Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

MAGIC (telescope)

Coordinates:28°45′43″N17°53′24″W / 28.761944444444°N 17.89°W /28.761944444444; -17.89
From Wikipedia, the free encyclopedia
Very-high-energy photon telescope in the Canary Islands, Spain
This article is about the telescope. For other uses, seeMagic (disambiguation).
Major Atmospheric Gamma Imaging Cherenkov Telescopes
The second MAGIC telescope
Alternative namesMAGICEdit this at Wikidata
Location(s)La Palma,Atlantic Ocean, international waters
Coordinates28°45′43″N17°53′24″W / 28.761944444444°N 17.89°W /28.761944444444; -17.89Edit this at Wikidata
Altitude2,200 m (7,200 ft)Edit this at Wikidata
WavelengthGamma rays (indirectly)
Built2004
First light2004, 2009 Edit this on Wikidata
Diameter17 m (55 ft 9 in)Edit this at Wikidata
Collecting area236 m2 (2,540 sq ft)Edit this at Wikidata
Focal lengthf/D 1.03
Mountingmetal structure
Websitemagic.mpp.mpg.deEdit this at Wikidata
MAGIC (telescope) is located in Canary Islands
MAGIC (telescope)
Location of MAGIC
 Related media on Commons

MAGIC (Major Atmospheric Gamma Imaging Cherenkov Telescopes, later renamed toMAGICFlorian Goebel Telescopes) is a system of twoImaging Atmospheric Cherenkov telescopes situated at theRoque de los Muchachos Observatory onLa Palma, one of theCanary Islands, at about 2,200 m (7,200 ft) above sea level. MAGIC detects particle showers released bygamma rays, using theCherenkov radiation, i.e., faintlight radiated by the charged particles in the showers. With a diameter of 56 ft (17 m) for the reflecting surface, it was the largest in the world before the construction ofH.E.S.S. II.

The first telescope was built in 2004 and operated for five years in standalone mode. A second MAGIC telescope (MAGIC-II), at a distance of 279 ft (85 m) from the first one, started taking data in July 2009. Together they integrate the MAGIC telescope stereoscopic system.[1]

MAGIC is sensitive to cosmicgamma rays withphoton energies between50 GeV (later lowered to25 GeV) and30 TeV due to its large mirror; other ground-based gamma-ray telescopes typically observe gamma energies above200–300 GeV.Gamma-ray astronomy also utilizes satellite-based detectors, which can detect gamma-rays in the energy range from keV up to several GeV.[citation needed]

Aims

[edit]

The goals of the telescope are to detect and study primarily photons coming from:

Observations

[edit]

MAGIC has found pulsed gamma-rays at energies higher than25 GeV coming from theCrab Pulsar. The presence of such high energies indicates that the gamma-ray source is far out in the pulsar'smagnetosphere, in contradiction with many models.[4]

In 2006 MAGIC detected very high energy cosmic rays from thequasar3C 279, which is 5 billion light years from Earth. This doubles the previous record distance from which very high energy cosmic rays have been detected. The signal indicated that the universe is more transparent than previously thought based on data from optical and infrared telescopes.[5]

MAGIC did not observe cosmic rays resulting from dark matter decays in thedwarf galaxyDraco.[6] This strengthens the known constraints on dark matter models.

A much more controversial observation is an energy dependence in the speed of light of cosmic rays coming from a short burst of theblazarMarkarian 501 on July 9, 2005. Photons with energies between1.2 and 10 TeV arrived 4 minutes after those in a band between0.25 and 0.6 TeV. The average delay was30±12 ms/GeV of energy of the photon. If the relation between the space velocity of a photon andits energy is linear, then this translates into the fractional difference in the speed of light being equal to minus the photon's energy divided by2×1017 GeV. The researchers have suggested that the delay could be explained by the presence ofquantum foam, the irregular structure of which might slow down photons by minuscule amounts only detectable at cosmic distances such as in the case of the blazar.[7][8]

Technical specifications

[edit]
MAGIC on a sunny day
Individual segments of a MAGIC telescope

Each telescope has the following specifications:

  • A collecting area 2,540 square feet (236 m2) consisting of 956 20×20 in (50×50 cm)aluminium individual reflectors
  • A lightweightcarbon fibre frame
  • A detector consisting of 396 separate hexagonal photomultiplier detectors in the center (diameter: 1.00 in (2.54 cm)) surrounded by 180 larger photomultiplier detectors (diameter: 1.50 in (3.81 cm)).
  • Data are transferred in analogue form byfibre optic cables
  • Signal digitization is done via an ADC (analog-to-digital converter) with a2 GHz sampling rate
  • Total weight of 88,000 lb (40,000 kg)
  • Reaction time to move to any position of the sky less than 22 seconds[9]

Each mirror of the reflector is a sandwich of an aluminumhoneycomb, 0.20 in (5 mm) plate of AlMgSi alloy, covered with a thin layer ofquartz to protect the mirror surface from aging. The mirrors have spherical shape with a curvature corresponding to the position of the plate in theparaboloid reflector. Thereflectivity of the mirrors is around 90%. The focal spot has a size of roughly half a pixel size (<0.05°).

Directing the telescope to different elevation angles causes the reflector to deviate from its ideal shape due to the gravity. To counteract this deformation, the telescope is equipped with anActive Mirror Control system. Four mirrors are mounted on each panel, which is equipped withactuators that can adjust its orientation in the frame.

The signal from the detector is transmitted over 531 ft (162 m) of optical fibers. The signal is digitized and stored in a32 kB ring buffer. The readout of the ring buffer results in a dead time of20 μs, which corresponds to about 2% dead time at the design trigger rate of1 kHz. The readout is controlled by anFPGA (Xilinx) chip on a PCI (MicroEnable) card. The data is saved to aRAID0 disk system[why?] at a rate up to20 MB/s, which results in up to800 GB raw data per night.[9]

Collaborating institutions

[edit]
icon
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(September 2025) (Learn how and when to remove this message)
Duringfoggy nights, thelaser reference beams of MAGIC'sactive control could be seen. However, they are no longer needed for operation.

Physicists from over twenty institutions in Germany, Spain, Italy, Switzerland, Croatia, Finland, Poland, India, Bulgaria and Armenia collaborate in using MAGIC; the largest groups are at

See also

[edit]

References

[edit]
  1. ^Cortina, Juan; Goebel, Florian; Schweizer, Thomas (July 2009).Technical status of the MAGIC telescopes. Proc. 31st International Cosmic Rays Conference. Lodz, Poland: MAGIC collaboration.arXiv:0907.1211.
  2. ^Albert, J. (2006). "Variable Very-High-Energy Gamma-Ray Emission from the Microquasar LS I +61 303".Science.312 (5781):1771–3.arXiv:astro-ph/0605549.Bibcode:2006Sci...312.1771A.doi:10.1126/science.1128177.PMID 16709745.S2CID 20981239.
  3. ^Albert, J.; Aliu, E.; Anderhub, H.; Antoranz, P.; Armada, A.; Baixeras, C.; Barrio, J. A.; Bartko, H.; Bastieri, D.; Becker, J. K.; Bednarek, W.; Berger, K.; Bigongiari, C.; Biland, A.; Bock, R. K.; Bordas, P.; Bosch-Ramon, V.; Bretz, T.; Britvitch, I.; Camara, M.; Carmona, E.; Chilingarian, A.; Coarasa, J. A.; Commichau, S.; Contreras, J. L.; Cortina, J.; Costado, M. T.; Curtef, V.; Danielyan, V.; et al. (2007)."Very High Energy Gamma-Ray Radiation from the Stellar Mass Black Hole Binary Cygnus X-1"(PDF).The Astrophysical Journal.665 (1):L51–L54.arXiv:0706.1505.Bibcode:2007ApJ...665L..51A.doi:10.1086/521145.hdl:2445/150806.S2CID 15302221.
  4. ^Aliu, E.; Anderhub, H.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Baixeras, C.; Barrio, J. A.; Bartko, H.; Bastieri, D.; Becker, J. K.; Bednarek, W.; Berger, K.; Bernardini, E.; Bigongiari, C.; Biland, A.; Bock, R. K.; Bonnoli, G.; Bordas, P.; Bosch-Ramon, V.; Bretz, T.; Britvitch, I.; Camara, M.; Carmona, E.; Chilingarian, A.; Commichau, S.; Contreras, J. L.; Cortina, J.; Costado, M. T.; Covino, S.; et al. (2008). "Observation of Pulsed -Rays Above 25 GeV from the Crab Pulsar with MAGIC".Science.322 (5905):1221–1224.arXiv:0809.2998.Bibcode:2008Sci...322.1221A.doi:10.1126/science.1164718.PMID 18927358.S2CID 5387958.
  5. ^Albert, J.; Aliu, E.; Anderhub, H.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Baixeras, C.; Barrio, J. A.; Bartko, H.; Bastieri, D.; Becker, J. K.; Bednarek, W.; Berger, K.; Bernardini, E.; Bigongiari, C.; Biland, A.; Bock, R. K.; Bonnoli, G.; Bordas, P.; Bosch-Ramon, V.; Bretz, T.; Britvitch, I.; Camara, M.; Carmona, E.; Chilingarian, A.; Commichau, S.; Contreras, J. L.; Cortina, J.; Costado, M. T.; et al. (2008-06-27). "Very-High-Energy Gamma Rays from a Distant Quasar: How Transparent is the Universe?".Science.320 (5884):1752–4.arXiv:0807.2822.Bibcode:2008Sci...320.1752M.doi:10.1126/science.1157087.PMID 18583607.S2CID 16886668.
  6. ^Albert, J.; et al. (2008). "Upper Limit for γ-Ray Emission above 140 GeV from the Dwarf Spheroidal Galaxy Draco".The Astrophysical Journal.679 (1):428–431.arXiv:0711.2574.Bibcode:2008ApJ...679..428A.doi:10.1086/529135.S2CID 15324383.
  7. ^Albert, J.; Ellis, John; Mavromatos, N. E.; Nanopoulos, D. V.; Sakharov, A. S.; Sarkisyan, E. K. G. (2008). "Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope".Physics Letters B.668 (4):253–257.arXiv:0708.2889.Bibcode:2008PhLB..668..253M.doi:10.1016/j.physletb.2008.08.053.S2CID 5103618.
  8. ^Lee, Chris (2007-08-23)."Probing quantum gravity with gamma ray bursters".Ars Technica. Retrieved2022-08-10.
  9. ^abCortina, J.; for the MAGIC collaboration (2005). "Status and First Results of the MAGIC Telescope".Astrophysics and Space Science.297 (2005):245–255.arXiv:astro-ph/0407475.Bibcode:2005Ap&SS.297..245C.doi:10.1007/s10509-005-7627-5.S2CID 16311614.

External links

[edit]
Wikimedia Commons has media related toMAGIC.
Retrieved from "https://en.wikipedia.org/w/index.php?title=MAGIC_(telescope)&oldid=1311502568"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp