Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Location parameter

From Wikipedia, the free encyclopedia
Concept in statistics
This article has multiple issues. Please helpimprove it or discuss these issues on thetalk page.(Learn how and when to remove these messages)
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Location parameter" – news ·newspapers ·books ·scholar ·JSTOR
(February 2020) (Learn how and when to remove this message)
This article'sfactual accuracy isdisputed. Relevant discussion may be found on thetalk page. Please help to ensure that disputed statements arereliably sourced.(July 2021) (Learn how and when to remove this message)
(Learn how and when to remove this message)

Instatistics, alocation parameter of aprobability distribution is a scalar- or vector-valuedparameterx0{\displaystyle x_{0}}, which determines the "location" or shift of the distribution. In the literature of location parameter estimation, the probability distributions with such parameter are found to be formally defined in one of the following equivalent ways:

A direct example of a location parameter is the parameterμ{\displaystyle \mu } of thenormal distribution. To see this, note that the probability density functionf(x|μ,σ){\displaystyle f(x|\mu ,\sigma )} of a normal distributionN(μ,σ2){\displaystyle {\mathcal {N}}(\mu ,\sigma ^{2})} can have the parameterμ{\displaystyle \mu } factored out and be written as:g(x=xμ|σ)=1σ2πexp(12(xσ)2){\displaystyle g(x'=x-\mu |\sigma )={\frac {1}{\sigma {\sqrt {2\pi }}}}\exp \left(-{\frac {1}{2}}\left({\frac {x'}{\sigma }}\right)^{2}\right)}thus fulfilling the first of the definitions given above.

The above definition indicates, in the one-dimensional case, that ifx0{\displaystyle x_{0}} is increased, the probability density or mass function shifts rigidly to the right, maintaining its exact shape.

A location parameter can also be found in families having more than one parameter, such aslocation–scale families. In this case, the probability density function or probability mass function will be a special case of the more general formfx0,θ(x)=fθ(xx0){\displaystyle f_{x_{0},\theta }(x)=f_{\theta }(x-x_{0})}wherex0{\displaystyle x_{0}} is the location parameter,θ represents additional parameters, andfθ{\displaystyle f_{\theta }} is a function parametrized on the additional parameters.

Definition

[edit]

Source:[4]

Letf(x){\displaystyle f(x)} be any probability density function and letμ{\displaystyle \mu } andσ>0{\displaystyle \sigma >0} be any given constants. Then the function

g(x|μ,σ)=1σf(xμσ){\displaystyle g(x|\mu ,\sigma )={\frac {1}{\sigma }}f{\left({\frac {x-\mu }{\sigma }}\right)}}

is a probability density function.

The location family is then defined as follows:

Letf(x){\displaystyle f(x)} be any probability density function. Then the family of probability density functionsF={f(xμ):μR}{\displaystyle {\mathcal {F}}=\{f(x-\mu ):\mu \in \mathbb {R} \}} is called the location family with standard probability density functionf(x){\displaystyle f(x)}, whereμ{\displaystyle \mu } is called thelocation parameter for the family.

Additive noise

[edit]

An alternative way of thinking of location families is through the concept ofadditive noise. Ifx0{\displaystyle x_{0}} is a constant andW is randomnoise with probability densityfW(w),{\displaystyle f_{W}(w),} thenX=x0+W{\displaystyle X=x_{0}+W} has probability densityfx0(x)=fW(xx0){\displaystyle f_{x_{0}}(x)=f_{W}(x-x_{0})} and its distribution is therefore part of a location family.

Proofs

[edit]

For the continuous univariate case, consider a probability density functionf(x|θ),x[a,b]R{\displaystyle f(x|\theta ),x\in [a,b]\subset \mathbb {R} }, whereθ{\displaystyle \theta } is a vector of parameters. A location parameterx0{\displaystyle x_{0}} can be added by defining:g(x|θ,x0)=f(xx0|θ),x[a+x0,b+x0]{\displaystyle g(x|\theta ,x_{0})=f(x-x_{0}|\theta ),\;x\in [a+x_{0},b+x_{0}]}it can be proved thatg{\displaystyle g} is a p.d.f. by verifying if it respects the two conditions[5]g(x|θ,x0)0{\displaystyle g(x|\theta ,x_{0})\geq 0} andg(x|θ,x0)dx=1{\displaystyle \int _{-\infty }^{\infty }g(x|\theta ,x_{0})dx=1}.g{\displaystyle g} integrates to 1 because:g(x|θ,x0)dx=a+x0b+x0g(x|θ,x0)dx=a+x0b+x0f(xx0|θ)dx{\displaystyle \int _{-\infty }^{\infty }g(x|\theta ,x_{0})dx=\int _{a+x_{0}}^{b+x_{0}}g(x|\theta ,x_{0})dx=\int _{a+x_{0}}^{b+x_{0}}f(x-x_{0}|\theta )dx}now making the variable changeu=xx0{\displaystyle u=x-x_{0}} and updating the integration interval accordingly yields:abf(u|θ)du=1{\displaystyle \int _{a}^{b}f(u|\theta )du=1}becausef(x|θ){\displaystyle f(x|\theta )} is a p.d.f. by hypothesis.g(x|θ,x0)0{\displaystyle g(x|\theta ,x_{0})\geq 0} follows fromg{\displaystyle g} sharing the same image off{\displaystyle f}, which is a p.d.f. so its range is contained in[0,1]{\displaystyle [0,1]}.

See also

[edit]

References

[edit]
  1. ^Takeuchi, Kei (1971). "A Uniformly Asymptotically Efficient Estimator of a Location Parameter".Journal of the American Statistical Association.66 (334):292–301.doi:10.1080/01621459.1971.10482258.S2CID 120949417.
  2. ^Huber, Peter J. (1992)."Robust Estimation of a Location Parameter".Breakthroughs in Statistics. Springer Series in Statistics. Springer. pp. 492–518.doi:10.1007/978-1-4612-4380-9_35.ISBN 978-0-387-94039-7.
  3. ^Stone, Charles J. (1975)."Adaptive Maximum Likelihood Estimators of a Location Parameter".The Annals of Statistics.3 (2):267–284.doi:10.1214/aos/1176343056.
  4. ^Casella, George; Berger, Roger (2001).Statistical Inference (2nd ed.). Thomson Learning. p. 116.ISBN 978-0534243128.
  5. ^Ross, Sheldon (2010).Introduction to probability models. Amsterdam Boston: Academic Press.ISBN 978-0-12-375686-2.OCLC 444116127.

General references

[edit]
Continuous data
Center
Dispersion
Shape
Count data
Summary tables
Dependence
Graphics
Study design
Survey methodology
Controlled experiments
Adaptive designs
Observational studies
Statistical theory
Frequentist inference
Point estimation
Interval estimation
Testing hypotheses
Parametric tests
Specific tests
Goodness of fit
Rank statistics
Bayesian inference
Correlation
Regression analysis (see alsoTemplate:Least squares and regression analysis
Linear regression
Non-standard predictors
Generalized linear model
Partition of variance
Categorical
Multivariate
Time-series
General
Specific tests
Time domain
Frequency domain
Survival
Survival function
Hazard function
Test
Biostatistics
Engineering statistics
Social statistics
Spatial statistics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Location_parameter&oldid=1305220130"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp