]

Semantics

[edit]

Truth table

[edit]

From aclassicalsemantic perspective, material implication is thebinarytruth functional operator which returns "true" unless its first argument is true and its second argument is false. This semantics can be shown graphically in the followingtruth table:

A{\displaystyle A}B{\displaystyle B}AB{\displaystyle A\to B}
FFT
FTT
TFF
TTT

One can also consider the equivalenceAB¬(A¬B)¬AB{\displaystyle A\to B\equiv \neg (A\land \neg B)\equiv \neg A\lor B}.

The conditionals(AB){\displaystyle (A\to B)} where the antecedentA{\displaystyle A} is false, are called "vacuous truths".Examples are ...

Analytic tableaux

[edit]
Further information:Method of analytic tableaux

Formulas over the set of connectives{,}{\displaystyle \{\to ,\bot \}}[8] are calledf-implicational.[9] Inclassical logic the other connectives, such as¬{\displaystyle \neg } (negation),{\displaystyle \land } (conjunction),{\displaystyle \lor } (disjunction) and{\displaystyle \leftrightarrow } (equivalence), can be defined in terms of{\displaystyle \to } and{\displaystyle \bot } (falsity):[10]¬A=defAAB=def(A(B))AB=def(A)BAB=def{(AB)[(BA)]}{\displaystyle {\begin{aligned}\neg A&\quad {\overset {\text{def}}{=}}\quad A\to \bot \\A\land B&\quad {\overset {\text{def}}{=}}\quad (A\to (B\to \bot ))\to \bot \\A\lor B&\quad {\overset {\text{def}}{=}}\quad (A\to \bot )\to B\\A\leftrightarrow B&\quad {\overset {\text{def}}{=}}\quad \{(A\to B)\to [(B\to A)\to \bot ]\}\to \bot \\\end{aligned}}}

The validity of f-implicational formulas can be semantically established by themethod of analytic tableaux. The logical rules are

T(AB)F(A)T(B){\displaystyle {\frac {{\boldsymbol {\mathsf {T}}}(A\to B)}{{\boldsymbol {\mathsf {F}}}(A)\quad \mid \quad {\boldsymbol {\mathsf {T}}}(B)}}}F(AB)T(A)F(B){\displaystyle {\frac {{\boldsymbol {\mathsf {F}}}(A\to B)}{\begin{array}{c}{\boldsymbol {\mathsf {T}}}(A)\\{\boldsymbol {\mathsf {F}}}(B)\end{array}}}}
T(){\displaystyle {\boldsymbol {\mathsf {T}}}(\bot )} : Close the branch (contradiction)
F(){\displaystyle {\boldsymbol {\mathsf {F}}}(\bot )} : Do nothing (since it just asserts no contradiction)
         F[p → ((p → ⊥) → ⊥)]          |         T[p]         F[(p → ⊥) → ⊥]          |         T[p → ⊥]         F[⊥] ┌────────┴────────┐F[p]              T[⊥] |                 |CONTRADICTION     CONTRADICTION(T[p], F[p])      (⊥ is true)
Example: proof of¬¬pp{\displaystyle \neg \neg p\to p\quad }, by method of analytic tableaux
         F[((p → ⊥) → ⊥) → p]          |         T[(p → ⊥) → ⊥]         F[p] ┌────────┴────────┐F[p → ⊥]          T[⊥] |                 |T[p]            CONTRADICTION (⊥ is true)F[⊥] |CONTRADICTION (T[p], F[p])

Hilbert-style proofs can be foundhere orhere.

Example: proof of(pq)((qr)(pr)){\displaystyle (p\to q)\to ((q\to r)\to (p\to r))}, by method of analytic tableaux
 1. F[(p → q) → ((q → r) → (p → r))]              |                       // from 1          2. T[p → q]          3. F[(q → r) → (p → r)]              |                       // from 3          4. T[q → r]          5. F[p → r]              |                       // from 5          6. T[p]          7. F[r]     ┌────────┴────────┐              // from 28a. F[p]          8b. T[q]     X        ┌────────┴────────┐     // from 4         9a. F[q]          9b. T[r]              X                 X

AHilbert-style proof can be foundhere.

Syntactical properties

[edit]
Further information:Natural deduction

The semantic definition by truth tables does not permit the examination of structurally identical propositional forms in variouslogical systems, where different properties may be demonstrated. The language considered here is restricted tof-implicational formulas.

Consider the following (candidate)natural deduction rules.

Implication Introduction ({\displaystyle \to }I)

If assumingA{\displaystyle A} one can deriveB{\displaystyle B}, then one can concludeAB{\displaystyle A\to B}.

[A]BAB{\displaystyle {\frac {\begin{array}{c}[A]\\\vdots \\B\end{array}}{A\to B}}} ({\displaystyle \to }I)

[A]{\displaystyle [A]} is an assumption that is discharged when applying the rule.

Implication Elimination ({\displaystyle \to }E)

This rule corresponds tomodus ponens.

ABAB{\displaystyle {\frac {A\to B\quad A}{B}}} ({\displaystyle \to }E)


AABB{\displaystyle {\frac {A\quad A\to B}{B}}} ({\displaystyle \to }E)

Double Negation Elimination (¬¬{\displaystyle \neg \neg }E)


(A)A{\displaystyle {\frac {\begin{array}{c}(A\to \bot )\to \bot \\\end{array}}{A}}} (¬¬{\displaystyle \neg \neg }E)

Falsum Elimination ({\displaystyle \bot }E)

From falsum ({\displaystyle \bot }) one can derive any formula.
(ex falso quodlibet)

A{\displaystyle {\frac {\bot }{A}}} ({\displaystyle \bot }E)

Proof ofP¬¬P{\displaystyle P\to \neg \neg P\quad }, within minimal logic
1. [ P ] // Assume
2. [ P → ⊥ ] // Assume
3.  //{\displaystyle \to }E (1, 2)
4. (P → ⊥) → ⊥) //{\displaystyle \to }I (2, 3), discharging 2
5. P → ((P → ⊥) → ⊥) //{\displaystyle \to }I (1, 4), discharging 1
The statementP¬¬P{\displaystyle P\to \neg \neg P} is valid (already in minimal logic), unlike the reverse implication which would entail thelaw of excluded middle.

A selection of theorems (classical logic)

[edit]

Inclassical logic material implication validates the following:

Contraposition:(¬Q¬P)(PQ){\displaystyle (\neg Q\to \neg P)\to (P\to Q)}
1. [ (Q → ⊥) → (P → ⊥) ] // Assume (to discharge at 9)
2. [ P ] // Assume (to discharge at 8)
3. [ Q → ⊥ ] // Assume (to discharge at 6))
4. P → ⊥ //{\displaystyle \to }E (1, 3)
5.  //{\displaystyle \to }E (2, 4)
6. (Q → ⊥) → ⊥ //{\displaystyle \to }I (3, 5) (discharging 3)
7. Q //¬¬{\displaystyle \neg \neg }E (6)
8. P → Q //{\displaystyle \to }I (2, 7) (discharging 2)
9. ((Q → ⊥) → (P → ⊥)) → (P → Q) //{\displaystyle \to }I (1, 8) (discharging 1)
1. [ (P → Q) → P ] // Assume (to discharge at 11)
2. [ P → ⊥ ] // Assume (to discharge at 9)
3. [ P ] // Assume (to discharge at 6)
4.  //{\displaystyle \to }E (2, 3)
5. Q //{\displaystyle \bot }E (4)
6. P → Q //{\displaystyle \to }I (3, 5) (discharging 3)
7. P //{\displaystyle \to }E (1, 6)
8.  //{\displaystyle \to }E (2, 7)
9. (P → ⊥) → ⊥ //{\displaystyle \to }I (2, 8) (discharging 2)
10. P //¬¬{\displaystyle \neg \neg }E (9)
11. ((P → Q) → P) → P //{\displaystyle \to }I (1, 10) (discharging 1)
1. [P]{\displaystyle [P\to \bot ]} // Assume
2. [P]{\displaystyle [P]} // Assume
3. {\displaystyle \bot } //{\displaystyle \to }E (1, 2)
4. Q{\displaystyle Q} //{\displaystyle \bot }E (3)
5. PQ{\displaystyle P\to Q} //{\displaystyle \to }I (2, 4) (discharging 2)
6. (P)(PQ){\displaystyle (P\to \bot )\to (P\to Q)} //{\displaystyle \to }I (1, 5) (discharging 1)

Similarly, on classical interpretations of the other connectives, material implication validates the followingentailments:

Tautologies involving material implication include:

Discrepancies with natural language

[edit]

Material implication does not closely match the usage ofconditional sentences innatural language. For example, even though material conditionals with false antecedents arevacuously true, the natural language statement "If 8 is odd, then 3 is prime" is typically judged false. Similarly, any material conditional with a true consequent is itself true, but speakers typically reject sentences such as "If I have a penny in my pocket, then Paris is in France". These classic problems have been called theparadoxes of material implication.[16] In addition to the paradoxes, a variety of other arguments have been given against a material implication analysis. For instance,counterfactual conditionals would all be vacuously true on such an account, when in fact some are false.[17]

In the mid-20th century, a number of researchers includingH. P. Grice andFrank Jackson proposed thatpragmatic principles could explain the discrepancies between natural language conditionals and the material conditional. On their accounts, conditionalsdenote material implication but end up conveying additional information when they interact with conversational norms such asGrice's maxims.[16][18] Recent work informal semantics andphilosophy of language has generally eschewed material implication as an analysis for natural-language conditionals.[18] In particular, such work has often rejected the assumption that natural-language conditionals aretruth functional in the sense that the truth value of "IfP, thenQ" is determined solely by the truth values ofP andQ.[16] Thus semantic analyses of conditionals typically propose alternative interpretations built on foundations such asmodal logic,relevance logic,probability theory, andcausal models.[18][16][19]

Similar discrepancies have been observed by psychologists studying conditional reasoning, for instance, by the notoriousWason selection task study, where less than 10% of participants reasoned according to the material conditional. Some researchers have interpreted this result as a failure of the participants to conform to normative laws of reasoning, while others interpret the participants as reasoning normatively according to nonclassical laws.[20][21][22]

See also

[edit]

Conditionals

[edit]

Notes

[edit]
  1. ^abHilbert 1918.
  2. ^Mendelson 2015.
  3. ^Van Heijenoort 1967.
  4. ^Note that the horseshoe symbol Ɔ has been flipped to become a subset symbol ⊂.
  5. ^Nahas 2022, p. VI.
  6. ^Bourbaki 1954, p. 14.
  7. ^Miller, Jeff (2020)."Earliest Uses of Symbols for Set Theory and Logic".Maths History (University of St Andrews). University of St Andrews. Retrieved10 June 2025.
  8. ^Thewell-formed formulas are:
    1. Eachpropositional variable is a formula.
    2. "{\displaystyle \bot }" is a formula.
    3. IfA{\displaystyle A} andB{\displaystyle B} are formulas, so is(AB){\displaystyle (A\to B)}.
    4. Nothing else is a formula.
  9. ^Franco et al. 1999.
  10. ^abcf-implicational formulas cannot express all valid formulas inminimal (MPC) orintuitionistic (IPC) propositional logic — in particular,{\displaystyle \lor } (disjunction) cannot be defined within it. In contrast,{,,}{\displaystyle \{\to ,\lor ,\bot \}} is a complete basis for MPC / IPC: from these, all other connectives (e.g.,,¬,,{\displaystyle \land ,\neg ,\leftrightarrow ,\bot }) can be defined.
  11. ^Johansson 1937.
  12. ^abPrawitz 1965, p. 21.
  13. ^abAyala-Rincón & de Moura 2017, pp. 17–24.
  14. ^Instead of¬¬{\displaystyle \neg \neg }E one can addreductio ad absurdum as a rule to obtain (full) classical logic:[12][13]
    [A]A{\displaystyle {\frac {\begin{array}{c}[A\to \bot ]\\\vdots \\\bot \end{array}}{A}}} (RAA)
  15. ^Tennant 1990, p. 48.
  16. ^abcdEdgington 2008.
  17. ^For example, "IfJanis Joplin were alive today, she would drive aMercedes-Benz", seeStarr (2019)
  18. ^abcGillies 2017.
  19. ^Von Fintel 2011.
  20. ^Oaksford & Chater 1994.
  21. ^Stenning & van Lambalgen 2004.
  22. ^Von Sydow 2006.

Bibliography

[edit]
  • Bourbaki, N. (1954).Théorie des ensembles. Paris: Hermann & Cie, Éditeurs. p. 14.
  • Edgington, Dorothy (2008)."Conditionals". In Edward N. Zalta (ed.).The Stanford Encyclopedia of Philosophy (Winter 2008 ed.).
  • Van Heijenoort, Jean, ed. (1967).From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Harvard University Press. pp. 84–87.ISBN 0-674-32449-8.
  • Hilbert, D. (1918).Prinzipien der Mathematik (Lecture Notes edited by Bernays, P.).
  • Prawitz, Dag (1965).Natural Deduction: A Proof-Theoretic Study. Acta Universitatis Stockholmiensis; Stockholm Studies in Philosophy, 3. Stockholm, Göteborg, Uppsala: Almqvist & Wiksell.OCLC 912927896.
  • Starr, Willow (2019)."Counterfactuals". In Zalta, Edward N. (ed.).The Stanford Encyclopedia of Philosophy.

Further reading

[edit]

External links

[edit]
General
Theorems
(list),
paradoxes
Logics
Traditional
Propositional
Predicate
Set theory
Types
ofsets
Maps,
cardinality
Theories
Formal
systems

(list),
language,
syntax
Example
axiomatic
systems

(list)
Proof theory
Model theory
Computability
theory
Related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Material_conditional&oldid=1338290938"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp