Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Log-normal distribution

From Wikipedia, the free encyclopedia
Probability distribution
Log-normal distribution
Probability density function
Plot of the PDF
Identical parameterμ{\displaystyle \mu } but differing parametersσ{\displaystyle \sigma }
Cumulative distribution function
Plot of the Lognormal CDF
μ=0{\displaystyle \mu =0}
NotationLognormal(μ,σ2){\displaystyle \operatorname {Lognormal} \left(\mu ,\,\sigma ^{2}\right)}
Parameters
Supportx(0,+){\displaystyle x\in (0,+\infty )}
PDF1xσ2πexp((lnxμ)22σ2){\displaystyle {\frac {1}{x\sigma {\sqrt {2\pi }}}}\exp \left(-{\frac {\left(\ln x-\mu \right)^{2}}{2\sigma ^{2}}}\right)}
CDF12[1+erf(lnxμσ2)]=Φ(lnxμσ){\displaystyle {\begin{aligned}&{\frac {1}{2}}\left[1+\operatorname {erf} \left({\frac {\ln x-\mu }{\sigma {\sqrt {2}}}}\right)\right]\\[1ex]&=\Phi {\left({\frac {\ln x-\mu }{\sigma }}\right)}\end{aligned}}}
Quantileexp(μ+2σ2erf1(2p1))=exp(μ+σΦ1(p)){\displaystyle {\begin{aligned}&\exp \left(\mu +{\sqrt {2\sigma ^{2}}}\operatorname {erf} ^{-1}(2p-1)\right)\\[1ex]&=\exp(\mu +\sigma \Phi ^{-1}(p))\end{aligned}}}
Meanexp(μ+σ22){\displaystyle \exp \left(\mu +{\frac {\sigma ^{2}}{2}}\right)}
Medianexp(μ){\displaystyle \exp(\mu )}
Modeexp(μσ2){\displaystyle \exp \left(\mu -\sigma ^{2}\right)}
Variance[exp(σ2)1]exp(2μ+σ2){\displaystyle \left[\exp(\sigma ^{2})-1\right]\exp \left(2\mu +\sigma ^{2}\right)}
Skewness[exp(σ2)+2]exp(σ2)1{\displaystyle \left[\exp \left(\sigma ^{2}\right)+2\right]{\sqrt {\exp(\sigma ^{2})-1}}}
Excess kurtosisexp(4σ2)+2exp(3σ2)+3exp(2σ2)6{\displaystyle \exp \left(4\sigma ^{2}\right)+2\exp \left(3\sigma ^{2}\right)+3\exp \left(2\sigma ^{2}\right)-6}
Entropylog2(2πeσeμ){\displaystyle \log _{2}\left({\sqrt {2\pi e}}\,\sigma e^{\mu }\right)}
MGFdefined only for numbers with anon-positive real part, see text
CFrepresentationn=0(it)nn!enμ+n2σ2/2{\displaystyle \sum _{n=0}^{\infty }{\frac {{\left(it\right)}^{n}}{n!}}e^{n\mu +n^{2}\sigma ^{2}/2}} is asymptotically divergent, but adequate for most numerical purposes
Fisher information1σ2(1002){\displaystyle {\frac {1}{\sigma ^{2}}}{\begin{pmatrix}1&0\\0&2\end{pmatrix}}}
Method of moments

μ=lnE[X]12ln(Var[X]E[X]2+1),{\displaystyle \mu =\ln \operatorname {E} [X]-{\frac {1}{2}}\ln \left({\frac {\operatorname {Var} [X]}{\operatorname {E} [X]^{2}}}+1\right),}

σ=ln(Var[X]E[X]2+1){\displaystyle \sigma ={\sqrt {\ln \left({\frac {\operatorname {Var} [X]}{\operatorname {E} [X]^{2}}}+1\right)}}}
Expected shortfalleμ+σ222p[1+erf(σ2+erf1(2p1))]=eμ+σ221p[1Φ(Φ1(p)σ)]{\displaystyle {\begin{aligned}&{\frac {e^{\mu +{\frac {\sigma ^{2}}{2}}}}{2p}}\left[1+\operatorname {erf} \left({\frac {\sigma }{\sqrt {2}}}+\operatorname {erf} ^{-1}(2p-1)\right)\right]\\[0.5ex]&={\frac {e^{\mu +{\frac {\sigma ^{2}}{2}}}}{1-p}}\left[1-\Phi (\Phi ^{-1}(p)-\sigma )\right]\end{aligned}}}[1]

Inprobability theory, alog-normal (orlognormal)distribution is a continuousprobability distribution of arandom variable whoselogarithm isnormally distributed. Thus, if the random variableX is log-normally distributed, thenY = lnX has a normal distribution.[2][3] Equivalently, ifY has a normal distribution, then theexponential function ofY,X = exp(Y), has a log-normal distribution. A random variable which is log-normally distributed takes only positive real values. It is a convenient and useful model for measurements in exact andengineering sciences, as well asmedicine,economics and other topics (e.g., energies, concentrations, lengths, prices of financial instruments, and other metrics).

The distribution is occasionally referred to as theGalton distribution orGalton's distribution, afterFrancis Galton.[4] The log-normal distribution has also been associated with other names, such asMcAlister,Gibrat andCobb–Douglas.[4]

A log-normal process is the statistical realization of the multiplicativeproduct of manyindependentrandom variables, each of which is positive. This is justified by considering thecentral limit theorem in the log domain (sometimes calledGibrat's law). The log-normal distribution is themaximum entropy probability distribution for a random variateX—for which the mean and variance oflnX are specified.[5]

Definitions

[edit]

Generation and parameters

[edit]

LetZ{\displaystyle Z} be astandard normal variable, and letμ{\displaystyle \mu } andσ{\displaystyle \sigma } be two real numbers, withσ>0{\displaystyle \sigma >0}. Then, the distribution of the random variable

X=eμ+σZ{\displaystyle X=e^{\mu +\sigma Z}}

is called the log-normal distribution with parametersμ{\displaystyle \mu } andσ{\displaystyle \sigma }. These are theexpected value (ormean) andstandard deviation of the variable's naturallogarithm,lnX{\displaystyle \ln X},not the expectation and standard deviation ofX{\displaystyle X} itself.

The cumulative distribution function and the corresponding probability density function of a log-normal distribution plotted on a semi-log plot. The median value is equal to 1, and the modal value (the peak of the probability density function) is equal to 1/e. In this case, 1/e corresponds to roughly the 16th percentile, 1 corresponds to the median (50th percentile), and e corresponds to roughly the 84th percentile.
A log-normal distribution on a semi-log plot with a median of 1, whose ~84th percentile value is 10 times the median, whose ~16th percentile value is 1/10th the median, and whose modal value (~.005) is at roughly the 1st percentile. The peak density of values around the mode is high, but the distribution would possess a tall, narrow peak, and a long right tail on a linear-linear plot.

This relationship is true regardless of the base of the logarithmic or exponential function: IflogaX{\displaystyle \log _{a}X} is normally distributed, then so islogbX{\displaystyle \log _{b}X} for any two positive numbersa,b1{\displaystyle a,b\neq 1}. Likewise, ifeY{\displaystyle e^{Y}} is log-normally distributed, then so isaY{\displaystyle a^{Y}}, where0<a1{\displaystyle 0<a\neq 1}.

In order to produce a distribution with desired meanμX{\displaystyle \mu _{X}} and varianceσX2{\displaystyle \sigma _{X}^{2}}, one usesμ=lnμX2μX2+σX2{\displaystyle \mu =\ln {\frac {\mu _{X}^{2}}{\sqrt {\mu _{X}^{2}+\sigma _{X}^{2}}}}} andσ2=ln(1+σX2μX2){\displaystyle \sigma ^{2}=\ln \left(1+{\frac {\sigma _{X}^{2}}{\mu _{X}^{2}}}\right)}.

Alternatively, the "multiplicative" or "geometric" parametersμ=eμ{\displaystyle \mu ^{*}=e^{\mu }} andσ=eσ{\displaystyle \sigma ^{*}=e^{\sigma }} can be used. They have a more direct interpretation:μ{\displaystyle \mu ^{*}} is themedian of the distribution, andσ{\displaystyle \sigma ^{*}} is useful for determining "scatter" intervals, see below.

Probability density function

[edit]

A positive random variableX{\displaystyle X} is log-normally distributed (i.e.,XLognormal(μ,σ2){\textstyle X\sim \operatorname {Lognormal} \left(\mu ,\sigma ^{2}\right)}), if the natural logarithm ofX{\displaystyle X} is normally distributed with meanμ{\displaystyle \mu } and varianceσ2{\displaystyle \sigma ^{2}}:

lnXN(μ,σ2){\displaystyle \ln X\sim {\mathcal {N}}(\mu ,\sigma ^{2})}

LetΦ{\displaystyle \Phi } andφ{\displaystyle \varphi } be respectively the cumulative probability distribution function and the probability density function of theN(0,1){\displaystyle {\mathcal {N}}(0,1)} standard normal distribution, then we have that[2][4] theprobability density function of the log-normal distribution is given by:

fX(x)=ddxPrX[Xx]=ddxPrX[lnXlnx]=ddxΦ(lnxμσ)=φ(lnxμσ)ddx(lnxμσ)=φ(lnxμσ)1σx=1xσ2πexp((lnxμ)22σ2) .{\displaystyle {\begin{aligned}f_{X}(x)&={\frac {d}{dx}}\Pr \nolimits _{X}\left[X\leq x\right]\\[6pt]&={\frac {d}{dx}}\Pr \nolimits _{X}\left[\ln X\leq \ln x\right]\\[6pt]&={\frac {d}{dx}}\Phi {\left({\frac {\ln x-\mu }{\sigma }}\right)}\\[6pt]&=\varphi {\left({\frac {\ln x-\mu }{\sigma }}\right)}{\frac {d}{dx}}\left({\frac {\ln x-\mu }{\sigma }}\right)\\[6pt]&=\varphi {\left({\frac {\ln x-\mu }{\sigma }}\right)}{\frac {1}{\sigma x}}\\[6pt]&={\frac {1}{x\sigma {\sqrt {2\pi }}}}\exp \left(-{\frac {(\ln x-\mu )^{2}}{2\sigma ^{2}}}\right)~.\end{aligned}}}

Cumulative distribution function

[edit]

Thecumulative distribution function is

FX(x)=Φ(lnxμσ){\displaystyle F_{X}(x)=\Phi {\left({\frac {\ln x-\mu }{\sigma }}\right)}}

whereΦ{\displaystyle \Phi } is the cumulative distribution function of the standard normal distribution (i.e.,N(0,1){\displaystyle \operatorname {\mathcal {N}} (0,1)}).

This may also be expressed as follows:[2]

12[1+erf(lnxμσ2)]=12erfc(lnxμσ2){\displaystyle {\frac {1}{2}}\left[1+\operatorname {erf} \left({\frac {\ln x-\mu }{\sigma {\sqrt {2}}}}\right)\right]={\frac {1}{2}}\operatorname {erfc} \left(-{\frac {\ln x-\mu }{\sigma {\sqrt {2}}}}\right)}

whereerfc is thecomplementary error function.

Multivariate log-normal

[edit]

IfXN(μ,Σ){\displaystyle {\boldsymbol {X}}\sim {\mathcal {N}}({\boldsymbol {\mu }},\,{\boldsymbol {\Sigma }})} is amultivariate normal distribution, thenYi=exp(Xi){\displaystyle Y_{i}=\exp(X_{i})} has a multivariate log-normal distribution.[6][7] The exponential is applied element-wise to the random vectorX{\displaystyle {\boldsymbol {X}}}. The mean ofY{\displaystyle {\boldsymbol {Y}}} is

E[Y]i=eμi+12Σii,{\displaystyle \operatorname {E} [{\boldsymbol {Y}}]_{i}=e^{\mu _{i}+{\frac {1}{2}}\Sigma _{ii}},}

and itscovariance matrix is

Var[Y]ij=eμi+μj+12(Σii+Σjj)(eΣij1).{\displaystyle \operatorname {Var} [{\boldsymbol {Y}}]_{ij}=e^{\mu _{i}+\mu _{j}+{\frac {1}{2}}(\Sigma _{ii}+\Sigma _{jj})}\left(e^{\Sigma _{ij}}-1\right).}

Since the multivariate log-normal distribution is not widely used, the rest of this entry only deals with theunivariate distribution.

Characteristic function and moment generating function

[edit]

All moments of the log-normal distribution exist and

E[Xn]=enμ+n2σ2/2{\displaystyle \operatorname {E} [X^{n}]=e^{n\mu +n^{2}\sigma ^{2}/2}}

This can be derived by lettingz=lnxμσnσ{\textstyle z={\tfrac {\ln x-\mu }{\sigma }}-n\sigma } within the integral. However, the log-normal distribution is not determined by its moments.[8] This implies that it cannot have a defined moment generating function in a neighborhood of zero.[9] Indeed, the expected valueE[etX]{\displaystyle \operatorname {E} [e^{tX}]} is not defined for any positive value of the argumentt{\displaystyle t}, since the defining integral diverges.

Thecharacteristic functionE[eitX]{\displaystyle \operatorname {E} [e^{itX}]} is defined for real values oft, but is not defined for any complex value oft that has a negative imaginary part, and hence the characteristic function is notanalytic at the origin. Consequently, the characteristic function of the log-normal distribution cannot be represented as an infinite convergent series.[10] In particular, its Taylorformal series diverges:

n=0(it)nn!enμ+n2σ2/2{\displaystyle \sum _{n=0}^{\infty }{\frac {{\left(it\right)}^{n}}{n!}}e^{n\mu +n^{2}\sigma ^{2}/2}}

However, a number of alternativedivergent series representations have been obtained.[10][11][12][13]

A closed-form formula for the characteristic functionφ(t){\displaystyle \varphi (t)} witht{\displaystyle t} in the domain of convergence is not known. A relatively simple approximating formula is available in closed form, and is given by[14]

φ(t)exp(W2(itσ2eμ)+2W(itσ2eμ)2σ2)1+W(itσ2eμ){\displaystyle \varphi (t)\approx {\frac {\exp \left(-{\frac {W^{2}(-it\sigma ^{2}e^{\mu })+2W(-it\sigma ^{2}e^{\mu })}{2\sigma ^{2}}}\right)}{\sqrt {1+W{\left(-it\sigma ^{2}e^{\mu }\right)}}}}}

whereW{\displaystyle W} is theLambert W function. This approximation is derived via an asymptotic method, but it stays sharp all over the domain of convergence ofφ{\displaystyle \varphi }.

Properties

[edit]

Geometric or multiplicative moments

[edit]

Thegeometric or multiplicative mean of the log-normal distribution isGM[X]=eμ=μ{\displaystyle \operatorname {GM} [X]=e^{\mu }=\mu ^{*}}. It equals the median. Thegeometric or multiplicative standard deviation isGSD[X]=eσ=σ{\displaystyle \operatorname {GSD} [X]=e^{\sigma }=\sigma ^{*}}.[15][16]

By analogy with the arithmetic statistics, one can define a geometric variance,GVar[X]=eσ2{\displaystyle \operatorname {GVar} [X]=e^{\sigma ^{2}}}, and ageometric coefficient of variation,[15]GCV[X]=eσ1{\displaystyle \operatorname {GCV} [X]=e^{\sigma }-1}, has been proposed. This term was intended to beanalogous to the coefficient of variation, for describing multiplicative variation in log-normal data, but this definition of GCV has no theoretical basis as an estimate ofCV{\displaystyle \operatorname {CV} } itself (see alsoCoefficient of variation).

Note that the geometric mean is smaller than the arithmetic mean. This is due to theAM–GM inequality and is a consequence of the logarithm being aconcave function. In fact,[17]

E[X]=eμ+12σ2=eμeσ2=GM[X]GVar[X].{\displaystyle \operatorname {E} [X]=e^{\mu +{\frac {1}{2}}\sigma ^{2}}=e^{\mu }\cdot {\sqrt {e^{\sigma ^{2}}}}=\operatorname {GM} [X]\cdot {\sqrt {\operatorname {GVar} [X]}}.}

In finance, the termeσ2/2{\displaystyle e^{-\sigma ^{2}/2}} is sometimes interpreted as aconvexity correction. From the point of view ofstochastic calculus, this is the same correction term as inItō's lemma for geometric Brownian motion.

Arithmetic moments

[edit]

For any real or complex numbern, then-thmoment of a log-normally distributed variableX is given by[4]E[Xn]=enμ+12n2σ2.{\displaystyle \operatorname {E} [X^{n}]=e^{n\mu +{\frac {1}{2}}n^{2}\sigma ^{2}}.}

Specifically, the arithmetic mean, expected square, arithmetic variance, and arithmetic standard deviation of a log-normally distributed variableX are respectively given by:[2]

E[X]=eμ+12σ2,E[X2]=e2μ+2σ2,Var[X]=E[X2]E[X]2=(E[X])2(eσ21)=e2μ+σ2(eσ21),SD[X]=Var[X]=E[X]eσ21=eμ+12σ2eσ21,{\displaystyle {\begin{aligned}\operatorname {E} [X]&=e^{\mu +{\tfrac {1}{2}}\sigma ^{2}},\\[4pt]\operatorname {E} [X^{2}]&=e^{2\mu +2\sigma ^{2}},\\[4pt]\operatorname {Var} [X]&=\operatorname {E} [X^{2}]-\operatorname {E} [X]^{2}={\left(\operatorname {E} [X]\right)}^{2}\left(e^{\sigma ^{2}}-1\right)\\[2pt]&=e^{2\mu +\sigma ^{2}}\left(e^{\sigma ^{2}}-1\right),\\[4pt]\operatorname {SD} [X]&={\sqrt {\operatorname {Var} [X]}}=\operatorname {E} [X]{\sqrt {e^{\sigma ^{2}}-1}}\\[2pt]&=e^{\mu +{\tfrac {1}{2}}\sigma ^{2}}{\sqrt {e^{\sigma ^{2}}-1}},\end{aligned}}}

The arithmeticcoefficient of variationCV[X]{\displaystyle \operatorname {CV} [X]} is the ratioSD[X]E[X]{\displaystyle {\tfrac {\operatorname {SD} [X]}{\operatorname {E} [X]}}}. For a log-normal distribution it is equal to[3]CV[X]=eσ21.{\displaystyle \operatorname {CV} [X]={\sqrt {e^{\sigma ^{2}}-1}}.}This estimate is sometimes referred to as the "geometric CV" (GCV),[18][19] due to its use of the geometric variance. Contrary to the arithmetic standard deviation, the arithmetic coefficient of variation is independent of the arithmetic mean.

The parametersμ andσ can be obtained, if the arithmetic mean and the arithmetic variance are known:

μ=lnE[X]2E[X2]=lnE[X]2Var[X]+E[X]2,σ2=lnE[X2]E[X]2=ln(1+Var[X]E[X]2).{\displaystyle {\begin{aligned}\mu &=\ln {\frac {\operatorname {E} [X]^{2}}{\sqrt {\operatorname {E} [X^{2}]}}}=\ln {\frac {\operatorname {E} [X]^{2}}{\sqrt {\operatorname {Var} [X]+\operatorname {E} [X]^{2}}}},\\[1ex]\sigma ^{2}&=\ln {\frac {\operatorname {E} [X^{2}]}{\operatorname {E} [X]^{2}}}=\ln \left(1+{\frac {\operatorname {Var} [X]}{\operatorname {E} [X]^{2}}}\right).\end{aligned}}}

A probability distribution is not uniquely determined by the momentsE[Xn] = e +1/2n2σ2 forn ≥ 1. That is, there exist other distributions with the same set of moments.[4] In fact, there is a whole family of distributions with the same moments as the log-normal distribution.[citation needed]

Mode, median, quantiles

[edit]
Comparison ofmean,median andmode of two log-normal distributions with differentskewness.

Themode is the point of global maximum of the probability density function. In particular, by solving the equation(lnf)=0{\displaystyle (\ln f)'=0}, we get that:

Mode[X]=eμσ2.{\displaystyle \operatorname {Mode} [X]=e^{\mu -\sigma ^{2}}.}

Since thelog-transformed variableY=lnX{\displaystyle Y=\ln X} has a normal distribution, and quantiles are preserved under monotonic transformations, the quantiles ofX{\displaystyle X} are

qX(α)=exp[μ+σqΦ(α)]=μ(σ)qΦ(α),{\displaystyle q_{X}(\alpha )=\exp \left[\mu +\sigma q_{\Phi }(\alpha )\right]=\mu ^{*}(\sigma ^{*})^{q_{\Phi }(\alpha )},}

whereqΦ(α){\displaystyle q_{\Phi }(\alpha )} is the quantile of the standard normal distribution.

Specifically, the median of a log-normal distribution is equal to its multiplicative mean,[20]

Med[X]=eμ=μ .{\displaystyle \operatorname {Med} [X]=e^{\mu }=\mu ^{*}~.}

Partial expectation

[edit]

The partial expectation of a random variableX{\displaystyle X} with respect to a thresholdk{\displaystyle k} is defined as

g(k)=kxfX(x)dx.{\displaystyle g(k)=\int _{k}^{\infty }x\,f_{X}(x)\,dx.}

Alternatively, by using the definition ofconditional expectation, it can be written asg(k)=E[XX>k]Pr(X>k){\displaystyle g(k)=\operatorname {E} [X\mid X>k]\Pr(X>k)}. For a log-normal random variable, the partial expectation is given by:

g(k)=kxfX(x)dx=eμ+12σ2Φ(μlnkσ+σ){\displaystyle {\begin{aligned}g(k)&=\int _{k}^{\infty }xf_{X}(x)\,dx\\[1ex]&=e^{\mu +{\tfrac {1}{2}}\sigma ^{2}}\,\Phi {\left({\frac {\mu -\ln k}{\sigma }}+\sigma \right)}\end{aligned}}}

whereΦ{\displaystyle \Phi } is thenormal cumulative distribution function. The derivation of the formula is provided in theTalk page. The partial expectation formula has applications ininsurance andeconomics, it is used in solving the partial differential equation leading to theBlack–Scholes formula.

Conditional expectation

[edit]

The conditional expectation of a log-normal random variableX{\displaystyle X}—with respect to a thresholdk{\displaystyle k}—is its partial expectation divided by the cumulative probability of being in that range:

E[XX<k]=eμ+σ22Φ[lnkμσσ]Φ[lnkμσ]E[XXk]=eμ+σ22Φ[μlnkσ+σ]1Φ[lnkμσ]E[XX[k1,k2]]=eμ+σ22Φ[lnk2μσσ]Φ[lnk1μσσ]Φ[lnk2μσ]Φ[lnk1μσ]{\displaystyle {\begin{aligned}\operatorname {E} [X\mid X<k]&=e^{\mu +{\frac {\sigma ^{2}}{2}}}\cdot {\frac {\Phi {\left[{\frac {\ln k-\mu }{\sigma }}-\sigma \right]}}{\Phi {\left[{\frac {\ln k-\mu }{\sigma }}\right]}}}\\[8pt]\operatorname {E} [X\mid X\geq k]&=e^{\mu +{\frac {\sigma ^{2}}{2}}}\cdot {\frac {\Phi {\left[{\frac {\mu -\ln k}{\sigma }}+\sigma \right]}}{1-\Phi {\left[{\frac {\ln k-\mu }{\sigma }}\right]}}}\\[8pt]\operatorname {E} [X\mid X\in [k_{1},k_{2}]]&=e^{\mu +{\frac {\sigma ^{2}}{2}}}\cdot {\frac {\Phi {\left[{\frac {\ln k_{2}-\mu }{\sigma }}-\sigma \right]}-\Phi {\left[{\frac {\ln k_{1}-\mu }{\sigma }}-\sigma \right]}}{\Phi \left[{\frac {\ln k_{2}-\mu }{\sigma }}\right]-\Phi \left[{\frac {\ln k_{1}-\mu }{\sigma }}\right]}}\end{aligned}}}

Alternative parameterizations

[edit]

In addition to the characterization byμ,σ{\displaystyle \mu ,\sigma } orμ,σ{\displaystyle \mu ^{*},\sigma ^{*}}, here are multiple ways how the log-normal distribution can be parameterized.ProbOnto, the knowledge base and ontology ofprobability distributions[21][22] lists seven such forms:

Overview of parameterizations of the log-normal distributions.

Examples for re-parameterization

[edit]

Consider the situation when one would like to run a model using two different optimal design tools, for example PFIM[27] and PopED.[28] The former supports the LN2, the latter LN7 parameterization, respectively. Therefore, the re-parameterization is required, otherwise the two tools would produce different results.

For the transitionLN2(μ,v)LN7(μN,σN){\displaystyle \operatorname {LN2} (\mu ,v)\to \operatorname {LN7} (\mu _{N},\sigma _{N})} following formulas holdμN=exp(μ+v/2){\textstyle \mu _{N}=\exp(\mu +v/2)} andσN=exp(μ+v/2)exp(v)1{\textstyle \sigma _{N}=\exp(\mu +v/2){\sqrt {\exp(v)-1}}}.

For the transitionLN7(μN,σN)LN2(μ,v){\displaystyle \operatorname {LN7} (\mu _{N},\sigma _{N})\to \operatorname {LN2} (\mu ,v)} following formulas holdμ=lnμN12v{\textstyle \mu =\ln \mu _{N}-{\frac {1}{2}}v} andv=ln(1+σN2/μN2){\textstyle v=\ln(1+\sigma _{N}^{2}/\mu _{N}^{2})}.

All remaining re-parameterisation formulas can be found in the specification document on the project website.[29]

Multiple, reciprocal, power

[edit]

Multiplication and division of independent, log-normal random variables

[edit]

If twoindependent, log-normal variablesX1{\displaystyle X_{1}} andX2{\displaystyle X_{2}} are multiplied [divided], the product [ratio] is again log-normal, with parametersμ=μ1+μ2{\displaystyle \mu =\mu _{1}+\mu _{2}}[μ=μ1μ2{\displaystyle \mu =\mu _{1}-\mu _{2}}] andσ{\displaystyle \sigma }, whereσ2=σ12+σ22{\displaystyle \sigma ^{2}=\sigma _{1}^{2}+\sigma _{2}^{2}}.

More generally, ifXjLognormal(μj,σj2){\displaystyle X_{j}\sim \operatorname {Lognormal} (\mu _{j},\sigma _{j}^{2})} aren{\displaystyle n} independent, log-normally distributed variables, thenY=j=1nXjLognormal(j=1nμj,j=1nσj2).{\textstyle Y=\prod _{j=1}^{n}X_{j}\sim \operatorname {Lognormal} {\Big (}\sum _{j=1}^{n}\mu _{j},\sum _{j=1}^{n}\sigma _{j}^{2}{\Big )}.}

Multiplicative central limit theorem

[edit]
See also:Gibrat's law

The geometric or multiplicative mean ofn{\displaystyle n} independent, identically distributed, positive random variablesXi{\displaystyle X_{i}} shows, forn{\displaystyle n\to \infty }, approximately a log-normal distribution with parametersμ=E[lnXi]{\displaystyle \mu =\operatorname {E} [\ln X_{i}]} andσ2=var[lnXi]/n{\displaystyle \sigma ^{2}=\operatorname {var} [\ln X_{i}]/n}, assumingσ2{\displaystyle \sigma ^{2}} is finite.

In fact, the random variables do not have to be identically distributed. It is enough for the distributions oflnXi{\displaystyle \ln X_{i}} to all have finite variance and satisfy the other conditions of any of the many variants of thecentral limit theorem.

This is commonly known asGibrat's law.

Heavy-tailness of the Log-Normal

[edit]

Whether a Log-Normal can be considered or not a true heavy-tail distribution is still debated. The main reason is that its variance is always finite, differently from what happen with certain Pareto distributions, for instance. However a recent study has shown how it is possible to create a Log-Normal distribution with infinite variance using Robinson Non-Standard Analysis.[30]

Other

[edit]

A set of data that arises from the log-normal distribution has a symmetricLorenz curve (see alsoLorenz asymmetry coefficient).[31]

The harmonicH{\displaystyle H}, geometricG{\displaystyle G} and arithmeticA{\displaystyle A} means of this distribution are related;[32] such relation is given by

H=G2A.{\displaystyle H={\frac {G^{2}}{A}}.}

Log-normal distributions areinfinitely divisible,[33] but they are notstable distributions, which can be easily drawn from.[34]

Related distributions

[edit]

For a more accurate approximation, one can use theMonte Carlo method to estimate the cumulative distribution function, the pdf and the right tail.[37][38] The cdf and pdf of the sum of correlated log-normally distributed random variables can also be approximated by Monte Carlo simulation.[39]

Statistical inference

[edit]

Estimation of parameters

[edit]

Maximum likelihood estimator

[edit]

For determining themaximum likelihood estimators of the log-normal distribution parametersμ andσ, we can use thesame procedure as for thenormal distribution. Note thatL(μ,σ)=i=1n1xiφμ,σ(lnxi),{\displaystyle L(\mu ,\sigma )=\prod _{i=1}^{n}{\frac {1}{x_{i}}}\varphi _{\mu ,\sigma }(\ln x_{i}),}whereφ{\displaystyle \varphi } is the density function of the normal distributionN(μ,σ2){\displaystyle {\mathcal {N}}(\mu ,\sigma ^{2})}. Therefore, the log-likelihood function is(μ,σx1,x2,,xn)=ilnxi+N(μ,σlnx1,lnx2,,lnxn).{\displaystyle \ell (\mu ,\sigma \mid x_{1},x_{2},\ldots ,x_{n})=-\sum _{i}\ln x_{i}+\ell _{N}(\mu ,\sigma \mid \ln x_{1},\ln x_{2},\dots ,\ln x_{n}).}

Since the first term is constant with regard toμ andσ, both logarithmic likelihood functions,{\displaystyle \ell } andN{\displaystyle \ell _{N}}, reach their maximum with the sameμ{\displaystyle \mu } andσ{\displaystyle \sigma }. Hence, the maximum likelihood estimators are identical to those for a normal distribution for the observationslnx1,lnx2,,lnxn){\displaystyle \ln x_{1},\ln x_{2},\dots ,\ln x_{n})},μ^=ilnxin,σ^2=i(lnxiμ^)2n.{\displaystyle {\widehat {\mu }}={\frac {\sum _{i}\ln x_{i}}{n}},\qquad {\widehat {\sigma }}^{2}={\frac {\sum _{i}{\left(\ln x_{i}-{\widehat {\mu }}\right)}^{2}}{n}}.}

For finiten, the estimator forμ{\displaystyle \mu } is unbiased, but the one forσ{\displaystyle \sigma } is biased. As for the normal distribution, an unbiased estimator forσ{\displaystyle \sigma } can be obtained by replacing the denominatorn byn−1 in the equation forσ^2{\displaystyle {\widehat {\sigma }}^{2}}.

From this, the MLE for the expectancy of x is:[43]θ^MLE=E[X]^MLE=eμ^+σ^2/2{\displaystyle {\widehat {\theta }}_{\text{MLE}}={\widehat {\operatorname {E} [X]}}_{\text{MLE}}=e^{{\hat {\mu }}+{{\hat {\sigma }}^{2}}/{2}}}

Method of moments

[edit]

When the individual valuesx1,x2,,xn{\displaystyle x_{1},x_{2},\ldots ,x_{n}} are not available, but the sample's meanx¯{\displaystyle {\bar {x}}} andstandard deviations is, then themethod of moments can be used. The corresponding parameters are determined by the following formulas, obtained from solving the equations for the expectationE[X]{\displaystyle \operatorname {E} [X]} and varianceVar[X]{\displaystyle \operatorname {Var} [X]} forμ{\displaystyle \mu } andσ{\displaystyle \sigma }:[44]μ=lnx¯1+σ^2/x¯2,σ2=ln(1+σ^2/x¯2).{\displaystyle {\begin{aligned}\mu &=\ln {\frac {\bar {x}}{\sqrt {1+{\widehat {\sigma }}^{2}/{\bar {x}}^{2}}}},\\[1ex]\sigma ^{2}&=\ln \left(1+{{\widehat {\sigma }}^{2}}/{\bar {x}}^{2}\right).\end{aligned}}}

Other estimators

[edit]

Other estimators also exist, such as Finney'sUMVUE estimator,[45] the "Approximately Minimum Mean Squared Error Estimator", the "Approximately Unbiased Estimator" and "Minimax Estimator",[46] also "A Conditional Mean Squared Error Estimator",[47] and other variations as well.[48][49]

Interval estimates

[edit]
Further information:Reference range § Log-normal distribution

The most efficient way to obtaininterval estimates when analyzing log-normally distributed data consists of applying the well-known methods based on the normal distribution to logarithmically transformed data and then to back-transform results if appropriate.

Prediction intervals

[edit]

A basic example is given byprediction intervals: For the normal distribution, the interval[μσ,μ+σ]{\displaystyle [\mu -\sigma ,\mu +\sigma ]} contains approximately two thirds (68%) of the probability (or of a large sample), and[μ2σ,μ+2σ]{\displaystyle [\mu -2\sigma ,\mu +2\sigma ]} contain 95%. Therefore, for a log-normal distribution,

Confidence interval foreμ

[edit]

Using the principle, note that aconfidence interval forμ{\displaystyle \mu } is[μ^±qse^]{\displaystyle [{\widehat {\mu }}\pm q\cdot {\widehat {\mathop {se} }}]}, wherese=σ^/n{\displaystyle \mathop {se} ={\widehat {\sigma }}/{\sqrt {n}}} is the standard error andq is the 97.5% quantile of at distribution withn-1 degrees of freedom. Back-transformation leads to a confidence interval forμ=eμ{\displaystyle \mu ^{*}=e^{\mu }} (the median), is:[μ^×/(sem)q]{\displaystyle [{\widehat {\mu }}^{*}{}^{\times }\!\!/(\operatorname {sem} ^{*})^{q}]} withsem=(σ^)1/n{\displaystyle \operatorname {sem} ^{*}=({\widehat {\sigma }}^{*})^{1/{\sqrt {n}}}}

Confidence interval forE(X)

[edit]

The literature discusses several options for calculating theconfidence interval forμ{\displaystyle \mu } (the mean of the log-normal distribution). These includebootstrap as well as various other methods.[50][51]

The Cox Method[a] proposes to plug-in the estimatorsμ^=ilnxin,S2=i(lnxiμ^)2n1{\displaystyle {\widehat {\mu }}={\frac {\sum _{i}\ln x_{i}}{n}},\qquad S^{2}={\frac {\sum _{i}\left(\ln x_{i}-{\widehat {\mu }}\right)^{2}}{n-1}}}

and use them to constructapproximate confidence intervals in the following way:CI(E(X)):exp(μ^+S22±z1α2S2n+S42(n1)){\displaystyle \mathrm {CI} (\operatorname {E} (X)):\exp \left({\hat {\mu }}+{\frac {S^{2}}{2}}\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S^{2}}{n}}+{\frac {S^{4}}{2(n-1)}}}}\right)}

[Proof]

We know thatE(X)=eμ+σ22{\displaystyle \operatorname {E} (X)=e^{\mu +{\frac {\sigma ^{2}}{2}}}}. Also,μ^{\displaystyle {\widehat {\mu }}} is a normal distribution with parameters:μ^N(μ,σ2n){\displaystyle {\widehat {\mu }}\sim N\left(\mu ,{\frac {\sigma ^{2}}{n}}\right)}

S2{\displaystyle S^{2}} has achi-squared distribution, which isapproximately normally distributed (viaCLT), withparameters:S2˙N(σ2,2σ4n1){\displaystyle S^{2}{\dot {\sim }}N\left(\sigma ^{2},{\frac {2\sigma ^{4}}{n-1}}\right)}. Hence,S22˙N(σ22,σ42(n1)){\displaystyle {\frac {S^{2}}{2}}{\dot {\sim }}N\left({\frac {\sigma ^{2}}{2}},{\frac {\sigma ^{4}}{2(n-1)}}\right)}.

Since the sample mean and variance are independent, and the sum of normally distributed variables isalso normal, we get that:μ^+S22˙N(μ+σ22,σ2n+σ42(n1)){\displaystyle {\widehat {\mu }}+{\frac {S^{2}}{2}}{\dot {\sim }}N\left(\mu +{\frac {\sigma ^{2}}{2}},{\frac {\sigma ^{2}}{n}}+{\frac {\sigma ^{4}}{2(n-1)}}\right)}Based on the above, standardconfidence intervals forμ+σ22{\displaystyle \mu +{\frac {\sigma ^{2}}{2}}} can be constructed (using aPivotal quantity) as:μ^+S22±z1α2S2n+S42(n1){\displaystyle {\hat {\mu }}+{\frac {S^{2}}{2}}\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S^{2}}{n}}+{\frac {S^{4}}{2(n-1)}}}}}And since confidence intervals are preserved for monotonic transformations, we get that:CI(E[X]=eμ+σ22):exp(μ^+S22±z1α2S2n+S42(n1)){\displaystyle \mathrm {CI} \left(\operatorname {E} [X]=e^{\mu +{\frac {\sigma ^{2}}{2}}}\right):\exp \left({\hat {\mu }}+{\frac {S^{2}}{2}}\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S^{2}}{n}}+{\frac {S^{4}}{2(n-1)}}}}\right)}

As desired.

Olsson 2005, proposed a "modified Cox method" by replacingz1α2{\displaystyle z_{1-{\frac {\alpha }{2}}}} withtn1,1α2{\displaystyle t_{n-1,1-{\frac {\alpha }{2}}}}, which seemed to provide better coverage results for small sample sizes.[50]: Section 3.4 

Confidence interval for comparing two log normals

[edit]

Comparing two log-normal distributions can often be of interest, for example, from a treatment and control group (e.g., in anA/B test). We have samples from two independent log-normal distributions with parameters(μ1,σ12){\displaystyle (\mu _{1},\sigma _{1}^{2})} and(μ2,σ22){\displaystyle (\mu _{2},\sigma _{2}^{2})}, with sample sizesn1{\displaystyle n_{1}} andn2{\displaystyle n_{2}} respectively.

Comparing the medians of the two can easily be done by taking the log from each and then constructing straightforward confidence intervals and transforming it back to the exponential scale.

CI(eμ1μ2):exp(μ^1μ^2±z1α2S12n+S22n){\displaystyle \mathrm {CI} (e^{\mu _{1}-\mu _{2}}):\exp \left({\hat {\mu }}_{1}-{\hat {\mu }}_{2}\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S_{1}^{2}}{n}}+{\frac {S_{2}^{2}}{n}}}}\right)}

These CI are what are often used in epidemiology for calculation of the CI forrelative-risk andodds-ratio.[54] The way it is done there is that we have two approximately Normal distributions (e.g., p1 and p2, for RR), and we wish to calculate their ratio.[b]

However, the ratio of the expectations (means) of the two samples might also be of interest, while requiring more work to develop. The ratio of their means is:

E(X1)E(X2)=eμ1+σ12/2eμ2+σ22/2=e(μ1μ2)+12(σ12σ22){\displaystyle {\frac {\operatorname {E} (X_{1})}{\operatorname {E} (X_{2})}}={\frac {e^{\mu _{1}+\sigma _{1}^{2}/2}}{e^{\mu _{2}+\sigma _{2}^{2}/2}}}=e^{(\mu _{1}-\mu _{2})+{\frac {1}{2}}\left(\sigma _{1}^{2}-\sigma _{2}^{2}\right)}}

Plugin in the estimators to each of these parameters yields also a log normal distribution, which means that the Cox Method, discussed above, could similarly be used for this use-case:

CI(E(X1)E(X2)=eμ1+σ12/2eμ2+σ22/2):exp((μ^1μ^2+12S1212S22)±z1α2S12n1+S22n2+S142(n11)+S242(n21)){\displaystyle \mathrm {CI} \left({\frac {\operatorname {E} (X_{1})}{\operatorname {E} (X_{2})}}={\frac {e^{\mu _{1}+\sigma _{1}^{2}/2}}{e^{\mu _{2}+\sigma _{2}^{2}/2}}}\right):\exp \left(\left({\hat {\mu }}_{1}-{\hat {\mu }}_{2}+{\tfrac {1}{2}}S_{1}^{2}-{\tfrac {1}{2}}S_{2}^{2}\right)\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S_{1}^{2}}{n_{1}}}+{\frac {S_{2}^{2}}{n_{2}}}+{\frac {S_{1}^{4}}{2(n_{1}-1)}}+{\frac {S_{2}^{4}}{2(n_{2}-1)}}}}\right)}

[Proof]

To construct a confidence interval for this ratio, we first note thatμ^1μ^2{\displaystyle {\hat {\mu }}_{1}-{\hat {\mu }}_{2}} follows a normal distribution, and that bothS12{\displaystyle S_{1}^{2}} andS22{\displaystyle S_{2}^{2}} has achi-squared distribution, which isapproximately normally distributed (viaCLT, with the relevantparameters).

This means that(μ^1μ^2+12S1212S22)N((μ1μ2)+12(σ12σ22),σ12n1+σ22n2+σ142(n11)+σ242(n21)){\displaystyle ({\hat {\mu }}_{1}-{\hat {\mu }}_{2}+{\frac {1}{2}}S_{1}^{2}-{\frac {1}{2}}S_{2}^{2})\sim N\left((\mu _{1}-\mu _{2})+{\frac {1}{2}}(\sigma _{1}^{2}-\sigma _{2}^{2}),{\frac {\sigma _{1}^{2}}{n_{1}}}+{\frac {\sigma _{2}^{2}}{n_{2}}}+{\frac {\sigma _{1}^{4}}{2(n_{1}-1)}}+{\frac {\sigma _{2}^{4}}{2(n_{2}-1)}}\right)}

Based on the above, standardconfidence intervals can be constructed (using aPivotal quantity) as:(μ^1μ^2+12S1212S22)±z1α2S12n1+S22n2+S142(n11)+S242(n21){\displaystyle ({\hat {\mu }}_{1}-{\hat {\mu }}_{2}+{\frac {1}{2}}S_{1}^{2}-{\frac {1}{2}}S_{2}^{2})\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S_{1}^{2}}{n_{1}}}+{\frac {S_{2}^{2}}{n_{2}}}+{\frac {S_{1}^{4}}{2(n_{1}-1)}}+{\frac {S_{2}^{4}}{2(n_{2}-1)}}}}}And since confidence intervals are preserved for monotonic transformations, we get that:CI(E(X1)E(X2)=eμ1+σ122eμ2+σ222):e((μ^1μ^2+12S1212S22)±z1α2S12n1+S22n2+S142(n11)+S242(n21)){\displaystyle CI\left({\frac {\operatorname {E} (X_{1})}{\operatorname {E} (X_{2})}}={\frac {e^{\mu _{1}+{\frac {\sigma _{1}^{2}}{2}}}}{e^{\mu _{2}+{\frac {\sigma _{2}^{2}}{2}}}}}\right):e^{\left(({\hat {\mu }}_{1}-{\hat {\mu }}_{2}+{\frac {1}{2}}S_{1}^{2}-{\frac {1}{2}}S_{2}^{2})\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S_{1}^{2}}{n_{1}}}+{\frac {S_{2}^{2}}{n_{2}}}+{\frac {S_{1}^{4}}{2(n_{1}-1)}}+{\frac {S_{2}^{4}}{2(n_{2}-1)}}}}\right)}}

As desired.

It is worth noting that naively using theMLE in the ratio of the two expectations to create aratio estimator will lead to aconsistent, yet biased, point-estimation (we use the fact that the estimator of the ratio is a log normal distribution):[c][citation needed]

E[E^(X1)E^(X2)]=E[exp((μ^1μ^2)+12(S12S22))]exp[(μ1μ2)+12(σ12σ22)+12(σ12n1+σ22n2+σ142(n11)+σ242(n21))]{\displaystyle {\begin{aligned}\operatorname {E} \left[{\frac {{\widehat {\operatorname {E} }}(X_{1})}{{\widehat {\operatorname {E} }}(X_{2})}}\right]&=\operatorname {E} \left[\exp \left(\left({\widehat {\mu }}_{1}-{\widehat {\mu }}_{2}\right)+{\tfrac {1}{2}}\left(S_{1}^{2}-S_{2}^{2}\right)\right)\right]\\&\approx \exp \left[{(\mu _{1}-\mu _{2})+{\frac {1}{2}}(\sigma _{1}^{2}-\sigma _{2}^{2})+{\frac {1}{2}}\left({\frac {\sigma _{1}^{2}}{n_{1}}}+{\frac {\sigma _{2}^{2}}{n_{2}}}+{\frac {\sigma _{1}^{4}}{2(n_{1}-1)}}+{\frac {\sigma _{2}^{4}}{2(n_{2}-1)}}\right)}\right]\end{aligned}}}

Extremal principle of entropy to fix the free parameterσ

[edit]

In applications,σ{\displaystyle \sigma } is a parameter to be determined. For growing processes balanced by production and dissipation, the use of an extremal principle of Shannon entropy shows that[55]σ=16{\displaystyle \sigma ={\frac {1}{\sqrt {6}}}}

This value can then be used to give some scaling relation between the inflexion point and maximum point of the log-normal distribution.[55] This relationship is determined by the base of natural logarithm,e=2.718{\displaystyle e=2.718\ldots }, and exhibits some geometrical similarity to the minimal surface energy principle.These scaling relations are useful for predicting a number of growth processes (epidemic spreading, droplet splashing, population growth, swirling rate of the bathtub vortex, distribution of language characters, velocity profile of turbulences, etc.).For example, the log-normal function with suchσ{\displaystyle \sigma } fits well with the size of secondarily produced droplets during droplet impact[56] and the spreading of an epidemic disease.[57]

The valueσ=1/6{\textstyle \sigma =1{\big /}{\sqrt {6}}} is used to provide a probabilistic solution for the Drake equation.[58]

Occurrence and applications

[edit]

The log-normal distribution is important in the description of natural phenomena. Many natural growth processes are driven by the accumulation of many small percentage changes which become additive on a log scale. Under appropriate regularity conditions, the distribution of the resulting accumulated changes will be increasingly well approximated by a log-normal, as noted in the section above on "Multiplicative Central Limit Theorem". This is also known asGibrat's law, after Robert Gibrat (1904–1980) who formulated it for companies.[59] If the rate of accumulation of these small changes does not vary over time, growth becomes independent of size. Even if this assumption is not true, the size distributions at any age of things that grow over time tends to be log-normal.[citation needed] Consequently,reference ranges for measurements in healthy individuals are more accurately estimated by assuming a log-normal distribution than by assuming a symmetric distribution about the mean.[citation needed]

A second justification is based on the observation that fundamental natural laws imply multiplications and divisions of positive variables. Examples are the simple gravitation law connecting masses and distance with the resulting force, or the formula for equilibrium concentrations of chemicals in a solution that connects concentrations of educts and products. Assuming log-normal distributions of the variables involved leads to consistent models in these cases.

Specific examples are given in the following subsections.[60] contains a review and table of log-normal distributions from geology, biology, medicine, food, ecology, and other areas.[61] is a review article on log-normal distributions in neuroscience, with annotated bibliography.

Human behavior

[edit]
  • The length of comments posted in Internet discussion forums follows a log-normal distribution.[62]
  • Users' dwell time on online articles (jokes, news etc.) follows a log-normal distribution.[63]
  • The length ofchess games tends to follow a log-normal distribution.[64]
  • Onset durations of acoustic comparison stimuli that are matched to a standard stimulus follow a log-normal distribution.[17]

Biology and medicine

[edit]
  • Measures of size of living tissue (length, skin area, weight).[65]
  • Incubation period of diseases.[66]
  • Diameters of banana leaf spots, powdery mildew on barley.[60]
  • For highly communicable epidemics, such as SARS in 2003, if public intervention control policies are involved, the number of hospitalized cases is shown to satisfy the log-normal distribution with no free parameters if an entropy is assumed and the standard deviation is determined by the principle of maximum rate ofentropy production.[67]
  • The length of inert appendages (hair, claws, nails, teeth) of biological specimens, in the direction of growth.[citation needed]
  • The normalised RNA-Seq readcount for any genomic region can be well approximated by log-normal distribution.
  • ThePacBio sequencing read length follows a log-normal distribution.[68]
  • Certain physiological measurements, such as blood pressure of adult humans (after separation on male/female subpopulations).[69]
  • Severalpharmacokinetic variables, such asCmax,elimination half-life and theelimination rate constant.[70]
  • In neuroscience, the distribution of firing rates across a population of neurons is often approximately log-normal. This has been first observed in the cortex and striatum[71] and later in hippocampus and entorhinal cortex,[72] and elsewhere in the brain.[61][73] Also, intrinsic gain distributions and synaptic weight distributions appear to be log-normal[74] as well.
  • Neuron densities in the cerebral cortex, due to the noisy cell division process during neurodevelopment.[75]
  • In operating-rooms management, the distribution ofsurgery duration.
  • In the size of avalanches of fractures in the cytoskeleton of living cells, showing log-normal distributions, with significantly higher size in cancer cells than healthy ones.[76]

Chemistry

[edit]
Fitted cumulative log-normal distribution to annually maximum 1-day rainfalls, seedistribution fitting

Physical sciences

[edit]
  • Inhydrology, the log-normal distribution is used to analyze extreme values of such variables as monthly and annual maximum values of daily rainfall and river discharge volumes.[78]
  • Inphysical oceanography, the sizes of icebergs in the midwinter Southern Atlantic Ocean were found to follow a log-normal size distribution. The iceberg sizes, measured visually and by radar from the F.S.Polarstern in 1986, were thought to be controlled by wave action in heavy seas causing them to flex and break.[79]
  • Inatmospheric science, log-normal distributions (or distributions made by combining multiple log-normal functions) have been used to characterize both measurements and models of the sizes and concentrations of many different types of particles, from volcanic ash, to clouds and rain, to airborne microbes.[80][81][82][83] The log-normal distribution is strictly empirical, so more physically based distributions have been adopted to better understand processes controlling size distributions of particles such as volcanic ash.[84]

Social sciences and demographics

[edit]

Technology

[edit]
  • Inreliability analysis, the log-normal distribution is often used to model times to repair a maintainable system.[94]
  • Inwireless communication, "the local-mean power expressed in logarithmic values, such as dB or neper, has a normal (i.e., Gaussian) distribution."[95] Also, the random obstruction of radio signals due to large buildings and hills, calledshadowing, is often modeled as a log-normal distribution.
  • Particle size distributions produced by comminution with random impacts, such as inball milling.[96]
  • Thefile size distribution of publicly available audio and video data files (MIME types) follows a log-normal distribution over fiveorders of magnitude.[97]
  • File sizes of 140 million files on personal computers running the Windows OS, collected in 1999.[98][62]
  • Sizes of text-based emails (1990s) and multimedia-based emails (2000s).[62]
  • In computer networks andInternet traffic analysis, log-normal is shown as a good statistical model to represent the amount of traffic per unit time. This has been shown by applying a robust statistical approach on a large groups of real Internet traces. In this context, the log-normal distribution has shown a good performance in two main use cases: (1) predicting the proportion of time traffic will exceed a given level (for service level agreement or link capacity estimation) i.e. link dimensioning based on bandwidth provisioning and (2) predicting 95th percentile pricing.[99]
  • inphysical testing when the test produces a time-to-failure of an item under specified conditions, the data is often best analyzed using a lognormal distribution.[100][101]

See also

[edit]

Notes

[edit]
  1. ^The Cox Method was quoted as "personal communication" in Land, 1971,[52] and was also given in Zhou and Gao (1997)[53] and Olsson 2005[50]: Section 3.3 
  2. ^The issue is that we do not know how to do it directly, so we take their logs, and then use thedelta method to say that their logs is itself (approximately) normal. This trick allows us to pretend that their exp was log normal, and use that approximation to build the CI. Notice that in the RR case, the median and the mean in the base distribution (i.e., before taking the log), is actually identical (since they are originally normal, and not log normal).For example,p^1˙N(p1,p1(1p1)/n){\displaystyle {\hat {p}}_{1}{\dot {\sim }}N(p_{1},p_{1}(1-p1)/n)} andlnp^1˙N(lnp1,(1p1)/(p1n)){\displaystyle \ln {\hat {p}}_{1}{\dot {\sim }}N(\ln p_{1},(1-p1)/(p_{1}n))} Hence, building a CI based on the log and then back-transform will give usCI(p1):elnp^1±(1p^1)/(p^1n)){\displaystyle CI(p_{1}):e^{\ln {\hat {p}}_{1}\pm (1-{\hat {p}}_{1})/({\hat {p}}_{1}n))}}. So while we expect the CI to be for the median, in this case, it is actually also for the mean in the original distribution.i.e., if the originalp^1{\displaystyle {\hat {p}}_{1}} was log-normal, we would expect thatE[p^1]=elnp1+12(1p1)/(p1n){\displaystyle \operatorname {E} [{\hat {p}}_{1}]=e^{\ln p_{1}+{\tfrac {1}{2}}(1-p1)/(p_{1}n)}}. But in practice, we KNOW thatE[p^1]=elnp1=p1{\displaystyle \operatorname {E} [{\hat {p}}_{1}]=e^{\ln p_{1}}=p_{1}}. Hence, the approximation we have is in the second step (of the delta method), but the CI are actually for the expectation (not just the median). This is because we are starting from a base distribution that is normal, and then using another approximation after the log again to normal. This means that a big approximation part of the CI is from the delta method.
  3. ^The formula can found by just treating the estimated means and variances as approximately normal, which indicates the terms is itself a log-normal, enabling us to quickly get the expectation. The bias can be partially minimized by using:[E(X1)E(X2)]^=[E^(X1)E^(X2)]2(σ12n1+σ22n2+σ142(n11)+σ242(n21))^[e(μ^1μ^2)+12(S12S22)]2S12n1+S22n2+S142(n11)+S242(n21){\displaystyle {\begin{aligned}{\widehat {\left[{\frac {\operatorname {E} (X_{1})}{\operatorname {E} (X_{2})}}\right]}}&=\left[{\frac {{\widehat {\operatorname {E} }}(X_{1})}{{\widehat {\operatorname {E} }}(X_{2})}}\right]{\frac {2}{\widehat {\left({\frac {\sigma _{1}^{2}}{n_{1}}}+{\frac {\sigma _{2}^{2}}{n_{2}}}+{\frac {\sigma _{1}^{4}}{2(n_{1}-1)}}+{\frac {\sigma _{2}^{4}}{2(n_{2}-1)}}\right)}}}\\&\approx \left[e^{({\widehat {\mu }}_{1}-{\widehat {\mu }}_{2})+{\frac {1}{2}}\left(S_{1}^{2}-S_{2}^{2}\right)}\right]{\frac {2}{{\frac {S_{1}^{2}}{n_{1}}}+{\frac {S_{2}^{2}}{n_{2}}}+{\frac {S_{1}^{4}}{2(n_{1}-1)}}+{\frac {S_{2}^{4}}{2(n_{2}-1)}}}}\end{aligned}}}

References

[edit]
  1. ^Norton, Matthew; Khokhlov, Valentyn; Uryasev, Stan (2019)."Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation"(PDF).Annals of Operations Research.299 (1–2). Springer:1281–1315.arXiv:1811.11301.doi:10.1007/s10479-019-03373-1.S2CID 254231768.Archived(PDF) from the original on 2021-04-18. Retrieved2023-02-27 – via stonybrook.edu.
  2. ^abcdWeisstein, Eric W."Log Normal Distribution".mathworld.wolfram.com. Retrieved2020-09-13.
  3. ^ab"1.3.6.6.9. Lognormal Distribution".www.itl.nist.gov. U.S.National Institute of Standards and Technology (NIST). Retrieved2020-09-13.
  4. ^abcdeJohnson, Norman L.; Kotz, Samuel; Balakrishnan, N. (1994), "14: Lognormal Distributions",Continuous univariate distributions. Vol. 1, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics (2nd ed.), New York:John Wiley & Sons,ISBN 978-0-471-58495-7,MR 1299979
  5. ^Park, Sung Y.; Bera, Anil K. (2009)."Maximum entropy autoregressive conditional heteroskedasticity model"(PDF).Journal of Econometrics.150 (2):219–230, esp. Table 1, p. 221.CiteSeerX 10.1.1.511.9750.doi:10.1016/j.jeconom.2008.12.014. Archived fromthe original(PDF) on 2016-03-07. Retrieved2011-06-02.
  6. ^Tarmast, Ghasem (2001).Multivariate Log–Normal Distribution(PDF). ISI Proceedings: 53rd Session. Seoul.Archived(PDF) from the original on 2013-07-19.
  7. ^Halliwell, Leigh (2015).The Lognormal Random Multivariate(PDF). Casualty Actuarial Society E-Forum, Spring 2015. Arlington, VA.Archived(PDF) from the original on 2015-09-30.
  8. ^Heyde, CC. (2010), "On a Property of the Lognormal Distribution",Journal of the Royal Statistical Society, Series B, vol. 25, no. 2, pp. 392–393,doi:10.1007/978-1-4419-5823-5_6,ISBN 978-1-4419-5822-8{{citation}}: CS1 maint: work parameter with ISBN (link)
  9. ^Billingsley, Patrick (2012).Probability and Measure (Anniversary ed.). Hoboken, N.J.: Wiley. p. 415.ISBN 978-1-118-12237-2.OCLC 780289503.
  10. ^abHolgate, P. (1989). "The lognormal characteristic function, vol. 18, pp. 4539–4548, 1989".Communications in Statistics – Theory and Methods.18 (12):4539–4548.doi:10.1080/03610928908830173.
  11. ^Barakat, R. (1976). "Sums of independent lognormally distributed random variables".Journal of the Optical Society of America.66 (3):211–216.Bibcode:1976JOSA...66..211B.doi:10.1364/JOSA.66.000211.
  12. ^Barouch, E.; Kaufman, GM.; Glasser, ML. (1986)."On sums of lognormal random variables"(PDF).Studies in Applied Mathematics.75 (1):37–55.doi:10.1002/sapm198675137.hdl:1721.1/48703.
  13. ^Leipnik, Roy B. (January 1991)."On Lognormal Random Variables: I – The Characteristic Function"(PDF).Journal of the Australian Mathematical Society, Series B.32 (3):327–347.doi:10.1017/S0334270000006901.
  14. ^S. Asmussen, J.L. Jensen, L. Rojas-Nandayapa (2016). "On the Laplace transform of the Lognormal distribution",Methodology and Computing in Applied Probability 18 (2), 441-458.Thiele report 6 (13).
  15. ^abKirkwood, Thomas BL (Dec 1979). "Geometric means and measures of dispersion".Biometrics.35 (4):908–909.JSTOR 2530139.
  16. ^Limpert, E; Stahel, W; Abbt, M (2001)."Lognormal distributions across the sciences: keys and clues".BioScience.51 (5):341–352.doi:10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2.
  17. ^abHeil P, Friedrich B (2017)."Onset-Duration Matching of Acoustic Stimuli Revisited: Conventional Arithmetic vs. Proposed Geometric Measures of Accuracy and Precision".Frontiers in Psychology.7: 2013.doi:10.3389/fpsyg.2016.02013.PMC 5216879.PMID 28111557.
  18. ^Sawant, S.; Mohan, N. (2011)"FAQ: Issues with Efficacy Analysis of Clinical Trial Data Using SAS"Archived 24 August 2011 at theWayback Machine,PharmaSUG2011, Paper PO08
  19. ^Schiff, MH; et al. (2014)."Head-to-head, randomised, crossover study of oral versus subcutaneous methotrexate in patients with rheumatoid arthritis: drug-exposure limitations of oral methotrexate at doses >=15 mg may be overcome with subcutaneous administration".Ann Rheum Dis.73 (8):1–3.doi:10.1136/annrheumdis-2014-205228.PMC 4112421.PMID 24728329.
  20. ^Daly, Leslie E.; Bourke, Geoffrey Joseph (2000).Interpretation and Uses of Medical Statistics. Vol. 46 (5th ed.). Oxford, UK: Wiley-Blackwell. p. 89.doi:10.1002/9780470696750.ISBN 978-0-632-04763-5.PMC 1059583;{{cite book}}:|journal= ignored (help) print edition. Online eBookISBN 9780470696750
  21. ^"ProbOnto". Retrieved1 July 2017.
  22. ^Swat, MJ; Grenon, P; Wimalaratne, S (2016)."ProbOnto: ontology and knowledge base of probability distributions".Bioinformatics.32 (17):2719–2721.doi:10.1093/bioinformatics/btw170.PMC 5013898.PMID 27153608.
  23. ^abForbes et al. Probability Distributions (2011), John Wiley & Sons, Inc.
  24. ^Lunn, D. (2012). The BUGS book: a practical introduction to Bayesian analysis. Texts in statistical science. CRC Press.
  25. ^Limpert, E.; Stahel, W. A.; Abbt, M. (2001)."Log-normal distributions across the sciences: Keys and clues".BioScience.51 (5):341–352.doi:10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2.
  26. ^Nyberg, J.; et al. (2012). "PopED – An extended, parallelized, population optimal design tool".Comput Methods Programs Biomed.108 (2):789–805.doi:10.1016/j.cmpb.2012.05.005.PMID 22640817.
  27. ^Retout, S; Duffull, S; Mentré, F (2001). "Development and implementation of the population Fisher information matrix for the evaluation of population pharmacokinetic designs".Comp Meth Pro Biomed.65 (2):141–151.doi:10.1016/S0169-2607(00)00117-6.PMID 11275334.
  28. ^The PopED Development Team (2016). PopED Manual, Release version 2.13. Technical report, Uppsala University.
  29. ^ProbOnto website, URL:http://probonto.org
  30. ^Cococcioni, Marco; Fiorini, Francesco; Pagano, Michele (2023-04-06)."Modelling Heavy Tailed Phenomena Using a LogNormal Distribution Having a Numerically Verifiable Infinite Variance".Mathematics.11 (7): 1758.doi:10.3390/math11071758.hdl:11568/1216554.ISSN 2227-7390.
  31. ^Damgaard, Christian; Weiner, Jacob (2000). "Describing inequality in plant size or fecundity".Ecology.81 (4):1139–1142.doi:10.1890/0012-9658(2000)081[1139:DIIPSO]2.0.CO;2.
  32. ^Rossman, Lewis A (July 1990). "Design stream flows based on harmonic means".Journal of Hydraulic Engineering.116 (7):946–950.doi:10.1061/(ASCE)0733-9429(1990)116:7(946).
  33. ^Thorin, Olof (1977). "On the infinite divisibility of the lognormal distribution".Scandinavian Actuarial Journal.1977 (3):121–148.doi:10.1080/03461238.1977.10405635.ISSN 0346-1238.
  34. ^abGao, Xin (2009)."Asymptotic Behavior of Tail Density for Sum of Correlated Lognormal Variables".International Journal of Mathematics and Mathematical Sciences.2009:1–28.doi:10.1155/2009/630857.
  35. ^Asmussen, S.; Rojas-Nandayapa, L. (2008)."Asymptotics of Sums of Lognormal Random Variables with Gaussian Copula"(PDF).Statistics and Probability Letters.78 (16):2709–2714.doi:10.1016/j.spl.2008.03.035.
  36. ^Marlow, NA. (Nov 1967). "A normal limit theorem for power sums of independent normal random variables".Bell System Technical Journal.46 (9):2081–2089.doi:10.1002/j.1538-7305.1967.tb04244.x.
  37. ^Botev, Z. I.; L'Ecuyer, P. (2017). "Accurate computation of the right tail of the sum of dependent log-normal variates".2017 Winter Simulation Conference (WSC), 3rd–6th Dec 2017. Las Vegas, NV: IEEE. pp. 1880–1890.arXiv:1705.03196.doi:10.1109/WSC.2017.8247924.ISBN 978-1-5386-3428-8.
  38. ^Asmussen, A.; Goffard, P.-O.; Laub, P. J. (2016). "Orthonormal polynomial expansions and lognormal sum densities".arXiv:1601.01763v1 [math.PR].
  39. ^Botev, Z.I.; Salomone, R.; Mackinlay, D. (2019)."Fast and accurate computation of the distribution of sums of dependent log-normals".Annals of Operations Research.280:19–46.doi:10.1007/s10479-019-03161-x.
  40. ^Sangal, B.; Biswas, A. (1970). "The 3-Parameter Lognormal Distribution Applications in Hydrology".Water Resources Research.6 (2):505–515.doi:10.1029/WR006i002p00505.
  41. ^Johnson, N. L. (1949). "Systems of Frequency Curves Generated by Methods of Translation".Biometrika.36 (1/2):149–176.doi:10.2307/2332539.JSTOR 2332539.PMID 18132090.
  42. ^Swamee, P. K. (2002). "Near Lognormal Distribution".Journal of Hydrologic Engineering.7 (6):441–444.doi:10.1061/(ASCE)1084-0699(2002)7:6(441).
  43. ^Shen, Wei-Hsiung. "Estimation of parameters of a lognormal distribution."Taiwanese Journal of Mathematics 2.2 (1998): 243–250.pdf
  44. ^Henry (https://math.stackexchange.com/users/6460/henry), Method of moments estimator for lognormal distribution, URL (version: 2022-01-12):https://math.stackexchange.com/q/4355343
  45. ^Finney, D. J. "On the distribution of a variate whose logarithm is normally distributed."Supplement to the Journal of the Royal Statistical Society 7.2 (1941): 155–161.
  46. ^Longford, Nicholas T. "Inference with the lognormal distribution."Journal of Statistical Planning and Inference 139.7 (2009): 2329–2340.
  47. ^Zellner, Arnold. "Bayesian and non-Bayesian analysis of the log-normal distribution and log-normal regression."Journal of the American Statistical Association 66.334 (1971): 327–330.
  48. ^Tang, Qi. "Comparison of different methods for estimating log-normal means". MS thesis. East Tennessee State University, 2014.linkhttps://dc.etsu.edu/cgi/viewcontent.cgi?article=3728&context=etd#page=12.13 pdf]
  49. ^Kwon, Yeil. "An alternative method for estimating lognormal means."Communications for Statistical Applications and Methods 28.4 (2021): 351–368.link
  50. ^abcOlsson, Ulf. "Confidence intervals for the mean of a log-normal distribution."Journal of Statistics Education 13.1 (2005).pdfhtml
  51. ^user10525, How do I calculate a confidence interval for the mean of a log-normal data set?, URL (version: 2022-12-18):https://stats.stackexchange.com/q/33395
  52. ^Land, C. E. (1971), "Confidence intervals for linear functions of the normal mean and variance," Annals of Mathematical Statistics, 42, 1187–1205.
  53. ^Zhou, X-H., and Gao, S. (1997), "Confidence intervals for the log-normal mean,"Statistics in Medicine, 16, 783–790.
  54. ^Confidence Intervals for Risk Ratios and Odds Ratios
  55. ^abWu, Ziniu; Li, Juan; Bai, Chenyuan (2017)."Scaling Relations of Lognormal Type Growth Process with an Extremal Principle of Entropy".Entropy.19 (56):1–14.Bibcode:2017Entrp..19...56W.doi:10.3390/e19020056.
  56. ^Wu, Zi-Niu (2003). "Prediction of the size distribution of secondary ejected droplets by crown splashing of droplets impinging on a solid wall".Probabilistic Engineering Mechanics.18 (3):241–249.Bibcode:2003PEngM..18..241W.doi:10.1016/S0266-8920(03)00028-6.
  57. ^Wang, WenBin; Wu, ZiNiu; Wang, ChunFeng; Hu, RuiFeng (2013)."Modelling the spreading rate of controlled communicable epidemics through an entropy-based thermodynamic model".Science China Physics, Mechanics and Astronomy.56 (11):2143–2150.arXiv:1304.5603.Bibcode:2013SCPMA..56.2143W.doi:10.1007/s11433-013-5321-0.ISSN 1674-7348.PMC 7111546.PMID 32288765.
  58. ^Bloetscher, Frederick (2019). "Using predictive Bayesian Monte Carlo- Markov Chain methods to provide a probabilistic solution for the Drake equation".Acta Astronautica.155:118–130.Bibcode:2019AcAau.155..118B.doi:10.1016/j.actaastro.2018.11.033.S2CID 117598888.
  59. ^Sutton, John (Mar 1997). "Gibrat's Legacy".Journal of Economic Literature.32 (1):40–59.JSTOR 2729692.
  60. ^abcLimpert, Eckhard; Stahel, Werner A.; Abbt, Markus (2001)."Log-normal Distributions across the Sciences: Keys and Clues".BioScience.51 (5): 341.doi:10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2.ISSN 0006-3568.
  61. ^abBuzsáki, György; Mizuseki, Kenji (2017-01-06)."The log-dynamic brain: how skewed distributions affect network operations".Nature Reviews. Neuroscience.15 (4):264–278.doi:10.1038/nrn3687.ISSN 1471-003X.PMC 4051294.PMID 24569488.
  62. ^abcPawel, Sobkowicz; et al. (2013). "Lognormal distributions of user post lengths in Internet discussions – a consequence of the Weber-Fechner law?".EPJ Data Science.
  63. ^Yin, Peifeng; Luo, Ping; Lee, Wang-Chien; Wang, Min (2013).Silence is also evidence: interpreting dwell time for recommendation from psychological perspective. ACM International Conference on KDD.
  64. ^"What is the average length of a game of chess?".chess.stackexchange.com. Retrieved14 April 2018.
  65. ^Huxley, Julian S. (1932).Problems of relative growth. London.ISBN 978-0-486-61114-3.OCLC 476909537.{{cite book}}:ISBN / Date incompatibility (help)
  66. ^Sartwell, Philip E. "The distribution of incubation periods of infectious disease."American journal of hygiene 51 (1950): 310–318.
  67. ^S. K. Chan, Jennifer; Yu, Philip L. H. (2006). "Modelling SARS data using threshold geometric process".Statistics in Medicine.25 (11):1826–1839.doi:10.1002/sim.2376.PMID 16345017.S2CID 46599163.
  68. ^Ono, Yukiteru; Asai, Kiyoshi; Hamada, Michiaki (2013-01-01)."PBSIM: PacBio reads simulator—toward accurate genome assembly".Bioinformatics.29 (1):119–121.doi:10.1093/bioinformatics/bts649.ISSN 1367-4803.PMID 23129296.
  69. ^Makuch, Robert W.; D.H. Freeman; M.F. Johnson (1979). "Justification for the lognormal distribution as a model for blood pressure".Journal of Chronic Diseases.32 (3):245–250.doi:10.1016/0021-9681(79)90070-5.PMID 429469.
  70. ^Lacey, L. F.; Keene, O. N.; Pritchard, J. F.; Bye, A. (1997-01-01)."Common noncompartmental pharmacokinetic variables: are they normally or log-normally distributed?".Journal of Biopharmaceutical Statistics.7 (1):171–178.doi:10.1080/10543409708835177.ISSN 1054-3406.PMID 9056596.
  71. ^Scheler, Gabriele; Schumann, Johann (2006-10-08).Diversity and stability in neuronal output rates. 36th Society for Neuroscience Meeting, Atlanta.
  72. ^Mizuseki, Kenji; Buzsáki, György (2013-09-12)."Preconfigured, skewed distribution of firing rates in the hippocampus and entorhinal cortex".Cell Reports.4 (5):1010–1021.doi:10.1016/j.celrep.2013.07.039.ISSN 2211-1247.PMC 3804159.PMID 23994479.
  73. ^Wohrer, Adrien; Humphries, Mark D.; Machens, Christian K. (2013-04-01)."Population-wide distributions of neural activity during perceptual decision-making".Progress in Neurobiology.103:156–193.doi:10.1016/j.pneurobio.2012.09.004.ISSN 1873-5118.PMC 5985929.PMID 23123501.
  74. ^Scheler, Gabriele (2017-07-28)."Logarithmic distributions prove that intrinsic learning is Hebbian".F1000Research.6: 1222.doi:10.12688/f1000research.12130.2.PMC 5639933.PMID 29071065.
  75. ^Morales-Gregorio, Aitor; van Meegen, Alexander; van Albada, Sacha (2023)."Ubiquitous lognormal distribution of neuron densities in mammalian cerebral cortex".Cerebral Cortex.33 (16):9439–9449.doi:10.1093/cercor/bhad160.PMC 10438924.PMID 37409647.
  76. ^Polizzi, Stefano; Laperrousaz, Bastien; Perez-Reche, Francisco J; Nicolini, Franck E; Satta, Véronique Maguer; Arneodo, Alain; Argoul, Françoise (2018-05-29)."A minimal rupture cascade model for living cell plasticity".New Journal of Physics.20 (5): 053057.Bibcode:2018NJPh...20e3057P.doi:10.1088/1367-2630/aac3c7.hdl:2164/10561.ISSN 1367-2630.
  77. ^Ahrens, L. H. (1954-02-01)."The lognormal distribution of the elements (A fundamental law of geochemistry and its subsidiary)".Geochimica et Cosmochimica Acta.5 (2):49–73.Bibcode:1954GeCoA...5...49A.doi:10.1016/0016-7037(54)90040-X.ISSN 0016-7037.
  78. ^Oosterbaan, R.J. (1994)."6: Frequency and Regression Analysis"(PDF). In Ritzema, H.P. (ed.).Drainage Principles and Applications, Publication 16. Wageningen, The Netherlands: International Institute for Land Reclamation and Improvement (ILRI). pp. 175–224.ISBN 978-90-70754-33-4.
  79. ^Wadhams, Peter (1988). "Winter observations of iceberg frequencies and sizes in the South Atlantic Ocean".Journal of Geophysical Research: Oceans.93 (C4):3583–3590.doi:10.1029/JC093iC04p03583.
  80. ^Heintzenberg, Jost (1994)."Properties of the Log-Normal Particle Size Distribution".Aerosol Science and Technology.21 (1):46–48.doi:10.1080/02786829408959695.
  81. ^Limpert, Eckhard; Stahel, Werner A.; Abbt, Markus (2001). "Log-normal Distributions across the Sciences: Keys and Clues".BioScience.51 (5):341–352.doi:10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2.
  82. ^Di Giorgio, C; Krempff, A; Guiraud, H; Binder, P; Tiret, C; Dumenil, G (1996). "Atmospheric pollution by airborne microorganisms in the city of Marseilles".Atmospheric Environment.30:155–160.doi:10.1016/1352-2310(95)00143-M.
  83. ^Sheridan, M.F.; Wohletz, K.H.; Dehn, J. (1987). "Discrimination of grain-size subpopulations in pyroclastic deposits".Geology.15 (4):367–370.doi:10.1130/0091-7613(1987)15<367:DOGSIP>2.0.CO;2.
  84. ^Wohletz, K.H.; Sheridan, M.F.; Brown, W.K. (1989). "Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash".Journal of Geophysical Research: Solid Earth.94 (B11):15703–15721.doi:10.1029/JB094iB11p15703.
  85. ^Clementi, Fabio;Gallegati, Mauro (2005)"Pareto's law of income distribution: Evidence for Germany, the United Kingdom, and the United States", EconWPA
  86. ^Wataru, Souma (2002-02-22). "Physics of Personal Income". In Takayasu, Hideki (ed.).Empirical Science of Financial Fluctuations: The Advent of Econophysics. Springer.arXiv:cond-mat/0202388.doi:10.1007/978-4-431-66993-7.
  87. ^Black, F.; Scholes, M. (1973). "The Pricing of Options and Corporate Liabilities".Journal of Political Economy.81 (3): 637.doi:10.1086/260062.S2CID 154552078.
  88. ^Mandelbrot, Benoit (2004).The (mis-)Behaviour of Markets. Basic Books.ISBN 9780465043552.
  89. ^Bunchen, P.,Advanced Option Pricing, University of Sydney coursebook, 2007
  90. ^Thelwall, Mike; Wilson, Paul (2014). "Regression for citation data: An evaluation of different methods".Journal of Informetrics.8 (4):963–971.arXiv:1510.08877.doi:10.1016/j.joi.2014.09.011.S2CID 8338485.
  91. ^Sheridan, Paul; Onodera, Taku (2020)."A Preferential Attachment Paradox: How Preferential Attachment Combines with Growth to Produce Networks with Log-normal In-degree Distributions".Scientific Reports.8 (1): 2811.arXiv:1703.06645.doi:10.1038/s41598-018-21133-2.PMC 5809396.PMID 29434232.
  92. ^Eeckhout, Jan (2004)."Gibrat's Law for (All) Cities".American Economic Review.94 (5):1429–1451.doi:10.1257/0002828043052303.JSTOR 3592829.
  93. ^Kault, David (1996)."The Shape of the Distribution of the Number of Sexual Partners".Statistics in Medicine.15 (2):221–230.doi:10.1002/(SICI)1097-0258(19960130)15:2<221::AID-SIM148>3.0.CO;2-Q.PMID 8614756.
  94. ^O'Connor, Patrick; Kleyner, Andre (2011).Practical Reliability Engineering. John Wiley & Sons. p. 35.ISBN 978-0-470-97982-2.
  95. ^"Shadowing".www.WirelessCommunication.NL. Archived fromthe original on January 13, 2012.
  96. ^Dexter, A. R.; Tanner, D. W. (July 1972)."Packing Densities of Mixtures of Spheres with Log-normal Size Distributions".Nature Physical Science.238 (80):31–32.Bibcode:1972NPhS..238...31D.doi:10.1038/physci238031a0.ISSN 2058-1106.
  97. ^Gros, C; Kaczor, G.; Markovic, D (2012). "Neuropsychological constraints to human data production on a global scale".The European Physical Journal B.85 (28): 28.arXiv:1111.6849.Bibcode:2012EPJB...85...28G.doi:10.1140/epjb/e2011-20581-3.S2CID 17404692.
  98. ^Douceur, John R.; Bolosky, William J. (1999-05-01)."A large-scale study of file-system contents".ACM SIGMETRICS Performance Evaluation Review.27 (1):59–70.doi:10.1145/301464.301480.ISSN 0163-5999.
  99. ^Alamsar, Mohammed; Parisis, George; Clegg, Richard; Zakhleniuk, Nickolay (2019). "On the Distribution of Traffic Volumes in the Internet and its Implications".arXiv:1902.03853 [cs.NI].
  100. ^ASTM D3654, Standard Test Method for Shear Adhesion on Pressure-Sensitive Tapesw
  101. ^ASTM D4577, Standard Test Method for Compression Resistance of a container Under Constant Load>\

Further reading

[edit]

External links

[edit]
Wikimedia Commons has media related toLog-normal distribution.
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
International
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Log-normal_distribution&oldid=1339105839"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp