Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Lorentz oscillator model

From Wikipedia, the free encyclopedia
Theoretical model describing the optical response of bound charges
Electrons are bound to the atomic nucleus analogously to springs of different strengths, AKA springs that are notisotropic, AKAanisotropic.

TheLorentz oscillator model (classical electron oscillator or CEO model) describes the optical response ofbound charges. The model is named after the Dutch physicistHendrik Antoon Lorentz. It is aclassical, phenomenological model for materials with characteristic resonance frequencies (or other characteristic energy scales) for optical absorption, e.g. ionic andmolecular vibrations, interband transitions (semiconductors),phonons, and collective excitations.[1][2]

Derivation of electron motion

[edit]

The model is derived by modeling an electron orbiting a massive, stationary nucleus as aspring-mass-damper system.[2][3][4] The electron is modeled to be connected to the nucleus via a hypothetical spring and its motion is damped by via a hypothetical damper. The damping force ensures that the oscillator's response is finite at its resonance frequency. For a time-harmonic driving force which originates from the electric field,Newton's second law can be applied to the electron to obtain the motion of the electron and expressions for thedipole moment,polarization,susceptibility, anddielectric function.[4]

Equation of motion for electron oscillator:Fnet=Fdamping+Fspring+Fdriving=md2rdt2mτdrdtkreE(t)=md2rdt2d2rdt2+1τdrdt+ω02r=emE(t){\displaystyle {\begin{aligned}\mathbf {F} _{\text{net}}=\mathbf {F} _{\text{damping}}+\mathbf {F} _{\text{spring}}+\mathbf {F} _{\text{driving}}&=m{\frac {\mathrm {d} ^{2}\mathbf {r} }{\mathrm {d} t^{2}}}\\[1ex]{\frac {-m}{\tau }}{\frac {\mathrm {d} \mathbf {r} }{\mathrm {d} t}}-k\mathbf {r} -{e}\mathbf {E} (t)&=m{\frac {\mathrm {d} ^{2}\mathbf {r} }{\mathrm {d} t^{2}}}\\[1ex]{\frac {\mathrm {d} ^{2}\mathbf {r} }{\mathrm {d} t^{2}}}+{\frac {1}{\tau }}{\frac {\mathrm {d} \mathbf {r} }{\mathrm {d} t}}+\omega _{0}^{2}\mathbf {r} \;&=\;{\frac {-e}{m}}\mathbf {E} (t)\end{aligned}}}

where

For time-harmonic fields:E(t)=E0eiωt{\displaystyle \mathbf {E} (t)=\mathbf {E} _{0}e^{-i\omega t}}r(t)=r0eiωt{\displaystyle \mathbf {r} (t)=\mathbf {r} _{0}e^{-i\omega t}}

The stationary solution of this equation of motion is:r(ω)=emω02ω2iω/τE(ω){\displaystyle \mathbf {r} (\omega )={\frac {\frac {-e}{m}}{\omega _{0}^{2}-\omega ^{2}-i\omega /\tau }}\mathbf {E} (\omega )}

The fact that the above solution iscomplex means there is a time delay (phase shift) between the driving electric field and the response of the electron's motion.[4]

Dipole moment

[edit]

The displacement,r{\displaystyle \mathbf {r} }, induces a dipole moment,p{\displaystyle \mathbf {p} }, given byp(ω)=er(ω)=α^(ω)E(ω).{\displaystyle \mathbf {p} (\omega )=-e\mathbf {r} (\omega )={\hat {\alpha }}(\omega )\mathbf {E} (\omega ).}

α^(ω){\displaystyle {\hat {\alpha }}(\omega )} is the polarizability of single oscillator, given byα^(ω)=e2m1(ω02ω2)iω/τ.{\displaystyle {\hat {\alpha }}(\omega )={\frac {e^{2}}{m}}{\frac {1}{(\omega _{0}^{2}-\omega ^{2})-i\omega /\tau }}.}

Three distinctscattering regimes can be interpreted corresponding to the dominant denominator term in the dipole moment:[5]

RegimeConditionDispersion ScalingPhase Shift
Thomson scatteringω2ωτ,ω02{\displaystyle \omega ^{2}\gg {\frac {\omega }{\tau }},\omega _{0}^{2}}1{\displaystyle 1}
Shneider-Miles scatteringωτ|ω02ω2|{\displaystyle {\frac {\omega }{\tau }}\gg |\omega _{0}^{2}-\omega ^{2}|}ω2{\displaystyle \omega ^{2}}90°
Rayleigh scatteringω02ω2,ωτ{\displaystyle \omega _{0}^{2}\gg \omega ^{2},{\frac {\omega }{\tau }}}ω4{\displaystyle \omega ^{4}}180°

Polarization

[edit]

The polarizationP{\displaystyle \mathbf {P} } is the dipole moment per unit volume. For macroscopic material properties N is the density of charges (electrons) per unit volume. Considering that each electron is acting with the same dipole moment we have the polarization as belowP=Np=Nα^(ω)E(ω).{\displaystyle \mathbf {P} =N\mathbf {p} =N{\hat {\alpha }}(\omega )\mathbf {E} (\omega ).}

Electric displacement

[edit]

The electric displacementD{\displaystyle \mathbf {D} } is related to the polarization densityP{\displaystyle \mathbf {P} } byD=ε^E=E+4πP=(1+4πNα^)E{\displaystyle \mathbf {D} ={\hat {\varepsilon }}\mathbf {E} =\mathbf {E} +4\pi \mathbf {P} =(1+4\pi N{\hat {\alpha }})\mathbf {E} }

Dielectric function

[edit]
Lorentz oscillator model. The real (blue solid line) and imaginary (orange dashed line) components of relative permittivity are plotted for a single oscillator model with parametersω0=23.8THz{\displaystyle \omega _{0}=\mathrm {23.8\,THz} }(12.6 μm),s/ω02=3.305{\displaystyle s/\omega _{0}^{2}=\mathrm {3.305} },Γ/ω0=0.006{\displaystyle \Gamma /\omega _{0}=\mathrm {0.006} }, andε=6.7{\displaystyle \varepsilon _{\infty }=\mathrm {6.7} }. These parameters approximate hexagonal silicon carbide.[6]

The complex dielectric function is given the following (inGaussian units):ε^(ω)=1+4πNe2m1(ω02ω2)iω/τ{\displaystyle {\hat {\varepsilon }}(\omega )=1+{\frac {4\pi Ne^{2}}{m}}{\frac {1}{(\omega _{0}^{2}-\omega ^{2})-i\omega /\tau }}}where4πNe2/m=ωp2{\displaystyle 4\pi Ne^{2}/m=\omega _{p}^{2}} andωp{\displaystyle \omega _{p}} is the so-calledplasma frequency.

In practice, the model is commonly modified to account for multiple absorption mechanisms present in a medium. The modified version is given by[7]ε^(ω)=ε+jχjL(ω;ω0,j){\displaystyle {\hat {\varepsilon }}(\omega )=\varepsilon _{\infty }+\sum _{j}\chi _{j}^{L}(\omega ;\omega _{0,j})}whereχjL(ω;ω0,j)=sjω0,j2ω2iΓjω{\displaystyle \chi _{j}^{L}(\omega ;\omega _{0,j})={\frac {s_{j}}{\omega _{0,j}^{2}-\omega ^{2}-i\Gamma _{j}\omega }}}and

Separating the real and imaginary components,ε^(ω)=ε1(ω)+iε2(ω)=[ε+jsj(ω0,j2ω2)(ω0,j2ω2)2+(Γjω)2]+i[jsj(Γjω)(ω0,j2ω2)2+(Γjω)2]{\displaystyle {\hat {\varepsilon }}(\omega )=\varepsilon _{1}(\omega )+i\varepsilon _{2}(\omega )=\left[\varepsilon _{\infty }+\sum _{j}{\frac {s_{j}(\omega _{0,j}^{2}-\omega ^{2})}{\left(\omega _{0,j}^{2}-\omega ^{2}\right)^{2}+\left(\Gamma _{j}\omega \right)^{2}}}\right]+i\left[\sum _{j}{\frac {s_{j}(\Gamma _{j}\omega )}{\left(\omega _{0,j}^{2}-\omega ^{2}\right)^{2}+\left(\Gamma _{j}\omega \right)^{2}}}\right]}

Complex conductivity

[edit]

The complexoptical conductivity in general is related to the complex dielectric function (inGaussian units) asσ^(ω)=ω4πi(ε^(ω)1){\displaystyle {\hat {\sigma }}(\omega )={\frac {\omega }{4\pi i}}\left({\hat {\varepsilon }}(\omega )-1\right)}

Substituting the formula ofε^(ω){\displaystyle {\hat {\varepsilon }}(\omega )} in the equation above we obtainσ^(ω)=Ne2mωω/τ+i(ω02ω2){\displaystyle {\hat {\sigma }}(\omega )={\frac {Ne^{2}}{m}}{\frac {\omega }{\omega /\tau +i\left(\omega _{0}^{2}-\omega ^{2}\right)}}}

Separating the real and imaginary components,σ^(ω)=σ1(ω)+iσ2(ω)=Ne2mω2τ(ω02ω2)2+ω2/τ2iNe2m(ω02ω2)ω(ω02ω2)2+ω2/τ2{\displaystyle {\hat {\sigma }}(\omega )=\sigma _{1}(\omega )+i\sigma _{2}(\omega )={\frac {Ne^{2}}{m}}{\frac {\frac {\omega ^{2}}{\tau }}{\left(\omega _{0}^{2}-\omega ^{2}\right)^{2}+\omega ^{2}/\tau ^{2}}}-i{\frac {Ne^{2}}{m}}{\frac {\left(\omega _{0}^{2}-\omega ^{2}\right)\omega }{\left(\omega _{0}^{2}-\omega ^{2}\right)^{2}+\omega ^{2}/\tau ^{2}}}}

See also

[edit]

References

[edit]
  1. ^Lorentz, Hendrik Antoon (1909).The theory of electrons and its applications to the phenomena of light and radiant heat. Vol. Bd. XXIX, Bd. 29. New York; Leipzig: B.G. Teubner.OCLC 535812.
  2. ^abDressel, Martin; Grüner, George (2002). "Semiconductors".Electrodynamics of Solids: Optical Properties of Electrons in Matter. Cambridge. pp. 136–172.doi:10.1017/CBO9780511606168.008.ISBN 9780521592536.{{cite book}}: CS1 maint: location missing publisher (link)
  3. ^Almog, I. F.; Bradley, M. S.; Bulovic, V. (2011)."The Lorentz Oscillator and its Applications"(PDF).Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science. Massachusetts Institute of Technology. Retrieved2021-11-24.
  4. ^abcColton, John (2020)."Lorentz Oscillator Model"(PDF).Brigham Young University, Department of Physics & Astronomy. Brigham Young University. Retrieved2021-11-18.
  5. ^Patel, Adam (2021)."Thomson and collisional regimes of in-phase coherent microwave scattering off gaseous microplasmas".Scientific Reports.11 (1): 23389.arXiv:2106.02457.Bibcode:2021NatSR..1123389P.doi:10.1038/s41598-021-02500-y.PMC 8642454.PMID 34862396.
  6. ^Spitzer, W. G.; Kleinman, D.; Walsh, D. (1959)."Infrared Properties of Hexagonal Silicon Carbide".Physical Review.113 (1):127–132.Bibcode:1959PhRv..113..127S.doi:10.1103/PhysRev.113.127. Retrieved2021-11-24.
  7. ^Zhang, Z. M.; Lefever-Button, G.; Powell, F. R. (1998)."Infrared Refractive Index and Extinction Coefficient of Polyimide Films".International Journal of Thermophysics.19 (3):905–916.doi:10.1023/A:1022655309574.S2CID 116271335. Retrieved2021-11-24.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Lorentz_oscillator_model&oldid=1322004297"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp