Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Lithium borohydride

From Wikipedia, the free encyclopedia
Lithium borohydride
Unit cell of lithium borohydride at room temperature
Unit cell of lithium borohydride at room temperature
Names
IUPAC name
Lithium tetrahydridoborate(1–)
Other names
Lithium hydroborate,
Lithium tetrahydroborate
Borate(1-), tetrahydro-, lithium, lithium boranate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard100.037.277Edit this at Wikidata
RTECS number
  • ED2725000
UNII
  • InChI=1S/BH4.Li/h1H4;/q-1;+1 checkY
    Key: UUKMSDRCXNLYOO-UHFFFAOYSA-N checkY
  • InChI=1/BH4.Li/h1H4;/q-1;+1
    Key: UUKMSDRCXNLYOO-UHFFFAOYAS
  • [Li+].[BH4-]
Properties
LiBH4
Molar mass21.784 g/mol
AppearanceWhite solid
Density0.666 g/cm3[1]
Melting point268 °C (514 °F; 541 K)
Boiling point380 °C (716 °F; 653 K) decomposes
reacts
Solubility inether2.5 g/100 mL
Structure[2]
orthorhombic
Pnma
a = 7.17858(4),b = 4.43686(2),c = 6.80321(4)
216.685(3) A3
4
[4]B
Thermochemistry
82.6 J/(mol⋅K)
75.7 J/(mol⋅K)
−198.83 kJ/mol
Hazards
> 180 °C (356 °F; 453 K)
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Chemical compound

Lithium borohydride (LiBH4) is aborohydride and known inorganic synthesis as areducing agent foresters. Although less common than the relatedsodium borohydride, the lithium salt offers some advantages, being a stronger reducing agent and highly soluble in ethers, whilst remaining safer to handle thanlithium aluminium hydride.[3]

Preparation

[edit]

Lithium borohydride may be prepared by themetathesis reaction, which occurs upon ball-milling the more commonly availablesodium borohydride andlithium bromide:[4]

NaBH4 + LiBr → NaBr + LiBH4

Alternatively, it may be synthesized by treatingboron trifluoride withlithium hydride indiethyl ether:[5]

BF3 + 4 LiH → LiBH4 + 3 LiF

Reactions

[edit]

Lithium borohydride is useful as a source ofhydride (H). It can react with a range ofcarbonyl substrates and other polarized carbon structures to form a hydrogen–carbon bond. It can also react withBrønsted–Lowry-acidic substances (sources of H+) to formhydrogen gas.

Reduction reactions

[edit]

As ahydride reducing agent, lithium borohydride is stronger than sodium borohydride[6][7] but weaker than lithium aluminium hydride.[7] Unlike the sodium analog, it can reduce esters to alcohols,nitriles andprimaryamides toamines, and can openepoxides. The enhanced reactivity in many of these cases is attributed to the polarization of the carbonyl substrate by complexation to the lithium cation.[3] Unlike the aluminium analog, it does not react withnitro groups,carbamic acids,alkyl halides, orsecondary andtertiary amides.

Hydrogen generation

[edit]

Lithium borohydride reacts with water to produce hydrogen. This reaction can be used for hydrogen generation.[8]

Although this reaction is usually spontaneous and violent, somewhat-stableaqueous solutions of lithium borohydride can be prepared at low temperature ifdegassed,distilled water is used and exposure tooxygen is avoided.[9]

Volumetric vs gravimetricenergy density
Schematic of lithium borohydride recycling. Inputs are lithium borate and hydrogen.

Lithium borohydride is renowned as one of the highest-energy-density chemicalenergy carriers. Although of no practicality, the solid liberates 65 MJ/kg heat upon treatment with atmospheric oxygen. Since it has a density of 0.67 g/cm3, oxidation of liquid lithium borohydride gives 43 MJ/L. In comparison, gasoline gives 44 MJ/kg (or 35 MJ/L), while liquid hydrogen gives 120 MJ/kg (or 8.0 MJ/L).[nb 1] The high specific energy density of lithium borohydride has made it an attractive candidate to propose for automobile and rocket fuel, but despite the research and advocacy, it has not been used widely. As with all chemical-hydride-based energy carriers, lithium borohydride is very complex to recycle (i.e. recharge) and therefore suffers from a lowenergy conversion efficiency. While batteries such aslithium-ion carry an energy density of up to 0.72 MJ/kg and 2.0 MJ/L, theirDC-to-DC conversion efficiency can be as high as 90%.[10] In view of the complexity of recycling mechanisms for metal hydrides,[11] such high energy-conversion efficiencies are not practical with present technology.

Comparison of physical properties
SubstanceSpecific energy,
MJ/kg
Density,
g/cm3
Energy density,
MJ/L
LiBH465.20.66643.4
Regulargasoline440.7234.8
Liquid hydrogen1200.07088
Lithium-ion battery0.722.82

Structure

[edit]

Fourpolymorphs have been described. The stable forms feature tetrahedral BH4- anions.[12]

See also

[edit]

Notes

[edit]
  1. ^ The greater ratio of energy density to specific energy for hydrogen is because of the very low mass density (0.071 g/cm3).

References

[edit]
  1. ^Sigma-Aldrich Product Detail Page.
  2. ^J-Ph. Soulie, G. Renaudin, R. Cerny, K. Yvon (2002-11-18). "Lithium boro-hydride LiBH4: I. Crystal structure".Journal of Alloys and Compounds.346 (1–2):200–205.doi:10.1016/S0925-8388(02)00521-2.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^abLuca Banfi, Enrica Narisano, Renata Riva, Ellen W. Baxter, "Lithium Borohydride" e-EROS Encyclopedia of Reagents for Organic Synthesis, 2001, John Wiley & Sons.doi:10.1002/047084289X.rl061.pub2.
  4. ^Peter Rittmeyer, Ulrich Wietelmann, "Hydrides" in Ullmann's Encyclopedia of Industrial Chemistry, 2002, Wiley-VCH, Weinheim.doi:10.1002/14356007.a13_199.
  5. ^Brauer, Georg (1963).Handbook of Preparative Inorganic Chemistry. Vol. 1 (2nd ed.). New York: Academic Press. p. 775.ISBN 978-0-12-126601-1.{{cite book}}:ISBN / Date incompatibility (help)
  6. ^Barrett, Anthony G. M. (1991). "Reduction of Carboxylic Acid Derivatives to Alcohols, Ethers and Amines". In Trost, Barry; Fleming, Ian; Schreiber, Stuart (eds.).Reduction: Selectivity, Strategy & Efficiency in Modern Organic Chemistry (1st ed.). New York: Pergamon Press. p. 244.doi:10.1016/B978-0-08-052349-1.00226-2.ISBN 978-0-08-040599-5.
  7. ^abOokawa, Atsuhiro; Soai, Kenso (1986). "Mixed solvents containing methanol as useful reaction media for unique chemoselective reductions within lithium borohydride".The Journal of Organic Chemistry.51 (21):4000–4005.doi:10.1021/jo00371a017.
  8. ^Kojima, Yoshitsugu; Kawai, Yasuaki; Kimbara, Masahiko; Nakanishi, Haruyuki; Matsumoto, Shinichi (August 2004). "Hydrogen Generation by Hydrolysis Reaction of Lithium Borohydride".International Journal of Hydrogen Energy.29 (12):1213–1217.Bibcode:2004IJHE...29.1213K.doi:10.1016/j.ijhydene.2003.12.009.
  9. ^Banus, M. Douglas; Bragdon, Robert W.; Gibb, Thomas R. P. Jr (1952). "Preparation of Quaternary Ammonium Borohydrides from Sodium and Lithium Borohydrides".J. Am. Chem. Soc.74 (9):2346–2348.Bibcode:1952JAChS..74.2346B.doi:10.1021/ja01129a048.
  10. ^Valøen, Lars Ole and Shoesmith, Mark I. (2007). The effect of PHEV and HEV duty cycles on battery and battery pack performance (PDF). 2007 Plug-in Highway Electric Vehicle Conference: Proceedings. Retrieved 11 June 2010.
  11. ^U.S. patent 4,002,726 (1977) lithium borohydride recycling from lithium borate via a methyl borate intermediate.
  12. ^Paskevicius, Mark; Jepsen, Lars H.; Schouwink, Pascal; Černý, Radovan; Ravnsbæk, Dorthe B.; Filinchuk, Yaroslav; Dornheim, Martin; Besenbacher, Flemming; Jensen, Torben R. (2017). "Metal borohydrides and derivatives – synthesis, structure and properties".Chemical Society Reviews.46 (5):1565–1634.doi:10.1039/c6cs00705h.hdl:2078.1/186211.PMID 28218318.
Compounds withnoble gases
Compounds withhalogens
Oxides andhydroxides
Compounds withchalcogens
Compounds withpnictogens
Compounds withgroup 14 elements
Compounds withgroup 13 elements
Compounds withtransition metals
Organic (soaps)
Other compounds
Minerals
Other Li-related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Lithium_borohydride&oldid=1324901431"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp