Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Logical biconditional

From Wikipedia, the free encyclopedia
If and only if relation
icon
This articlerelies largely or entirely on asingle source. Relevant discussion may be found on thetalk page. Please helpimprove this article byintroducing citations to additional sources.
Find sources: "Logical biconditional" – news ·newspapers ·books ·scholar ·JSTOR
(June 2013)
Logical connectives
NOT¬A,A,A¯,A{\displaystyle \neg A,-A,{\overline {A}},{\sim }A}
ANDAB,AB,AB,A&B,A&&B{\displaystyle A\land B,A\cdot B,AB,A\mathop {\&} B,A\mathop {\&\&} B}
NANDA¯B,AB,AB,AB¯{\displaystyle A\mathrel {\overline {\land }} B,A\uparrow B,A\mid B,{\overline {A\cdot B}}}
ORAB,A+B,AB,AB{\displaystyle A\lor B,A+B,A\mid B,A\parallel B}
NORA¯B,AB,A+B¯{\displaystyle A\mathrel {\overline {\lor }} B,A\downarrow B,{\overline {A+B}}}
XNORAB,A¯B¯{\displaystyle A\odot B,{\overline {A\mathrel {\overline {\lor }} B}}}
equivalentAB,AB,AB{\displaystyle A\equiv B,A\Leftrightarrow B,A\leftrightharpoons B}
XORA_B,AB{\displaystyle A\mathrel {\underline {\lor }} B,A\oplus B}
└ nonequivalentAB,AB,AB{\displaystyle A\not \equiv B,A\not \Leftrightarrow B,A\nleftrightarrow B}
impliesAB,AB,AB{\displaystyle A\Rightarrow B,A\supset B,A\rightarrow B}
nonimplication (NIMPLY)AB,AB,AB{\displaystyle A\not \Rightarrow B,A\not \supset B,A\nrightarrow B}
converseAB,AB,AB{\displaystyle A\Leftarrow B,A\subset B,A\leftarrow B}
converse nonimplicationAB,AB,AB{\displaystyle A\not \Leftarrow B,A\not \subset B,A\nleftarrow B}
Related concepts
Applications
Category
Venn diagram ofPQ{\displaystyle P\leftrightarrow Q}
(true part in red)
Not to be confused withLogical equivalence.

Inlogic andmathematics, thelogical biconditional, also known asmaterial biconditional orequivalence orbidirectional implication orbiimplication orbientailment, is thelogical connective used to conjoin two statementsP{\displaystyle P} andQ{\displaystyle Q} to form the statement "P{\displaystyle P}if and only ifQ{\displaystyle Q}" (often abbreviated as "P{\displaystyle P} iffQ{\displaystyle Q}"[1]), whereP{\displaystyle P} is known as theantecedent, andQ{\displaystyle Q} theconsequent.[2][3]

Nowadays, notations to represent equivalence include,,{\displaystyle \leftrightarrow ,\Leftrightarrow ,\equiv }.

PQ{\displaystyle P\leftrightarrow Q} islogically equivalent to both(PQ)(QP){\displaystyle (P\rightarrow Q)\land (Q\rightarrow P)} and(PQ)(¬P¬Q){\displaystyle (P\land Q)\lor (\neg P\land \neg Q)}, and theXNOR (exclusive NOR)Boolean operator, which means "both or neither".

Semantically, the only case where a logical biconditional is different from amaterial conditional is the case where the hypothesis (antecedent) is false but the conclusion (consequent) is true. In this case, the result is true for the conditional, but false for the biconditional.[2]

In the conceptual interpretation,P =Q means "AllP's areQ's and allQ's areP's". In other words, the setsP andQ coincide: they are identical. However, this does not mean thatP andQ need to have the same meaning (e.g.,P could be "equiangular trilateral" andQ could be "equilateral triangle"). When phrased as a sentence, the antecedent is thesubject and the consequent is thepredicate of auniversal affirmative proposition (e.g., in the phrase "all men are mortal", "men" is the subject and "mortal" is the predicate).

In the propositional interpretation,PQ{\displaystyle P\leftrightarrow Q} means thatP impliesQ andQ impliesP; in other words, the propositions are logically equivalent, in the sense that both are either jointly true or jointly false. Again, this does not mean that they need to have the same meaning, asP could be "the triangle ABC has two equal sides" andQ could be "the triangle ABC has two equal angles". In general, the antecedent is thepremise, or thecause, and the consequent is theconsequence. When an implication is translated by ahypothetical (orconditional) judgment, the antecedent is called thehypothesis (or thecondition) and the consequent is called thethesis.

A common way of demonstrating a biconditional of the formPQ{\displaystyle P\leftrightarrow Q} is to demonstrate thatPQ{\displaystyle P\rightarrow Q} andQP{\displaystyle Q\rightarrow P} separately (due to its equivalence to the conjunction of the two converseconditionals[2]). Yet another way of demonstrating the same biconditional is by demonstrating thatPQ{\displaystyle P\rightarrow Q} and¬P¬Q{\displaystyle \neg P\rightarrow \neg Q}.

When both members of the biconditional are propositions, it can be separated into two conditionals, of which one is called atheorem and the other itsreciprocal.[citation needed] Thus whenever a theorem and its reciprocal are true, we have a biconditional. A simple theorem gives rise to an implication, whose antecedent is thehypothesis and whose consequent is thethesis of the theorem.

It is often said that the hypothesis is thesufficient condition of the thesis, and that the thesis is thenecessary condition of the hypothesis. That is, it is sufficient that the hypothesis be true for the thesis to be true, while it is necessary that the thesis be true if the hypothesis were true. When a theorem and its reciprocal are true, its hypothesis is said to be thenecessary and sufficient condition of the thesis. That is, the hypothesis is both the cause and the consequence of the thesis at the same time.

Notations

[edit]

Notations to represent equivalence used in history include:

and so on. Somebody else also useEQ{\displaystyle \operatorname {EQ} } orEQV{\displaystyle \operatorname {EQV} } occasionally.[citation needed][vague][clarification needed]

Definition

[edit]

Logical equality (also known as biconditional) is anoperation on twological values, typically the values of twopropositions, that produces a value oftrue if and only if both operands are false or both operands are true.[2]

Truth table

[edit]

The following is a truth table forAB{\displaystyle A\leftrightarrow B}:

A{\displaystyle A}B{\displaystyle B}AB{\displaystyle A\leftrightarrow B}
FFT
FTF
TFF
TTT

When more than two statements are involved, combining them with{\displaystyle \leftrightarrow } might be ambiguous. For example, the statement

x1x2x3xn{\displaystyle x_{1}\leftrightarrow x_{2}\leftrightarrow x_{3}\leftrightarrow \cdots \leftrightarrow x_{n}}

may be interpreted as

(((x1x2)x3))xn{\displaystyle (((x_{1}\leftrightarrow x_{2})\leftrightarrow x_{3})\leftrightarrow \cdots )\leftrightarrow x_{n}},

or may be interpreted as saying that allxi arejointly true or jointly false:

(x1xn)(¬x1¬xn){\displaystyle (x_{1}\land \cdots \land x_{n})\lor (\neg x_{1}\land \cdots \land \neg x_{n})}

As it turns out, these two statements are only the same when zero or two arguments are involved. In fact, the following truth tables only show the same bit pattern in the line with no argument and in the lines with two arguments:

 x1xn{\displaystyle ~x_{1}\leftrightarrow \cdots \leftrightarrow x_{n}}
meant as equivalent to
¬ (¬x1¬xn){\displaystyle \neg ~(\neg x_{1}\oplus \cdots \oplus \neg x_{n})}

The central Venn diagram below,
and line(ABC  ) in this matrix
represent the same operation.
 x1xn{\displaystyle ~x_{1}\leftrightarrow \cdots \leftrightarrow x_{n}}
meant as shorthand for
( x1xn ){\displaystyle (~x_{1}\land \cdots \land x_{n}~)}
 (¬x1¬xn){\displaystyle \lor ~(\neg x_{1}\land \cdots \land \neg x_{n})}

The Venn diagram directly below,
and line(ABC  ) in this matrix
represent the same operation.

The left Venn diagram below, and the lines(AB    ) in these matrices represent the same operation.

Venn diagrams

[edit]

Red areas stand for true (as in forand).

The biconditional of two statements
is thenegation of theexclusive or:
 AB    ¬(AB){\displaystyle ~A\leftrightarrow B~~\Leftrightarrow ~~\neg (A\oplus B)}

¬{\displaystyle \Leftrightarrow \neg }

The biconditional and the
exclusive or of three statements
give the same result:

 ABC  {\displaystyle ~A\leftrightarrow B\leftrightarrow C~~\Leftrightarrow }
 ABC{\displaystyle ~A\oplus B\oplus C}

{\displaystyle \leftrightarrow }    {\displaystyle ~~\Leftrightarrow ~~}

{\displaystyle \oplus }    {\displaystyle ~~\Leftrightarrow ~~}

But ABC{\displaystyle ~A\leftrightarrow B\leftrightarrow C}
may also be used as an abbreviation
for(AB)(BC){\displaystyle (A\leftrightarrow B)\land (B\leftrightarrow C)}

{\displaystyle \land }    {\displaystyle ~~\Leftrightarrow ~~}

Properties

[edit]

Commutativity: Yes

AB{\displaystyle A\leftrightarrow B}    {\displaystyle \Leftrightarrow }    BA{\displaystyle B\leftrightarrow A}
    {\displaystyle \Leftrightarrow }    

Associativity: Yes

 A{\displaystyle ~A}      {\displaystyle ~~~\leftrightarrow ~~~}(BC){\displaystyle (B\leftrightarrow C)}    {\displaystyle \Leftrightarrow }    (AB){\displaystyle (A\leftrightarrow B)}      {\displaystyle ~~~\leftrightarrow ~~~} C{\displaystyle ~C}
      {\displaystyle ~~~\leftrightarrow ~~~}    {\displaystyle \Leftrightarrow }        {\displaystyle \Leftrightarrow }          {\displaystyle ~~~\leftrightarrow ~~~}

Distributivity: Biconditional doesn't distribute over any binary function (not even itself), butlogical disjunction distributes over biconditional.

Idempotency: No

 A {\displaystyle ~A~}  {\displaystyle ~\leftrightarrow ~} A {\displaystyle ~A~}    {\displaystyle \Leftrightarrow }     1 {\displaystyle ~1~}    {\displaystyle \nLeftrightarrow }     A {\displaystyle ~A~}
  {\displaystyle ~\leftrightarrow ~}    {\displaystyle \Leftrightarrow }        {\displaystyle \nLeftrightarrow }    

Monotonicity: No

AB{\displaystyle A\rightarrow B}    {\displaystyle \nRightarrow }    (AC){\displaystyle (A\leftrightarrow C)}{\displaystyle \rightarrow }(BC){\displaystyle (B\leftrightarrow C)}
    {\displaystyle \nRightarrow }        {\displaystyle \Leftrightarrow }    {\displaystyle \rightarrow }

Truth-preserving: Yes
When all inputs are true, the output is true.

AB{\displaystyle A\land B}    {\displaystyle \Rightarrow }    AB{\displaystyle A\leftrightarrow B}
    {\displaystyle \Rightarrow }    

Falsehood-preserving: No
When all inputs are false, the output is not false.

AB{\displaystyle A\leftrightarrow B}    {\displaystyle \nRightarrow }    AB{\displaystyle A\lor B}
    {\displaystyle \nRightarrow }    

Walsh spectrum: (2,0,0,2)

Nonlinearity: 0 (the function is linear)

Rules of inference

[edit]
Main article:Rules of inference

Like all connectives in first-order logic, the biconditional has rules of inference that govern its use in formal proofs.

Biconditional introduction

[edit]
Main article:Biconditional introduction

Biconditional introduction allows one to infer that if B follows from A and A follows from B, then Aif and only if B.

For example, from the statements "if I'm breathing, then I'm alive" and "if I'm alive, then I'm breathing", it can be inferred that "I'm breathing if and only if I'm alive" or equivalently, "I'm alive if and only if I'm breathing." Or more schematically:

 B → A    A → B    ∴ A ↔ B
 B → A    A → B    ∴ B ↔ A

Biconditional elimination

[edit]

Biconditional elimination allows one to infer aconditional from a biconditional: if A B is true, then one may infer either A B, or B A.

For example, if it is true that I'm breathingif and only if I'm alive, then it's true thatif I'm breathing, then I'm alive; likewise, it's true thatif I'm alive, then I'm breathing. Or more schematically:

A ↔ B   ∴ A → B
A ↔ B   ∴ B → A

Colloquial usage

[edit]

One unambiguous way of stating a biconditional in plain English is to adopt the form "b ifa anda ifb"—if the standard form "a if and only ifb" is not used. Slightly more formally, one could also say that "b impliesa anda impliesb", or "a is necessary and sufficient forb". The plain English "if'" may sometimes be used as a biconditional (especially in the context of a mathematical definition[15]). In which case, one must take into consideration the surrounding context when interpreting these words.

For example, the statement "I'll buy you a new wallet if you need one" may be interpreted as a biconditional, since the speaker doesn't intend a valid outcome to be buying the wallet whether or not the wallet is needed (as in a conditional). However, "it is cloudy if it is raining" is generally not meant as a biconditional, since it can still be cloudy even if it is not raining.

See also

[edit]

References

[edit]
  1. ^Weisstein, Eric W."Iff".mathworld.wolfram.com. Retrieved2019-11-25.
  2. ^abcdPeil, Timothy."Conditionals and Biconditionals".web.mnstate.edu. Archived fromthe original on 2020-10-24. Retrieved2019-11-25.
  3. ^Brennan, Joseph G. (1961).Handbook of Logic (2nd ed.). Harper & Row. p. 81.
  4. ^Boole, G. (1847).The Mathematical Analysis of Logic, Being an Essay Towards a Calculus of Deductive Reasoning. Cambridge/London: Macmillan, Barclay, & Macmillan/George Bell. p. 17.
  5. ^Frege, G. (1879).Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens (in German). Halle a/S.: Verlag von Louis Nebert. p. 15.
  6. ^Bernays, P. (1918).Beiträge zur axiomatischen Behandlung des Logik-Kalküls. Göttingen: Universität Göttingen. p. 3.
  7. ^Hilbert, D. (1928) [1927]. "Die Grundlagen der Mathematik".Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg (in German).6:65–85.doi:10.1007/BF02940602.
  8. ^Hilbert, D.; Ackermann, W. (1928).Grundzügen der theoretischen Logik (in German) (1 ed.). Berlin: Verlag von Julius Springer. p. 4.
  9. ^Becker, A. (1933).Die Aristotelische Theorie der Möglichkeitsschlösse: Eine logisch-philologische Untersuchung der Kapitel 13-22 von Aristoteles' Analytica priora I (in German). Berlin: Junker und Dünnhaupt Verlag. p. 4.
  10. ^Łukasiewicz, J. (1958) [1929]. Słupecki, J. (ed.).Elementy logiki matematycznej (in Polish) (2 ed.). Warszawa: Państwowe Wydawnictwo Naukowe.
  11. ^Łukasiewicz, J. (1957) [1951]. Słupecki, J. (ed.).Aristotle's Syllogistic from the Standpoint of Modern Formal Logic (in Polish) (2 ed.). Glasgow, New York, Toronto, Melbourne, Wellington, Bombay, Calcutta, Madras, Karachi, Lahore, Dacca, Cape Town, Salisbury, Nairobi, Ibadan, Accra, Kuala Lumpur and Hong Kong: Oxford University Press.
  12. ^Heyting, A. (1930). "Die formalen Regeln der intuitionistischen Logik".Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (in German):42–56.
  13. ^Bourbaki, N. (1954).Théorie des ensembles (in French). Paris: Hermann & Cie, Éditeurs. p. 32.
  14. ^Chazal, G. (1996).Eléments de logique formelle. Paris: Hermes Science Publications.
  15. ^In fact, such is the style adopted byWikipedia's manual of style in mathematics.

External links

[edit]
General
Theorems
(list),
paradoxes
Logics
Traditional
Propositional
Predicate
Set theory
Types
ofsets
Maps,
cardinality
Theories
Formal
systems

(list),
language,
syntax
Example
axiomatic
systems

(list)
Proof theory
Model theory
Computability
theory
Related

This article incorporates material from Biconditional onPlanetMath, which is licensed under theCreative Commons Attribution/Share-Alike License.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Logical_biconditional&oldid=1335838762"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp