Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Lunar phase

From Wikipedia, the free encyclopedia
(Redirected fromLunar cycle)
Shape of the Moon's sunlit portion as viewed from Earth
The lunar phases andlibrations in 2025 as viewed from theNorthern Hemisphere at hourly intervals, with titles and supplemental graphics
The lunar phases andlibrations in 2025 as viewed from theSouthern Hemisphere at hourly intervals, with titles and supplemental graphics
Afull moon sets behindSan Gorgonio Mountain in California on a midsummer's morning.

Alunar phase orMoon phase is the apparent shape of theMoon's directly sunlit portion as viewed from theEarth. Because the Moon istidally locked with the Earth, the samehemisphere is always facing the Earth. In common usage, the four major phases are thenew moon, the first quarter, thefull moon and the last quarter; the four minor phases are waxing crescent, waxing gibbous, waning gibbous, and waning crescent. Alunar month is the time between successive recurrences of the same phase: due to theeccentricity of the Moon's orbit, this duration is not perfectly constant but averages about 29.5 days.

The appearance of the Moon (its phase) gradually changes over a lunar month as the relative orbital positions of the Moon around Earth, and Earth around the Sun, shift. The visible side of the Moon is sunlit to varying extents, depending on the position of the Moon in its orbit, with the sunlit portion varying from 0% (at new moon) to nearly 100% (at full moon).[1]

Phases of the Moon

[edit]
"Waxing gibbous" redirects here. For the album, seeWaxing Gibbous.
"Last quarter" redirects here. For the manga series, seeLast Quarter.
The phases of the Moon as viewed looking southward from theNorthern Hemisphere. Each phase would be rotated 180° if seen looking northward from theSouthern Hemisphere. The upper part of the diagram is not to scale, as the Moon, the Earth, and the Moon's orbit are all much smaller relative to the Earth's orbit than shown here.

There are fourprincipal (primary, or major) lunar phases: thenew moon, first quarter,full moon, and last quarter (also known as third or final quarter), when the Moon'secliptic longitude is at an angle to the Sun (as viewed from the center of the Earth) of 0°, 90°, 180°, and 270° respectively.[2][a] Each of these phases appears at slightly different times at different locations on Earth, and tabulated times are therefore alwaysgeocentric (calculated for the Earth's center).

Between the principal phases areintermediate phases, during which the apparent shape of the illuminated Moon is eithercrescent orgibbous. On average, the intermediate phases last one-quarter of asynodic month, or 7.38 days.[b]

The termwaxing is used for an intermediate phase when the Moon's apparent shape is thickening, from new to a full moon; andwaning when the shape is thinning. The duration from full moon to new moon (or new moon to full moon) varies from approximately13 days22+12 hours to about15 days14+12 hours.

Due to lunar motion relative to the meridian and theecliptic, in Earth'snorthern hemisphere:

  • A new moon appears highest at the summersolstice and lowest at the winter solstice.
  • A first-quarter moon appears highest at the springequinox and lowest at the autumn equinox.
  • A full moon appears highest at the winter solstice and lowest at the summer solstice.
  • A last-quarter moon appears highest at the autumn equinox and lowest at the spring equinox.

Non-Western cultures may use a different number of lunar phases; for example, traditionalHawaiian culture has a total of 30 phases (one per day).[3]

Lunar libration

[edit]
Animation showing progression of the Moon's phases.

As seen from Earth, the Moon's eccentric orbit makes it both slightly change its apparent size, and to be seen from slightly different angles. The effect is subtle to the naked eye, from night to night, yet somewhat obvious in time-lapse photography.

Lunar libration causes part of the back side of the Moon to be visible to a terrestrial observer some of the time. Because of this, around 59% of the Moon's surface has been imaged from the ground.

Principal and intermediate phases of the Moon

[edit]
Moon phaseIlluminated portionVisibilityAverage moonrise time[c]Culmination time (highest point)Average moonset time[c]IllustrationPhotograph (view from Northern Hemisphere)
Northern HemisphereSouthern HemisphereNorthern HemisphereSouthern Hemisphere
New Moon
Disc completely in shade (lit byearthshine only)
Invisible (too close to Sun) except during a solar eclipse06:0012:0018:00
WaxingcrescentRight side, (0%–50%) lit discLeft side, (0%–50%) lit discLate morning to post-dusk09:0015:0021:00
First quarterRight side, 50.1% lit discLeft side, 50.1% lit discAfternoon and early night12:0018:0000:00
Waxing gibbousRight side, (50%–100%) lit discLeft side, (50%–100%) lit discLate afternoon and most of night15:0021:0003:00
Full Moon
100% illuminated disc
Sunset to sunrise (all night)18:0000:0006:00
Waning gibbousLeft side, (100%–50%) lit discRight side, (100%–50%) lit discMost of night and early morning21:0003:0009:00
Last quarterLeft side, 50.1% lit discRight side, 50.1% lit discLate night and morning00:0006:0012:00
Waning crescentLeft side, (50%–0%) lit discRight side, (50%–0%) lit discPre-dawn to early afternoon03:0009:0015:00
This video provides an illustration of how the Moon passes through its phases – a product of its orbit, which allows different parts of its surface to be illuminated by the Sun over the course of a month. The camera is locked to the Moon as Earth rapidly rotates in the foreground.

Waxing and waning

[edit]
Diagram of the Moon's phases: The Earth is at the center of the diagram and the Moon is shown orbiting.

When the Sun and Moon arealigned on the same side of the Earth (conjunct), the Moon is "new", and the side of the Moon facing Earth is not illuminated by the Sun. As the Moonwaxes (the amount of illuminated surface as seen from Earth increases), the lunar phases progress through the new moon, crescent moon, first-quarter moon,gibbous moon, and full moon phases. The Moon thenwanes as it passes through the gibbous moon, third-quarter moon, and crescent moon phases, before returning back to new moon.

The termsold moon andnew moon are not interchangeable. The "old moon" is a waning sliver (which eventually becomes undetectable to the naked eye) until the moment it aligns with the Sun and begins to wax, at which point it becomes new again.[4]Half moon is often used to mean the first- and third-quarter moons, while the termquarter refers to the extent of the Moon's cycle around the Earth, not its shape.

When an illuminated hemisphere is viewed from a certain angle, the portion of the illuminated area that is visible will have a two-dimensional shape as defined by the intersection of anellipse and circle (in which the ellipse'smajor axis coincides with the circle's diameter). If the half-ellipse is convex with respect to the half-circle, then the shape will be gibbous (bulging outwards),[5] whereas if the half-ellipse is concave with respect to the half-circle, then the shape will be acrescent. When a crescent moon occurs, the phenomenon ofearthshine may be apparent, where the night side of the Moon dimly reflects indirect sunlight reflected from Earth.[6]

Orientation by latitude

[edit]
The observed orientation of the Moon at different phases from different latitudes on Earth (the different orientation displayed between the phases at each latitude show merely the extremes of orientation due tolibration)

In theNorthern Hemisphere, if the left side of the Moon is dark, then the bright part is thickening, and the Moon is described aswaxing (shifting toward full moon). If the right side of the Moon is dark, then the bright part is thinning, and the Moon is described as waning (past full and shifting toward new moon). Assuming that the viewer is in the Northern Hemisphere, the right side of the Moon is the part that is always waxing. (That is, if the right side is dark, the Moon is becoming darker; if the right side is lit, the Moon is getting brighter.)

In theSouthern Hemisphere, the Moon is observed from a perspective inverted, or rotated 180°, to that of the Northern and to all of the images in this article, so that the opposite sides appear to wax or wane.

Closer to theEquator, thelunar terminator will appear horizontal during the morning and evening. Since the above descriptions of the lunar phases only apply atmiddle orhigh latitudes, observers moving towards thetropics from northern or southern latitudes will see the Moon rotated anti-clockwise or clockwise with respect to the images in this article.

The lunar crescent can open upward or downward, with the "horns" of the crescent pointing up or down, respectively. When the Sun appears above the Moon in the sky, the crescent opens downward; when the Moon is above the Sun,the crescent opens upward. The crescent Moon is most clearly and brightly visible when the Sun is below the horizon, which implies that the Moon must be above the Sun, and the crescent must open upward. This is therefore the orientation in which the crescent Moon is most often seen from the tropics. The waxing and waning crescents look very similar. The waxing crescent appears in the western sky in the evening, and the waning crescent in the eastern sky in the morning.

Earthshine

[edit]
Anoverexposed photograph of a crescent Moon reveals earthshine and stars.
Main article:Earthlight (astronomy)

When the Moon (seen from Earth) is a thincrescent, Earth (as viewed from the Moon) is almost fully lit by the Sun. Often, the dark side of the Moon is dimly illuminated by indirect sunlight reflected from Earth, but is bright enough to be easily visible from Earth. This phenomenon is calledearthshine, sometimes picturesquely described as "the old moon in the new moon's arms" or "the new moon in the old moon's arms".

Timekeeping

[edit]
Main articles:Lunar calendar,Lunisolar calendar,Metonic cycle,Intercalation, andHistory of calendars

Archaeologists have reconstructed methods oftimekeeping that go back to prehistoric times, at least as old as theNeolithic. The natural units for timekeeping used by most historical societies are theday, thesolar year and thelunation. The first crescent of the new moon provides a clear and regular marker in time and pure lunar calendars (such as the IslamicHijri calendar) rely completely on this metric. The fact, however, that a year of twelve lunar months is ten or eleven days shorter than the solar year means that a lunar calendar drifts out of step with the seasons. Lunisolar calendars resolve this issue with a year of thirteen lunar months every few years, or by restarting the count at the first new (or full) moon after thewinter solstice. TheSumerian calendar is the first recorded to have used the former method;Chinese calendar uses the latter, despite delaying its startuntil the second or even third new moon after the solstice. TheHindu calendar, also a lunisolar calendar, further divides the month intotwo fourteen day periods that mark the waxing moon and the waning moon.

The ancientRoman calendar was broadly a lunisolar one; on the decree ofJulius Caesar in the first century BCE, Rome changed to asolar calendar of twelve months, each of a fixed number of days except in aleap year. This, theJulian calendar (slightly revised in 1582 to correct theleap year rule), is the basis for theGregorian calendar that is almost exclusively thecivil calendar in use worldwide today.

Calculating phase

[edit]
A crescent Moon overKingman, Arizona

Each of the four intermediate phases lasts approximately seven days (7.38 days on average), but varies ±11.25% due to lunarapogee and perigee.

The number of days counted from the time of thenew moon is the Moon's "age". Each complete cycle of phases is called a "lunation".[7]

The approximate age of the Moon, and hence the approximate phase, can be calculated for any date by calculating the number of days since a known new moon (such as 1 January 1900 or 11 August 1999) and reducing thismodulo 29.53059 days (the mean length of asynodic month).[8][d] The difference between two dates can be calculated by subtracting theJulian day number of one from that of the other, or there are simpler formulae giving (for instance) the number of days since 31 December 1899. However, this calculation assumes a perfectlycircular orbit and makes no allowance for the time of day at which the new moon occurred and therefore may be incorrect by several hours. (It also becomes less accurate the larger the difference between the required date and the reference date.) It is accurate enough to use in a novelty clock application showing lunar phase, but specialist usage taking account of lunar apogee and perigee requires a more elaborate calculation. Also, due tolunar libration it is not uncommon to see up to 101% of the full moon or even up to 5% of the lunar backside.

Effect of parallax

[edit]
Main article:Lunar parallax

TheEarth subtends an angle of about two degrees when seen from the Moon. This means that an observer on Earth who sees the Moon when it is close to the eastern horizon sees it from an angle that is about 2 degrees different from the line of sight of an observer who sees the Moon on thewestern horizon. The Moon moves about 12 degrees around its orbit per day, so, if these observers were stationary, they would see the phases of the Moon at times that differ by about one-sixth of a day, or 4 hours. But in reality, the observers are on the surface of the rotating Earth, so someone who sees the Moon on theeastern horizon at one moment sees it on the western horizon about 12 hours later. This adds an oscillation to the apparent progression of the lunar phases. They appear to occur more slowly when the Moon is high in the sky than when it is below the horizon. The Moon appears to move jerkily, and the phases do the same. The amplitude of this oscillation is never more than about four hours, which is a small fraction of amonth. It does not have any obvious effect on the appearance of the Moon. It does however affect accurate calculations of the times of lunar phases.

Misconceptions

[edit]

Orbital period

[edit]

It can be confusing that the Moon's orbital sidereal period is 27.3 days while the phases complete a cycle once every 29.5 days (synodic period). This is due to the Earth's orbit around the Sun. The Moon orbits the Earth 13.4 times a year, but only passes between the Earth and Sun 12.4 times.

Eclipses

[edit]
As the Earth revolves around the Sun, approximateaxial parallelism of the Moon's orbital plane (tilted five degrees to theEarth's orbital plane) results in the revolution of thelunar nodes relative to the Earth. This causes aneclipse season approximately every six months, in which asolar eclipse can occur at thenew moon phase and alunar eclipse can occur at thefull moon phase.
Thelunar phase depends on the Moon's position in orbit around the Earth and the Earth's position in orbit around the Sun. This animation (not to scale) looks down on Earth from the north pole of the ecliptic.

It might be expected that once every month, when the Moon passes between Earth and the Sun during a new moon, its shadow would fall on Earth causing asolar eclipse, but this does not happen every month. Nor is it true that during every full moon, theEarth's shadow falls on the Moon, causing alunar eclipse. Solar and lunar eclipses are not observedevery month because the plane of theMoon's orbit around the Earth is tilted by about 5° with respect to the plane ofEarth's orbit around the Sun (the plane of theecliptic). Thus, when new and full moons occur, the Moon usually lies to the north or south of a direct line through the Earth and Sun. Although aneclipse can only occur when the Moon is either new (solar) or full (lunar), it must also be positioned very near the intersection of Earth's orbital plane about the Sun and the Moon's orbital plane about the Earth (that is, at one ofits nodes). This happens about twice per year, and so there are between four and seven eclipses in a calendar year. Most of these eclipses are partial; total eclipses of the Moon or Sun are less frequent.

Mechanism

[edit]

The phases are not caused by the Earth's shadow falling on the moon, as some people believe.[10][11] They are caused by the moon's shadow on itself, just as the Earth's shadow makes it night on one side of the Earth. The angle of the Sun in relation to the Moon determines how much of the Moon is illuminated.

See also

[edit]
  • Blue moon – Name for three (unconnected) events
  • Earth phase – Phases of Earth as seen from the Moon
  • Lunar effect – Unproven proposal of influence of lunar cycle on terrestrial creatures
  • Lunar month – Time between successive new moons. (Also known as a "lunation".)
  • Lunar observation – Methods and instruments used to observe the Moon
  • Planetary phase – Part of planet seen to reflect sunlight
  • Planetshine – Illumination by reflected sunlight from a planet
  • Tide – Rise and fall of the sea level under astronomical gravitational influences
  • Week – Time unit equal to seven days
  • Month – Unit of time about as long the orbital period of the Moon
  • Parmenides – 5th-century BC Greek philosopher, who tried to explain lunar phases

Footnotes

[edit]
  1. ^The quarter phases happen when the observer–Moon–Sun angle is 90°[citation needed], also known as quadrature[dubiousdiscuss]. This is not the same as aright angle[dubiousdiscuss], but the difference is very slight. /
  2. ^Their durationsvary slightly because the Moon's orbit is somewhat elliptical, so itsorbital speed is not constant.
  3. ^abAs with sunrise and sunset, there are seasonal variations in the time of moonrise and moonset.
  4. ^Lunar months vary in length about the mean by up to seven hours in any given year. In 2001, the synodic months varied from 29d 19h 14m in January to 29d 07h 11m in July.[9]

References

[edit]

Citations

[edit]
  1. ^"Is the 'full moon' merely a fallacy?".NBC News. 28 February 2004. Retrieved2023-05-30.
  2. ^Seidelmann 1992, p. 478.
  3. ^"Hawaiian Moon Names".Imiloa, Hilo Attractions. Archived fromthe original on 2014-01-02. Retrieved2013-07-08.
  4. ^"Free Astronomy Lesson 7 - The Phases of the Moon".Archived from the original on 2023-04-14. Retrieved2015-12-28.
  5. ^"Gibbous Definition & Meaning".Dictionary.com.Archived from the original on 2023-04-21.Origin of gibbous: 1350–1400; Middle English <Latin gibbōsus humped, equivalent to gibb(a) hump + -ōsus-ous
  6. ^Asmelash & Allan 2019.
  7. ^"Phases of the Moon and Percent of the Moon Illuminated".aa.usno.navy.mil. Archived fromthe original on 2018-02-06. Retrieved2018-02-12.
  8. ^Seidelmann 1992, p. 577.
  9. ^"Length of the Synodic Month: 2001 to 2100".astropixels.com. 8 November 2019.
  10. ^Musgrave, Ian; Weule, Genelle (January 29, 2018)."A beginner's guide to the Moon".Australian Broadcasting Corporation. RetrievedJune 29, 2024.
  11. ^Plait, Phil (December 28, 2012)."Today's Full Moon is the 13th and Last of 2012".Slate. RetrievedJune 29, 2024.

Sources

[edit]

External links

[edit]
Wikimedia Commons has media related toLunar phases.
Physical
properties
A full moon
Orbit
Surface and
features
Science
Exploration
Time-telling
andnavigation
Phases and
names
Daily phenomena
Related
Portals:
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Lunar_phase&oldid=1281343931"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp