

Mass wasting, also known asmass movement,[1] is a general term for the movement ofrock orsoil down slopes under the force ofgravity. It differs from other processes oferosion in that the debris transported by mass wasting is notentrained in a moving medium, such as water, wind, or ice. Types of mass wasting includecreep,solifluction,rockfalls,debris flows, andlandslides, each with its own characteristic features, and taking place over timescales from seconds to hundreds of years. Mass wasting occurs on both terrestrial and submarine slopes, and has been observed onEarth,Mars,Venus, Jupiter's moonIo, and on many other bodies in theSolar System.
Subsidence is sometimes regarded as a form of mass wasting. A distinction is then made between mass wasting by subsidence, which involves little horizontal movement, and mass wasting byslope movement.
Rapid mass wasting events, such as landslides, can be deadly and destructive. More gradual mass wasting, such as soil creep, poses challenges tocivil engineering, as creep can deform roadways and structures and break pipelines. Mitigation methods includeslope stabilization, construction of walls, catchment dams, or other structures to contain rockfall or debris flows,afforestation, or improved drainage of source areas.
Mass wasting is a general term for any process oferosion that is driven bygravity and in which the transported soil and rock is notentrained in a moving medium, such as water, wind, or ice.[2] The presence of water usually aids mass wasting, but the water is not abundant enough to be regarded as a transporting medium. Thus, the distinction between mass wasting and stream erosion lies between amudflow (mass wasting) and a very muddystream (stream erosion), without a sharp dividing line.[3] Many forms of mass wasting are recognized, each with its own characteristic features, and taking place over timescales from seconds to hundreds of years.[2]
Based on how the soil, regolith or rock moves downslope as a whole, mass movements can be broadly classified as eithercreeps orlandslides.[4]Subsidence is sometimes also regarded as a form of mass wasting.[5] A distinction is then made between mass wasting by subsidence, which involves little horizontal movement,[6] and mass wasting by slope movement.[7]

Soil creep is a slow and long term mass movement. The combination of small movements of soil or rock in different directions over time is directed by gravity gradually downslope. The steeper the slope, the faster the creep. The creep makes trees and shrubs curve to maintain their perpendicularity, and they can trigger landslides if they lose their root footing. The surface soil can migrate under the influence of cycles of freezing and thawing, or hot and cold temperatures, inching its way towards the bottom of the slope formingterracettes. Landslides are often preceded by soil creep accompanied withsoil sloughing—loose soil that falls and accumulates at the base of the steepest creep sections.[8]
Solifluction is a form of creep characteristics of arctic or alpine climates. It takes place in soil saturated with moisture that thaws during the summer months to creep downhill. It takes place on moderate slopes, relatively free of vegetation, that are underlain bypermafrost and receive a constant supply of new debris byweathering. Solifluction affects the entire slope rather than being confined to channels and can produce terrace-like landforms orstone rivers.[9]
A landslide, also called a landslip,[10] is a relatively rapid movement of a large mass of earth and rocks down a hill or a mountainside. Landslides can be further classified by the importance of water in the mass wasting process. In a narrow sense, landslides are rapid movement of large amounts of relatively dry debris down moderate to steep slopes. With increasing water content, the mass wasting takes the form ofdebris avalanches, thenearthflows, thenmudflows. Further increase in water content produces a sheetflood, which is a form ofsheet erosion rather than mass wasting.[11]
OnEarth, mass wasting occurs on both terrestrial and submarine slopes.[12] Submarine mass wasting is particularly common along glaciated coastlines where glaciers are retreating and great quantities of sediments are being released. Submarine slides can transport huge volumes of sediments for hundreds of kilometers in a few hours.[13]
Mass wasting is a common phenomenon throughout the Solar System, occurring where volatile materials are lost from aregolith. Such mass wasting has been observed onMars,Io,Triton, and possiblyEuropa andGanymede.[14] Mass wasting also occurs in the equatorial regions of Mars, where stopes of softsulfate-rich sediments are steepened by wind erosion.[15] Mass wasting onVenus is associated with the rugged terrain oftesserae.[16] Io shows extensive mass wasting of its volcanic mountains.[17]
Mass wasting affectsgeomorphology, most often in subtle, small-scale ways, but occasionally more spectacularly.[18]
Soil creep is rarely apparent but can produce such subtle effects as curved forest growth and tilted fences and telephone poles. It occasionally produces low scarps and shallow depressions.[19] Solifluction produces lobed or sheetlike deposits, with fairly definite edges, in whichclasts (rock fragments) are oriented perpendicular to the contours of the deposit.[20]
Rockfall can producetalus slopes at the feet of cliffs. A more dramatic manifestation of rockfall isrock glaciers, which form from rockfall from cliffs oversteepened by glaciers.[19]
Landslides can produce scarps and step-like small terraces.[21] Landslide deposits are poorlysorted. Those rich in clay may show stretched clay lumps (a phenomenon calledboudinage) and zones of concentrated shear.[20]
Debris flow deposits take the form of long, narrow tracks of very poorly sorted material. These may have naturallevees at the sides of the tracks, and sometimes consist of lenses of rock fragments alternating with lenses of fine-grained earthy material.[20] Debris flows often form much of the upper slopes ofalluvial fans.[22]
Triggers for mass wasting can be divided into passive and activating (initiating) causes. Passive causes include:[23]
Activating causes include:[23]
Mass wasting causes problems forcivil engineering, particularlyhighway construction. It can displace roads, buildings, and other construction and can break pipelines. Historically, mitigation of landslide hazards on theGaillard Cut of thePanama Canal accounted for 55,860,400 cubic meters (73,062,600 cu yd) of the 128,648,530 cubic meters (168,265,924 cu yd) of material removed while excavating the cut.[25]
Rockslides orlandslides can have disastrous consequences, both immediate and delayed. TheOso disaster of March 2014 was a landslide that caused 43 fatalities inOso, Washington, US.[26] Delayed consequences of landslides can arise from the formation oflandslide dams, as atThistle, Utah, in April 1983.[27][28]
Volcano flanks can become over-steep resulting in instability and mass wasting. This is now a recognised part of the growth of all active volcanoes.[29] It is seen onsubmarine volcanoes as well as surface volcanoes:[30]Kamaʻehuakanaloa (formerly Loihi) in theHawaiian–Emperor seamount chain[31] andKick 'em Jenny in theLesser Antilles Volcanic Arc[32] are two submarine volcanoes that are known to undergo mass wasting. The failure of the northern flank ofMount St. Helens in 1980 showed how rapidly volcanic flanks can deform and fail.[33]
Methods of mitigation of mass wasting hazards include:
{{cite book}}: CS1 maint: location missing publisher (link)