Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Lithium aluminium hydride

From Wikipedia, the free encyclopedia
Lithium aluminium hydride
Wireframe model of lithium aluminium hydride
Wireframe model of lithium aluminium hydride
Unit cell ball and stick model of lithium aluminium hydride
Unit cell ball and stick model of lithium aluminium hydride
Lithium aluminium hydride
Lithium aluminium hydride
Names
Preferred IUPAC name
Lithium tetrahydridoaluminate(III)
Systematic IUPAC name
Lithium alumanuide
Other names
  • Lithium aluminium hydride
  • Lithal
  • Lithium alanate
  • Lithium aluminohydride
  • Lithium tetrahydridoaluminate
Identifiers
3D model (JSmol)
AbbreviationsLAH
ChEBI
ChemSpider
ECHA InfoCard100.037.146Edit this at Wikidata
EC Number
  • 240-877-9
13167
RTECS number
  • BD0100000
UNII
UN number1410
  • InChI=1S/Al.Li.4H/q-1;+1;;;; checkY
    Key: OCZDCIYGECBNKL-UHFFFAOYSA-N checkY
  • InChI=1S/Al.Li.4H/q-1;+1;;;;
  • Key: OCZDCIYGECBNKL-UHFFFAOYSA-N
  • [Li+].[AlH4-]
Properties
Li[AlH4]
Molar mass37.95 g·mol−1
Appearancewhite crystals (pure samples)
grey powder (commercial material)
hygroscopic
Odorodorless
Density0.917 g/cm3, solid
Melting point150 °C (302 °F; 423 K) (decomposes)
Reacts
Solubility intetrahydrofuran112.332 g/L
Solubility indiethyl ether39.5 g/(100 mL)
Structure
monoclinic
P21/c
Thermochemistry
86.4 J/(mol·K)
87.9 J/(mol·K)
−117 kJ/mol
−48.4 kJ/mol
Hazards[2]
GHS labelling:
GHS02: FlammableGHS05: Corrosive
Danger
H260,H314
P223,P231+P232,P280,P305+P351+P338,P370+P378,P422[1]
NFPA 704 (fire diamond)
Flash point125 °C (257 °F; 398 K)
Safety data sheet (SDS)Lithium aluminium hydride
Related compounds
Relatedhydride
aluminium hydride
sodium borohydride
sodium hydride
Sodium aluminium hydride
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Chemical compound

Lithium aluminium hydride, commonly abbreviated toLAH, is aninorganic compound with thechemical formulaLi[AlH4] orLiAlH4. It is a white solid, discovered by Finholt, Bond andSchlesinger in 1947.[4] This compound is used as areducing agent inorganic synthesis, especially for the reduction ofesters,carboxylic acids, andamides. The solid is dangerously reactive toward water, releasing gaseoushydrogen (H2). Some related derivatives were once discussed forhydrogen storage.

Properties, structure, preparation

[edit]
Scanning Electron Microscope image of LAH powder

LAH is a colourless solid, but commercial samples are usually gray due to contamination.[5] This material can be purified by recrystallization fromdiethyl ether. Large-scale purifications employ aSoxhlet extractor. Commonly, the impure gray material is used in synthesis, since the impurities are innocuous and can be easily separated from the organic products. The pure powdered material ispyrophoric but not its large crystals.[6] Some commercial materials containmineral oil to inhibit reactions with atmospheric moisture, but more commonly it is packed in moisture-proof plastic sacks.[7]

LAH violently reacts with water to liberate hydrogen gas. The reaction proceeds according to the following idealized equation:[5]

Li[AlH4] + 4 H2O → LiOH + Al(OH)3 + 4 H2

This reaction could be used to generate hydrogen in the laboratory. Aged, air-exposed samples often appear white because they have absorbed sufficient moisture to generate a mixture of the white compoundslithium hydroxide andaluminium hydroxide.[8]

Structure

[edit]
The crystal structure of LAH; Li atoms are purple andAlH4 tetrahedra are tan.

LAH crystallizes in themonoclinicspace groupP21/c. Theunit cell has the dimensions:a = 4.82,b = 7.81, andc = 7.92 Å, α = γ = 90° and β = 112°. In the structure,Li+cations are surrounded by five[AlH4]anions, which havetetrahedral molecular geometry. TheLi+ cations are bonded to onehydrogen atom from each of the surrounding tetrahedral[AlH4] anion creating abipyramid arrangement. At high pressures (>2.2 GPa) a phase transition may occur to give β-LAH.[9]

X-ray powder diffraction pattern of as-receivedLi[AlH4]. The asterisk designates an impurity, possiblyLiCl.

Preparation

[edit]

Li[AlH4] was first prepared from the reaction betweenlithium hydride (LiH) andaluminium chloride:[4][5]

4 LiH + AlCl3 → Li[AlH4] + 3 LiCl

In addition to this method, the industrial synthesis entails the initial preparation ofsodium aluminium hydride from the elements under high pressure and temperature:[10]

Na + Al + 2 H2 → Na[AlH4]

Li[AlH4] is then prepared by asalt metathesis reaction according to:

Na[AlH4] + LiCl → Li[AlH4] + NaCl

LiCl is removed byfiltration from anethereal solution of LAH, with subsequent precipitation of LAH to yield a product containing around 1 wt% LiCl.[10]

An alternative preparation starts from LiH, and metallic Al instead ofAlCl3. Catalyzed by a small quantity ofTiCl3 (0.2%), the reaction proceeds well usingdimethylether as solvent. This method avoids the cogeneration of salt.[11]

Solubility data

[edit]
Solubility ofLi[AlH4] (mol/L)[12]
SolventTemperature (°C)
0255075100
Diethyl ether5.92
THF2.96
Monoglyme1.291.802.573.093.34
Diglyme0.261.291.542.062.06
Triglyme0.560.771.291.802.06
Tetraglyme0.771.542.062.061.54
Dioxane0.03
Dibutyl ether0.56

LAH is soluble in manyethereal solutions. However, it may spontaneously decompose due to the presence of catalytic impurities, though, it appears to be more stable intetrahydrofuran (THF). Thus, THF is preferred over, e.g.,diethyl ether, despite the lower solubility.[12]

Thermal decomposition

[edit]

LAH ismetastable at room temperature. During prolonged storage it slowly decomposes toLi3[AlH6] (lithium hexahydridoaluminate) andLiH.[13] This process can be accelerated by the presence ofcatalytic elements, such astitanium,iron orvanadium.

Differential scanning calorimetry of as-receivedLi[AlH4].

When heated LAH decomposes in a three-stepreaction mechanism:[13][14][15]

3 Li[AlH4] → Li3[AlH6] + 2 Al + 3 H2R1
2 Li3[AlH6] → 6 LiH + 2 Al + 3 H2R2
2 LiH + 2 Al → 2 LiAl + H2R3

R1 is usually initiated by themelting of LAH in the temperature range 150–170 °C,[16][17][18] immediately followed by decomposition into solidLi3[AlH6], althoughR1 is known to proceed below the melting point ofLi[AlH4] as well.[19] At about 200 °C,Li3[AlH6] decomposes into LiH (R2)[13][15][18] and Al which subsequently convert into LiAl above 400 °C (R3).[15] Reaction R1 is effectively irreversible.R3 is reversible with an equilibrium pressure of about 0.25 bar at 500 °C.R1 andR2 can occur at room temperature with suitable catalysts.[20]

Thermodynamic data

[edit]

The table summarizesthermodynamic data for LAH and reactions involving LAH,[21][22] in the form ofstandardenthalpy,entropy, andGibbs free energy change, respectively.

Thermodynamic data for reactions involvingLi[AlH4]
ReactionΔH°
(kJ/mol)
ΔS°
(J/(mol·K))
ΔG°
(kJ/mol)
Comment
Li (s) + Al (s) + 2 H2 (g) → Li[AlH4] (s)−116.3−240.1−44.7Standard formation from the elements.
LiH (s) + Al (s) +32 H2 (g) → LiAlH4 (s)−95.6−180.2237.6Using ΔH°f(LiH) = −90.579865, ΔS°f(LiH) = −679.9, and ΔG°f(LiH) = −67.31235744.
Li[AlH4] (s) → Li[AlH4] (l)22Heat of fusion. Value might be unreliable.
LiAlH4 (l) →13 Li3AlH6 (s) +23 Al (s) + H2 (g)3.46104.5−27.68ΔS° calculated from reported values of ΔH° and ΔG°.

Applications

[edit]

Use in organic chemistry

[edit]

Lithium aluminium hydride (LAH) is widely used in organic chemistry as areducing agent.[5] It is more powerful than the relatedreagentsodium borohydride owing to the weaker Al-H bond compared to the B-H bond.[23] Often as a solution indiethyl ether and followed by an acid workup, it will convertesters,carboxylic acids,acyl chlorides,aldehydes, andketones into the correspondingalcohols (see:carbonyl reduction). Similarly, it convertsamide,[24][25]nitro,nitrile,imine,oxime,[26] andorganic azides into theamines (see:amide reduction). It reducesquaternary ammonium cations into the corresponding tertiary amines. Reactivity can be tuned by replacing hydride groupsby alkoxy groups. Due to its pyrophoric nature, instability, toxicity, low shelf life and handling problems associated with its reactivity, it has been replaced in the last decade, both at the small-industrial scale and for large-scale reductions by the more convenient related reagentsodium bis (2-methoxyethoxy)aluminium hydride, which exhibits similar reactivity but with higher safety, easier handling and better economics.[27]

LAH is most commonly used for the reduction ofesters[28][29] andcarboxylic acids[30] to primary alcohols; prior to the advent of LAH this was a difficult conversion involvingsodium metal in boilingethanol (theBouveault-Blanc reduction).Aldehydes andketones[31] can also be reduced to alcohols by LAH, but this is usually done using milder reagents such asNa[BH4]; α, β-unsaturated ketones are reduced to allylic alcohols.[32] Whenepoxides are reduced using LAH, the reagent attacks the lesshindered end of the epoxide, usually producing a secondary or tertiary alcohol.Epoxycyclohexanes are reduced to give axial alcohols preferentially.[33]

Partial reduction ofacid chlorides to give the corresponding aldehyde product cannot proceed via LAH, since the latter reduces all the way to the primary alcohol. Instead, the milderlithium tri-tert-butoxyaluminum hydride, which reacts significantly faster with the acid chloride than with the aldehyde, must be used. For example, whenisovaleric acid is treated withthionyl chloride to give isovaleroyl chloride, it can then be reduced via lithium tri-tert-butoxyaluminum hydride to give isovaleraldehyde in 65% yield.[34][35]

Lithium aluminium hydride also reducesalkyl halides toalkanes.[36][37] Alkyl iodides react the fastest, followed by alkyl bromides and then alkyl chlorides. Primary halides are the most reactive followed by secondary halides. Tertiary halides react only in certain cases.[38]

Lithium aluminium hydride does not reduce simplealkenes orarenes.Alkynes are reduced only if an alcohol group is nearby,[39] and alkenes are reduced in the presence of catalyticTiCl4.[40] It was observed that theLiAlH4 reduces the double bond in theN-allylamides.[41]

Inorganic chemistry

[edit]

LAH is widely used to prepare main group and transitionmetal hydrides from the corresponding metalhalides.

LAH also reacts with many inorganic ligands to form coordinated alumina complexes associated with lithium ions.[21]

LiAlH4 + 4NH3 → Li[Al(NH2)4] + 4H2

Hydrogen storage

[edit]
Volumetric and gravimetric hydrogen storage densities of different hydrogen storage methods. Metal hydrides are represented with squares and complex hydrides with triangles (including LiAlH4). Reported values for hydrides are excluding tank weight.DOEFreedomCAR targets are including tank weight.

LiAlH4 contains 10.6 wt% hydrogen, thereby making LAH a potentialhydrogen storage medium for futurefuel cell-poweredvehicles. The high hydrogen content, as well as the discovery of reversible hydrogen storage in Ti-doped NaAlH4,[42] have sparked renewed research into LiAlH4 during the last decade. A substantial research effort has been devoted to accelerating the decomposition kinetics by catalytic doping and byball milling.[43]In order to take advantage of the total hydrogen capacity, the intermediate compoundLiH must be dehydrogenated as well. Due to its high thermodynamic stability this requires temperatures in excess of 400 °C, which is not considered feasible for transportation purposes. Accepting LiH + Al as the final product, the hydrogen storage capacity is reduced to 7.96 wt%. Another problem related to hydrogen storage is the recycling back to LiAlH4 which, owing to its relatively low stability, requires an extremely high hydrogen pressure in excess of 10000 bar.[43] Cycling only reaction R2 — that is, using Li3AlH6 as starting material — would store 5.6 wt% hydrogen in a single step (vs. two steps for NaAlH4 which stores about the same amount of hydrogen). However, attempts at this process have not been successful so far.[citation needed]

Other tetrahydridoaluminiumates

[edit]

A variety of salts analogous to LAH are known.NaH can be used to efficiently producesodium aluminium hydride (NaAlH4) bymetathesis in THF:

LiAlH4 + NaH → NaAlH4 + LiH

Potassium aluminium hydride (KAlH4) can be produced similarly indiglyme as a solvent:[44]

LiAlH4 + KH → KAlH4 + LiH

The reverse, i.e., production of LAH from either sodium aluminium hydride or potassium aluminium hydride can be achieved by reaction withLiCl or lithium hydride indiethyl ether orTHF:[44]

NaAlH4 + LiCl → LiAlH4 + NaCl
KAlH4 + LiCl → LiAlH4 + KCl

"Magnesium alanate" (Mg(AlH4)2) arises similarly usingMgBr2:[45]

2 LiAlH4 + MgBr2 → Mg(AlH4)2 + 2 LiBr

Red-Al (or SMEAH, NaAlH2(OC2H4OCH3)2) is synthesized by reacting sodium aluminum tetrahydride (NaAlH4) and2-methoxyethanol:[46]

Safety

[edit]

Handling

[edit]

The highly reducing and pyrophoric nature of LAH requires special handling techniques to avoid its exposure to sources of ignition, moisture, and ambient oxygen. The use of a fume hood or dry box under an inert atmosphere is recommended for any work with large amounts of LAH. It is recommended that a class D fire extinguisher or dry sand is on standby in case of a fire, as other classes of extinguisher may intensify the fire if used.[47]

Lab accidents

[edit]

Due to the widespread use and hazardous character of LAH, it has been the cause of many lab accidents. Lab fires related to this compound have been the result of grinding,[48] runaway reactions,[49] improper storage,[50] and spontaneous ignition.[51] Often, these fires are made worse by the erroneous use of CO2 fire extinguishers, which can fuel LAH fires.[47]
The use of LAH to reduce fluorinated compounds has also caused multiple lab explosions. These explosions result from LAH creating a complex with the fluorinated compound, these complexes have been found to be heat and shock sensitive explosives.[52]


See also

[edit]
Wikimedia Commons has media related tolithium aluminium hydride.

References

[edit]
  1. ^Sigma-Aldrich Co.,Lithium aluminium hydride. Retrieved on 2018-06-1.
  2. ^Index no. 001-002-00-4 of Annex VI, Part 3, to Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006.Official Journal of the European Union L353, 31 December 2008, pp. 1–1355 at p 472.
  3. ^Lithium aluminium hydride
  4. ^abFinholt, A. E.; Bond, A. C.; Schlesinger, H. I. (1947). "Lithium Aluminum Hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry".Journal of the American Chemical Society.69 (5):1199–1203.Bibcode:1947JAChS..69.1199F.doi:10.1021/ja01197a061.
  5. ^abcdGerrans, G. C.; Hartmann-Petersen, P. (2007)."Lithium Aluminium Hydride".Sasol Encyclopaedia of Science and Technology. New Africa Books. p. 143.ISBN 978-1-86928-384-1.
  6. ^Keese, R.; Brändle, M.; Toube, T. P. (2006).Practical Organic Synthesis: A Student's Guide. John Wiley and Sons. p. 134.ISBN 0-470-02966-8.
  7. ^Andreasen, A.; Vegge, T.; Pedersen, A. S. (2005)."Dehydrogenation Kinetics of as-Received and Ball-Milled LiAlH4"(PDF).Journal of Solid State Chemistry.178 (12):3672–3678.Bibcode:2005JSSCh.178.3672A.doi:10.1016/j.jssc.2005.09.027. Archived fromthe original(PDF) on 2016-03-03. Retrieved2010-05-07.
  8. ^Pohanish, R. P. (2008).Sittig's Handbook of Toxic and Hazardous Chemicals and Carcinogens (5th ed.). William Andrew Publishing. p. 1540.ISBN 978-0-8155-1553-1.
  9. ^Løvvik, O. M.; Opalka, S. M.; Brinks, H. W.; Hauback, B. C. (2004). "Crystal Structure and Thermodynamic Stability of the Lithium Alanates LiAlH4 and Li3AlH6".Physical Review B.69 (13) 134117.Bibcode:2004PhRvB..69m4117L.doi:10.1103/PhysRevB.69.134117.
  10. ^abHolleman, A. F., Wiberg, E., Wiberg, N. (2007).Lehrbuch der Anorganischen Chemie (102nd ed.). de Gruyter.ISBN 978-3-11-017770-1.{{cite book}}: CS1 maint: multiple names: authors list (link)
  11. ^Xiangfeng, Liu; Langmi, Henrietta W.; McGrady, G. Sean; Craig, M. Jensen; Beattie, Shane D.; Azenwi, Felix F. (2011). "Ti-Doped LiAlH4 for Hydrogen Storage: Synthesis, Catalyst Loading and Cycling Performance".J. Am. Chem. Soc.133 (39):15593–15597.Bibcode:2011JAChS.13315593L.doi:10.1021/ja204976z.PMID 21863886.
  12. ^abMikheeva, V. I.; Troyanovskaya, E. A. (1971). "Solubility of Lithium Aluminum Hydride and Lithium Borohydride in Diethyl Ether".Bulletin of the Academy of Sciences of the USSR Division of Chemical Science.20 (12):2497–2500.doi:10.1007/BF00853610.
  13. ^abcDymova T. N.; Aleksandrov, D. P.; Konoplev, V. N.; Silina, T. A.; Sizareva; A. S. (1994).Russian Journal of Coordination Chemistry.20: 279.{{cite journal}}:Missing or empty|title= (help)
  14. ^Dilts, J. A.; Ashby, E. C. (1972). "Thermal Decomposition of Complex Metal Hydrides".Inorganic Chemistry.11 (6):1230–1236.doi:10.1021/ic50112a015.
  15. ^abcBlanchard, D.; Brinks, H.; Hauback, B.; Norby, P. (2004). "Desorption of LiAlH4 with Ti- and V-Based Additives".Materials Science and Engineering B.108 (1–2):54–59.doi:10.1016/j.mseb.2003.10.114.
  16. ^Chen, J.; Kuriyama, N.; Xu, Q.; Takeshita, H. T.; Sakai, T. (2001). "Reversible Hydrogen Storage via Titanium-Catalyzed LiAlH4 and Li3AlH6".The Journal of Physical Chemistry B.105 (45):11214–11220.doi:10.1021/jp012127w.
  17. ^Balema, V.; Pecharsky, V. K.; Dennis, K. W. (2000)."Solid State Phase Transformations in LiAlH4 during High-Energy Ball-Milling".Journal of Alloys and Compounds.313 (1–2):69–74.doi:10.1016/S0925-8388(00)01201-9.
  18. ^abAndreasen, A. (2006). "Effect of Ti-Doping on the Dehydrogenation Kinetic Parameters of Lithium Aluminum Hydride".Journal of Alloys and Compounds.419 (1–2):40–44.doi:10.1016/j.jallcom.2005.09.067.
  19. ^Andreasen, A.; Pedersen, A. S.; Vegge, T. (2005). "Dehydrogenation Kinetics of as-Received and Ball-Milled LiAlH4".Journal of Solid State Chemistry.178 (12):3672–3678.Bibcode:2005JSSCh.178.3672A.doi:10.1016/j.jssc.2005.09.027.
  20. ^Balema, V.; Wiench, J. W.; Dennis, K. W.; Pruski, M.; Pecharsky, V. K. (2001)."Titanium Catalyzed Solid-State Transformations in LiAlH4 During High-Energy Ball-Milling".Journal of Alloys and Compounds.329 (1–2):108–114.doi:10.1016/S0925-8388(01)01570-5.
  21. ^abPatnaik, P. (2003).Handbook of Inorganic Chemicals. McGraw-Hill. p. 492.ISBN 978-0-07-049439-8.
  22. ^Smith, M. B.; Bass, G. E. (1963). "Heats and Free Energies of Formation of the Alkali Aluminum Hydrides and of Cesium Hydride".Journal of Chemical & Engineering Data.8 (3):342–346.doi:10.1021/je60018a020.
  23. ^Brown, H. C. (1951). "Reductions by Lithium Aluminum Hydride".Organic Reactions.6: 469.doi:10.1002/0471264180.or006.10.ISBN 0-471-26418-0.{{cite journal}}:ISBN / Date incompatibility (help)
  24. ^Seebach, D.; Kalinowski, H.-O.; Langer, W.; Crass, G.; Wilka, E.-M. (1991)."Chiral Media for Asymmetric Solvent Inductions. (S,S)-(+)-1,4-bis(Dimethylamino)-2,3-Dimethoxybutane from (R,R)-(+)-Diethyl Tartrate".Organic Syntheses;Collected Volumes, vol. 7, p. 41.
  25. ^Park, C. H.; Simmons, H. E. (1974)."Macrocyclic Diimines: 1,10-Diazacyclooctadecane".Organic Syntheses.54: 88;Collected Volumes, vol. 6, p. 382.
  26. ^Chen, Y. K.; Jeon, S.-J.; Walsh, P. J.; Nugent, W. A. (2005)."(2S)-(−)-3-exo-(Morpholino)Isoborneol".Organic Syntheses.82: 87.
  27. ^"Red-Al, Sodium bis(2-methoxyethoxy)aluminumhydride". Organic Chemistry Portal.
  28. ^Reetz, M. T.; Drewes, M. W.; Schwickardi, R. (1999)."Preparation of Enantiomerically Pure α-N,N-Dibenzylamino Aldehydes: S-2-(N,N-Dibenzylamino)-3-Phenylpropanal".Organic Syntheses.76: 110;Collected Volumes, vol. 10, p. 256.
  29. ^Oi, R.; Sharpless, K. B. (1996)."3-[(1S)-1,2-Dihydroxyethyl]-1,5-Dihydro-3H-2,4-Benzodioxepine".Organic Syntheses.73: 1;Collected Volumes, vol. 9, p. 251.
  30. ^Koppenhoefer, B.; Schurig, V. (1988)."(R)-Alkyloxiranes of High Enantiomeric Purity from (S)-2-Chloroalkanoic Acids via (S)-2-Chloro-1-Alkanols: (R)-Methyloxirane".Organic Syntheses.66: 160;Collected Volumes, vol. 8, p. 434.
  31. ^Barnier, J. P.; Champion, J.; Conia, J. M. (1981)."Cyclopropanecarboxaldehyde".Organic Syntheses.60: 25;Collected Volumes, vol. 7, p. 129.
  32. ^Elphimoff-Felkin, I.; Sarda, P. (1977)."Reductive Cleavage of Allylic Alcohols, Ethers, or Acetates to Olefins: 3-Methylcyclohexene".Organic Syntheses.56: 101;Collected Volumes, vol. 6, p. 769.
  33. ^Rickborn, B.; Quartucci, J. (1964). "Stereochemistry and Mechanism of Lithium Aluminum Hydride and Mixed Hydride Reduction of 4-t-Butylcyclohexene Oxide".The Journal of Organic Chemistry.29 (11):3185–3188.doi:10.1021/jo01034a015.
  34. ^Wade, L. G. Jr. (2006).Organic Chemistry (6th ed.). Pearson Prentice Hall.ISBN 0-13-147871-0.
  35. ^Wade, L. G. (2013).Organic chemistry (8th ed.). Boston: Pearson. p. 835.ISBN 978-0-321-81139-4.
  36. ^Johnson, J. E.; Blizzard, R. H.; Carhart, H. W. (1948). "Hydrogenolysis of Alkyl Halides by Lithium Aluminum Hydride".Journal of the American Chemical Society.70 (11):3664–3665.Bibcode:1948JAChS..70.3664J.doi:10.1021/ja01191a035.PMID 18121883.
  37. ^Krishnamurthy, S.; Brown, H. C. (1982). "Selective Reductions. 28. The Fast Reaction of Lithium Aluminum Hydride with Alkyl Halides in THF. A Reappraisal of the Scope of the Reaction".The Journal of Organic Chemistry.47 (2):276–280.doi:10.1021/jo00341a018.
  38. ^Carruthers, W. (2004).Some Modern Methods of Organic Synthesis. Cambridge University Press. p. 470.ISBN 0-521-31117-9.
  39. ^Wender, P. A.; Holt, D. A.;Sieburth, S. Mc N. (1986)."2-Alkenyl Carbinols from 2-Halo Ketones: 2-E-Propenylcyclohexanol".Organic Syntheses.64: 10;Collected Volumes, vol. 7, p. 456.
  40. ^Brendel, G. (May 11, 1981) "Hydride reducing agents" (letter to the editor) inChemical and Engineering News.doi:10.1021/cen-v059n019.p002
  41. ^Thiedemann, B.; Schmitz, C. M.; Staubitz, A. (2014). "Reduction of N-allylamides by LiAlH4: Unexpected Attack of the Double Bond With Mechanistic Studies of Product and Byproduct Formation".The Journal of Organic Chemistry.79 (21):10284–95.doi:10.1021/jo501907v.PMID 25347383.
  42. ^Bogdanovic, B.; Schwickardi, M. (1997). "Ti-Doped Alkali Metal Aluminium Hydrides as Potential Novel Reversible Hydrogen Storage Materials".Journal of Alloys and Compounds.253–254:1–9.doi:10.1016/S0925-8388(96)03049-6.
  43. ^abVarin, R. A.; Czujko, T.; Wronski, Z. S. (2009).Nanomaterials for Solid State Hydrogen Storage (5th ed.). Springer. p. 338.ISBN 978-0-387-77711-5.
  44. ^abSanthanam, R.; McGrady, G. S. (2008). "Synthesis of Alkali Metal Hexahydroaluminate Complexes Using Dimethyl Ether as a Reaction Medium".Inorganica Chimica Acta.361 (2):473–478.doi:10.1016/j.ica.2007.04.044.
  45. ^Wiberg, E.; Wiberg, N.; Holleman, A. F. (2001).Inorganic Chemistry. Academic Press. p. 1056.ISBN 0-12-352651-5.
  46. ^Casensky, B.; Machacek, J.; Abraham, K. (1971). "The chemistry of sodium alkoxyaluminium hydrides. I. Synthesis of sodium bis(2-methoxyethoxy)aluminium hydride".Collection of Czechoslovak Chemical Communications.36 (7):2648–2657.doi:10.1135/cccc19712648.
  47. ^ab"Lithium Aluminum Hydride | Office of Environmental Health and Safety".ehs.princeton.edu. Retrieved2025-08-01.
  48. ^Merlic, Craig A.; Ferber, Carl J.; Schröder, Imke (2022-07-25). "Lessons Learned─Lithium Aluminum Hydride Fires".ACS Chemical Health & Safety.29 (4):362–365.doi:10.1021/acs.chas.2c00035.
  49. ^"A Campus Laboratory Fire Involving Lithium Aluminum Hydride – Stanford Environmental Health & Safety". Retrieved2025-08-01.
  50. ^"Lithium Aluminum Hydride Laboratory Fire | H2tools | Hydrogen Tools".h2tools.org. Retrieved2025-08-01.
  51. ^LAB INCIDENT SUMMARY: LAH Fire - University of Texas at Austin
  52. ^"SAFETY FORUM".Chemical & Engineering News Archive.29 (30): 3042. 1951-07-23.doi:10.1021/cen-v029n030.p3042.ISSN 0009-2347.

Further reading

[edit]

External links

[edit]
Look uplithium aluminium hydride in Wiktionary, the free dictionary.
Compounds withnoble gases
Compounds withhalogens
Oxides andhydroxides
Compounds withchalcogens
Compounds withpnictogens
Compounds withgroup 14 elements
Compounds withgroup 13 elements
Compounds withtransition metals
Organic (soaps)
Other compounds
Minerals
Other Li-related
Al(I)
Organoaluminium(I) compounds
Al(II)
Al(III)
Alums
Organoaluminium(III) compounds
Retrieved from "https://en.wikipedia.org/w/index.php?title=Lithium_aluminium_hydride&oldid=1333084911"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp