Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

List of the most distant astronomical objects

From Wikipedia, the free encyclopedia

An infrared image of MoM-z14 from NASA's James Webb Space Telescope that was taken by the NIRCam
MoM-z14 has a redshift of 14.44, making it the most distant knowngalaxy as of May 2025.[1] This image represents the galaxy as it was less than 280 million years after theBig Bang.

This article lists the most distantastronomical objects discovered and verified so far, and the time periods in which they were so classified.

For comparisons with the years after theBig Bang of the astronomical objects listed below, theage of the universe is currently estimated as 13.787 ± 0.020 billion years.[2] However, the estimated age of the universe has increased over the years as the observational techniques have been refined. For the discovery ofIOK-1 in 2006 had an estimate of 13.66 billion years for the age of the universe.[3]

Distances to remote objects, other than those in nearby galaxies, are nearly always inferred by measuring thecosmological redshift of their light. By their nature, very distant objects tend to be very faint, and these distance determinations are difficult and subject to errors. An important distinction is whether the distance is determined viaspectroscopy or using aphotometric redshift technique. The former is generally both more precise and also more reliable, in the sense that photometric redshifts are more prone to being wrong due to confusion with lower redshift sources that may have unusual spectra. For that reason, aspectroscopic redshift is conventionally regarded as being necessary for an object's distance to be considered definitely known, whereas photometrically determined redshifts identify "candidate" very distant sources. Here, this distinction is indicated by a "p" subscript for photometric redshifts. Apart from most commonly used distance measurements for high redshift objects, an alternative is to calculate how old the object is in relation to the Big Bang and the column "Years after the Big Bang" shows these values.[4]

Most distant spectroscopically-confirmed objects

[edit]
Most distant astronomical objects with spectroscopic redshift determinations
ImageNameRedshift
(z)
Years after the Big Bang (millions)TypeNotes
MoM-z14z =14.44+0.02
−0.02
280[5]GalaxyLuminousLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[1]
JADES-GS-z14-0z =14.1796+0.0007
−0.0007
290[6]GalaxyThe detection of [OIII]88μm line emission with a significance of 6.67σ and at a frequency of 223.524 GHz, corresponding to a redshift of 14.1796±0.0007, usingALMA.[7]
JADES-GS-z14-1z =13.90+0.17
−0.17
300[8]GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[9]
PAN-z14-1z =13.53+0.05
−0.06
GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[10]
JADES-GS-z13-0z =13.20+0.04
−0.07
330[11]GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[12]
UNCOVER-z13z =13.079+0.014
−0.001
330[13]GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[14]
JADES-GS-z13-1z = 13.0330[15]GalaxyLyman-alpha emitter, discovered by JWST in 2025.[16]
JADES-GS-z12-0z =12.63+0.24
−0.08
350[17]GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRCam[12] and JWST/NIRSpec,[18] and CIII] line emission with JWST/NIRSpec.[18]
UNCOVER-z12z =12.393+0.004
−0.001
350[19]GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[14]
GLASS-z12
(GHZ2)
z =12.3327+0.0035
−0.0035
367[20]GalaxyDetection of the rest-frame 88 μm atomic transition from doubly ionized oxygen using ALMA.[21]
UDFj-39546284z =11.58+0.05
−0.05
380[22]GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec.[12]
CEERS J141946.36+525632.8
(Maisie's Galaxy)
z =11.44+0.09
−0.08
390[23]GalaxyLyman-break galaxy discovered by JWST.[24]
CEERS2-588
z =11.04410[25]GalaxyLyman-break galaxy discovered by JWST.[26]
GN-z11z = 10.6034 ± 0.0013430[27]GalaxyLyman-break galaxy; detection of the Lyman break with HST at 5.5σ[28] and carbon emission lines with Keck/MOSFIRE at 5.3σ.[29] Conclusive redshift by JWST in February 2023[18]
JADES-GS-z10-0
(UDFj-38116243)[30]
z =10.38+0.07
−0.06
450[31]GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec[12]
JD1z =9.793±0.002480[32]GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec[33]
Gz9p3z = 9.3127 ± 0.0002510[34]GalaxyA galaxy merger with a redshift estimated from [OII], Ne and H emission lines detected with JWST.[34]
MACS1149-JD1z =9.1096±0.0006500[35]GalaxyDetection of hydrogen emission line with the VLT, and oxygen line with ALMA[36]
EGSY8p7 (CEERS_1019)z =8.683+0.001
−0.004
570[37]GalaxyLyman-alpha emitter; detection of Lyman-alpha with Keck/MOSFIRE at 7.5σ confidence[38]
SMACS-4590z = 8.496GalaxyDetection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec[39][40][41][42]
A2744 YD4z = 8.38600[43]GalaxyLyman-alpha and [O III] emission detected with ALMA at 4.0σ confidence[44]
MACS0416 Y1z =8.3118±0.0003600[45]Galaxy[O III] emission detected with ALMA at 6.3σ confidence[46]
GRB 090423z =8.23+0.06
−0.07
630[47]Gamma-ray burstLyman-alpha break detected[48]
RXJ2129-11002z =8.16±0.01613[49]Galaxy[O III] doublet, Hβ, and [O II] doublet as well as Lyman-alpha break detected with JWST/NIRSpec prism.[50]
RXJ2129-11022z =8.15±0.01Galaxy[O III] doublet and Hβ as well as Lyman-alpha break detected with JWST/NIRSpec prism.[50]
EGS-zs8-1z =7.7302±0.0006670[51]GalaxyLyman-break galaxy[52]
SMACS-0723-6355z = 7.665GalaxyDetection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec[39][40][41][42]
z7_GSD_3811z =7.6637±0.0011GalaxyLyman-alpha emitter[53]
SMACS-0723-10612z = 7.658GalaxyDetection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec[39][40][41][42]
QSO J0313–1806z =7.6423±0.0013670[54]QuasarLyman-alpha break detected[55]
ULAS J1342+0928z =7.5413±0.0007690[56]QuasarRedshift estimated from [C II] emission[57]
z8_GND_5296z = 7.51700[58]GalaxyLyman-alpha emitter[59]
A1689-zD1z =7.5±0.2700[60]GalaxyLyman-break galaxy[61]
GS2_1406z =7.452±0.003GalaxyLyman-alpha emitter[62]
GN-108036z = 7.213750[63]GalaxyLyman alpha emitter[64]
SXDF-NB1006-2z =7.2120±0.0003800[65]Galaxy[O III] emission detected[66]
BDF-3299z =7.109±0.002800[67]GalaxyLyman-break galaxy[68]
ULAS J1120+0641z =7.085±0.003770[69]QuasarRedshift estimated from Si III]+C III] and Mg II emission lines[70]
A1703 zD6z =7.045±0.004GalaxyGravitationally-lensed Lyman-alpha emitter[71]
BDF-521z =7.008±0.002GalaxyLyman-break galaxy[68]
IOK-1z = 6.965780[72]GalaxyLyman-alpha emitter[64]
GDS_1408
(G2_1408)
z =6.82±0.1GalaxyLyman-alpha emitter and VLT spectroscopy.[73]

Candidate most distant objects

[edit]

Since the beginning of theJames Webb Space Telescope's (JWST) science operations in June 2022, numerous distant galaxies far beyond what could be seen by theHubble Space Telescope (z = 11) have been discovered thanks to the JWST's capability of seeing far into theinfrared.[74][75]

Previously in 2012, there were about 50 possible objects z = 8 or farther, and another 100 candidates at z = 7, based on photometric redshift estimates released by theHubble eXtreme Deep Field (XDF) project from observations made between mid-2002 and December 2012.[76]

Some objects included here have been observed spectroscopically, but had only one emission line tentatively detected, and are therefore still considered candidates by researchers.[77]

Notable candidates for most distant astronomical objects
NameRedshift
(z)
TypeNotes
H-ATLAS J143740.9+021731z = 33.79GalaxyDiscovered in the 2019 SHALOS survey, it is a potentialsubmillimeter galaxy.[78][79]
Capotauro
(CEERS U-100588 )
z ~32GalaxyA spectro-photometric analysis of JWST/NIRCam, MIRI, and NIRSpec/MSA data with HST/ACS and WFC3 observations.[80]
MIDIS-z25-3zp =25.6+1.5
−1.6
GalaxyA selection based on photometry, photometric redshift probability distributions and visual inspection, based on the JWST/NIRCam data provided by the MIRI Deep Imaging Survey (MIDIS).[81]
F200DB-045zp =20.4+0.3
−0.3
[75]
or0.70+0.19
−0.55
[74] or0.40+0.15
−0.26
[82]
GalaxyLyman-break galaxy discovered by JWST[75]
NOTE: The redshift value of the galaxy presented by the procedure in one study[74] may differ from the values presented in other studies using different procedures.[75][83][82]
GLIMPSE 70467zp =16.4+1.8
−1.8
GalaxyLyman-break selection and photometry[84]
F200DB-175zp =16.2+0.3
−0.0
GalaxyLyman-break galaxy discovered by JWST[75]
S5-z17-1z =16.0089±0.0004
or4.6108±0.0001
GalaxyLyman-break galaxy discovered by JWST; tentative (5.1σ) ALMA detection of a single emission line possibly attributed to either [C II] (z =4.6108±0.0001) or [O III] (z =16.0089±0.0004).[77][85]
F150DB-041zp =16.0+0.2
−0.2
[75]
or3.70+0.02
−0.59
[74]
GalaxyLyman-break galaxy discovered by JWST[75][74]
SMACS-z16azp =15.92+0.17
−0.15
[86]
or2.96+0.73
−0.21
[74]
GalaxyLyman-break galaxy discovered by JWST[86][74]
F200DB-015zp =15.8+3.4
−0.1
GalaxyLyman-break galaxy discovered by JWST[75]
F200DB-181zp =15.8+0.5
−0.3
GalaxyLyman-break galaxy discovered by JWST[75]
F200DB-159zp =15.8+4.0
−15.2
GalaxyLyman-break galaxy discovered by JWST[75]
GLIMPSE 72839zp =15.8+0.8
−0.8
GalaxyLyman-break selection and photometry[84]
F200DB-086zp =15.4+0.6
−14.6
[75]
or3.53+10.28
−1.84
[74]
GalaxyLyman-break galaxy discovered by JWST[75][74]
SMACS-z16bzp =15.32+0.16
−0.13
[86]
or15.39+0.18
−0.26
[74]
GalaxyLyman-break galaxy discovered by JWST[86][74]
F150DB-048zp =15.0+0.2
−0.8
GalaxyLyman-break galaxy discovered by JWST[75]
F150DB-007zp =14.6+0.4
−0.4
GalaxyLyman-break galaxy discovered by JWST[75]
This is adynamic list and may never be able to satisfy particular standards for completeness. You can help byediting the page to add missing items, with references toreliable sources.

List of most distant objects by type

[edit]
Most distant object by type
TypeObjectRedshift
(distance)
Notes
Anyastronomical object, no matter what typeMoM-z14z = 14.4This is a galaxy discovered by JWST-based "Mirage or Miracle" (MoM) survey.[87][88]
Galaxy clusterCL J1001+0220z ≅ 2.506As of 2016[89]
Galaxy superclusterHyperion proto-superclusterz = 2.45This supercluster at the time of its discovery in 2018 was the earliest and largest proto-supercluster found to date.[90]
Galaxy protoclusterA2744z7p9ODz = 7.88This protocluster at the time of its discovery in 2023 was the most distant protocluster found and spectroscopically confirmed to date.[91]
Galaxy orprotogalaxyMoM-z14z = 14.4[87]
QuasarUHZ1z ≅ 10.0[92]
Black holeGN-z11z =10.6034±0.0013[93][94][95][96]
Star orprotostar or post-stellar corpse
(detected by an event)
Progenitor ofGRB 090423z =8.26+0.07
−0.08
[97][48] Note,GRB 090429B has a photometric redshift zp≅9.4,[98] and so is most likely more distant than GRB 090423, but is lacking spectroscopic confirmation. Estimated an approximate distance of 13 billion lightyears from Earth.
Star orprotostar or post-stellar corpse
(detected as a star)
WHL0137-LS (Earendel)z = 6.2 ± 0.1
(12.9Gly)
Most distant individual star detected when discovered March 2022.[99][100]

Previous records includeSDSS J1229+1122[101] andMACS J1149 Lensed Star 1.[102]

Star clusterThe Sparklerz = 1.378
(13.9Gly)
Galaxy with globular clusters gravitationally lensed inSMACS J0723.3-7327[103]
System of star clusters
X-ray jetPJ352–15 quasar jetz = 5.831
(12.7Gly)[104]
The previous recordholder was at 12.4 Gly.[105][106]
MicroquasarXMMU J004243.6+412519(2.5 Mly)First extragalactic microquasar discovered[107][108][109]
Nebula-like objectHimikoz = 6.595Possibly one of the largest objects in the early universe.[110][111]
Magnetic field9io9z = 2.554 (11.1 Gly)Observations from ALMA has shown that the lensed galaxy 9io9 contains a magnetic field.
PlanetSWEEPS-11 /SWEEPS-04(27,710 ly)[112]
  • An analysis of the lightcurve of the microlensing eventPA-99-N2 suggests the presence of a planet orbiting a star in theAndromeda Galaxy.[113]
  • A controversial microlensing event of lobe A of the double gravitationally lensedQ0957+561 suggests that there is a planet in the lensing galaxy lying at redshift 0.355 (3.7 Gly).[114][115]
Most distant event by type
TypeEventRedshiftNotes
Gamma-ray burstGRB 090423z =8.26+0.07
−0.08
[97][48] Note,GRB 090429B has a photometric redshift zp≅9.4,[98] and so is most likely more distant than GRB 090423, but is lacking spectroscopic confirmation.
Supernova (any type)SN Eosz =5.133±0.001[116] A strongly lensed, multiply imagedType II supernova
Core collapse supernovaSN 1000+0216z = 3.8993[117]
Type Ia supernovaSN UDS10Wilz = 1.914[118]

Timeline of most distant astronomical object recordholders

[edit]

Objects in this list were found to be the most distant object at the time of determination of their distance. This is frequently not the same as the date of their discovery.

Distances to astronomical objects may be determined throughparallax measurements, use ofstandard references such ascepheid variables orType Ia supernovas, orredshift measurement.Spectroscopic redshift measurement is preferred, whilephotometric redshift measurement is also used to identify candidate high redshift sources. The symbolz represents redshift.

Most distant object titleholders (not including candidates based on photometric redshifts)
ObjectTypeDateDistance
(z =Redshift)
Notes
MoM-z14Galaxy2025–presentz = 14.44[87][88]
JADES-GS-z14-0Galaxy2024–2025z = 14.32[119][87]
JADES-GS-z13-0Galaxy2022–2024z = 13.20[12][119]
GN-z11Galaxy2016–2022z = 10.6[28][29][87]
EGSY8p7Galaxy2015−2016z = 8.68[120][121][122][123]
Progenitor ofGRB 090423 / Remnant ofGRB 090423Gamma-ray burst progenitor /Gamma-ray burst remnant2009–2015z = 8.2[48][124]
IOK-1Galaxy2006 − 2009z = 6.96[124][125][126][127]
SDF J132522.3+273520Galaxy2005 − 2006z = 6.597[127][128]
SDF J132418.3+271455Galaxy2003 − 2005z = 6.578[128][129][130][131]
HCM-6AGalaxy2002 − 2003z = 6.56The galaxy is lensed by galaxy clusterAbell 370. This was the first non-quasar galaxy found to exceed redshift 6. It exceeded the redshift of quasarSDSSp J103027.10+052455.0 of z = 6.28[129][130][132][133][134][135]
SDSS J1030+0524
(SDSSp J103027.10+052455.0)
Quasar2001 − 2002z = 6.28[136][137][138][139][140][141]
SDSS 1044–0125
(SDSSp J104433.04–012502.2)
Quasar2000 − 2001z = 5.82[142][143][140][141][144][145][146]
SSA22-HCM1Galaxy1999–2000z>=5.74[143][147]
HDF 4-473.0Galaxy1998–1999z = 5.60[147]
RD1 (0140+326 RD1)Galaxy1998z = 5.34[148][149][150][147][151]
CL 1358+62 G1 &CL 1358+62 G2Galaxies1997 − 1998z = 4.92These were the most remote objects discovered at the time. The pair of galaxies were found lensed by galaxy clusterCL1358+62 (z = 0.33). This was the first time since 1964 that something other than aquasar held the record for being the most distant object in the universe.[149][152][153][150][147][154]
PC 1247–3406Quasar1991 − 1997z = 4.897[155][142][156][157][158][159]
PC 1158+4635Quasar1989 − 1991z = 4.73[142][159][160][161][162][163]
Q0051–279Quasar1987 − 1989z = 4.43[164][160][163][165][166][167]
Q0000–26
(QSO B0000–26)
Quasar1987z = 4.11[164][160][168]
PC 0910+5625
(QSO B0910+5625)
Quasar1987z = 4.04This was the second quasar discovered with a redshift over 4.[142][160][169][170]
Q0046–293
(QSO J0048–2903)
Quasar1987z = 4.01[164][160][169][171][172]
Q1208+1011
(QSO B1208+1011)
Quasar1986 − 1987z = 3.80This is a gravitationally-lensed double-image quasar, and at the time of discovery to 1991, had the least angular separation between images, 0.45″.[169][173][174]
PKS 2000-330
(QSO J2003–3251,Q2000–330)
Quasar1982 − 1986z = 3.78[169][175][176]
OQ172
(QSO B1442+101)
Quasar1974 − 1982z = 3.53[177][178][179]
OH471
(QSO B0642+449)
Quasar1973 − 1974z = 3.408Nickname was "the blaze marking the edge of the universe".[177][179][180][181][182]
4C 05.34Quasar1970 − 1973z = 2.877Its redshift was so much greater than the previous record that it was believed to be erroneous, or spurious.[179][183][184][185]
5C 02.56
(7C 105517.75+495540.95)
Quasar1968 − 1970z = 2.399[154][185][186]
4C 25.05
(4C 25.5)
Quasar1968z = 2.358[154][185][187]
PKS 0237–23
(QSO B0237–2321)
Quasar1967 − 1968z = 2.225[183][187][188][189][190]
4C 12.39
(Q1116+12,PKS 1116+12)
Quasar1966 − 1967z = 2.1291[154][190][191][192]
4C 01.02
(Q0106+01,PKS 0106+1)
Quasar1965 − 1966z = 2.0990[154][190][191][193]
3C 9Quasar1965z = 2.018[190][194][195][196][197][198]
3C 147Quasar1964 − 1965z = 0.545[199][200][201][202]
3C 295Radio galaxy1960 − 1964z = 0.461[147][154][203][204][205]
LEDA 25177 (MCG+01-23-008)Brightest cluster galaxy1951 − 1960z = 0.2
(V = 61000 km/s)
This galaxy lies in theHydra Supercluster. It is located atB1950.008h 55m 4s +03° 21′ and is the BCG of the fainter Hydra ClusterCl 0855+0321 (ACO 732).[147][205][206][207][208][209][210]
LEDA 51975 (MCG+05-34-069)Brightest cluster galaxy1936 –z = 0.13
(V = 39000 km/s)
Thebrightest cluster galaxy of theBootes Cluster (ACO 1930), an elliptical galaxy atB1950.014h 30m 6s +31° 46′apparent magnitude 17.8, was found byMilton L. Humason in 1936 to have a 40,000 km/s recessional redshift velocity.[209][211][212]
LEDA 20221 (MCG+06-16-021)Brightest cluster galaxy1932 –z = 0.075
(V = 23000 km/s)
This is theBCG of theGeminiCluster (ACO 568) and was located atB1950.007h 05m 0s +35° 04′[211][213]
BCG of WMH Christie's Leo ClusterBrightest cluster galaxy1931 − 1932z =
(V = 19700 km/s)
[213][214][215][216]
BCG of Baede's Ursa Major ClusterBrightest cluster galaxy1930 − 1931z =
(V = 11700 km/s)
[216][217]
NGC 4860Galaxy1929 − 1930z = 0.026
(V = 7800 km/s)
[217][218][219]
NGC 7619Galaxy1929z = 0.012
(V = 3779 km/s)
Using redshift measurements, NGC 7619 was the highest at the time of measurement. At the time of announcement, it was not yet accepted as a general guide to distance, however, later in the year, Edwin Hubble described redshift in relation to distance, which became accepted widely as an inferred distance.[218][220][221]
NGC 584
(Dreyer nebula 584)
Galaxy1921 − 1929z = 0.006
(V = 1800 km/s)
At the time, nebula had yet to be accepted as independent galaxies. However, in 1923, galaxies were generally recognized as external to the Milky Way.[209][218][220][222][223][224][225]
M104 (NGC 4594)Galaxy1913 − 1921z = 0.004
(V = 1180 km/s)
This was the second galaxy whose redshift was determined; the first being Andromeda – which is approaching us and thus cannot have its redshift used to infer distance. Both were measured byVesto Melvin Slipher. At this time, nebula had yet to be accepted as independent galaxies. NGC 4594 was measured originally as 1000 km/s, then refined to 1100, and then to 1180 in 1916.[218][222][225]
Arcturus
(Alpha Bootis)
Star1891 − 1910160ly
(18mas)
(this is very inaccurate, true=37 ly)
This number is wrong; originally announced in 1891, the figure was corrected in 1910 to 40 ly (60 mas). From 1891 to 1910, it had been thought this was the star with the smallest known parallax, hence the most distant star whose distance was known. Prior to 1891, Arcturus had previously been recorded of having a parallax of 127 mas.[226][227][228][229]
Capella
(Alpha Aurigae)
Star1849–189172 ly
(46 mas)
[230][231][232]
Polaris
(Alpha Ursae Minoris)
Star1847 – 184950 ly
(80 mas)
(this is very inaccurate, true=~440 ly)
[233][234]
Vega
(Alpha Lyrae)
Star (part of adouble star pair)1839 – 18477.77 pc
(125 mas)
[233]
61 CygniBinary star1838 − 18393.48pc
(313.6 mas)
This was the first star other than the Sun to have its distance measured.[233][235][236]
UranusPlanet of the Solar System1781 − 183818AUThis was the last planet discovered before the first successful measurement of stellar parallax. It had been determined that the stars were much farther away than the planets.
SaturnPlanet of the Solar System1619 − 178110 AUFromKepler's Third Law, it was finally determined that Saturn is indeed the outermost of the classical planets, and its distance derived. It had only previously been conjectured to be the outermost, due to it having the longest orbital period, and slowest orbital motion. It had been determined that the stars were much farther away than the planets.
MarsPlanet of the Solar System1609 − 16192.6 AU when Mars is diametrically opposed to EarthKepler correctly characterized Mars and Earth's orbits in the publicationAstronomia nova. It had been conjectured that the fixed stars were much farther away than the planets.
SunStar3rd century BC — 1609380 Earth radii (very inaccurate, true=16000 Earth radii)Aristarchus of Samos made a measurement of the distance of the Sun from Earth in relation to the distance of the Moon from Earth. The distance to the Moon was described in Earth radii (20, also inaccurate). The diameter of Earth had been calculated previously. At the time, it was assumed that some of the planets were further away, but their distances could not be measured. The order of the planets was conjecture until Kepler determined the distances from the Sun of the five known planets that were not Earth. It had been conjectured that the fixed stars were much farther away than the planets.
MoonMoon of a planet3rd century BC20 Earth radii (very inaccurate, true=64 Earth radii)Aristarchus of Samos made a measurement of the distance between Earth and the Moon. The diameter of Earth had been calculated previously.
  • z representsredshift, a measure ofrecessional velocity and inferred distance due to cosmological expansion
  • mas representsparallax, a measure ofangle and distance can be determined through trigonometry

See also

[edit]

References

[edit]
  1. ^abNaidu, R.P.; Oesch, P.A.; Brammer, G.; Weibel, A.; Li, Y.; Matthee, J.; Chisholm, J.; Pollock, C.L.; Heintz, K.E.; Johnson, B.D.; Shen, X.; Hviding, R.E.; Leja, J.; Tacchella, S.; Ganguly, A.; Witten, C.; Atek, H.; Belli, S.; Bose, S.; Bouwens, R.; et al. (30 January 2026)."A Cosmic Miracle: A Remarkably Luminous Galaxy atzspec = 14.44 Confirmed with JWST".The Open Journal of Astrophysics.9.arXiv:2505.11263v2.doi:10.33232/001c.156033.
  2. ^Planck Collaboration (2020). "Planck 2018 results. VI. Cosmological parameters".Astronomy & Astrophysics.641. page A6 (see PDF page 15, Table 2: "Age/Gyr", last column).arXiv:1807.06209.Bibcode:2020A&A...641A...6P.doi:10.1051/0004-6361/201833910.S2CID 119335614.
  3. ^"Cosmic Archeology Uncovers the Universe's Dark Ages".The Subaru Telescope (Press release). 13 September 2006.Archived from the original on 14 December 2024. Retrieved16 September 2025.the universe came into existence about 13.66 billion years ago
  4. ^"Cosmic History".NASA. 22 October 2024. Retrieved20 September 2025.
  5. ^Lea, Robert (30 May 2025)."Cosmic miracle!' James Webb Space Telescope discovers the earliest galaxy ever seen".Space.com.Archived from the original on 27 August 2025. Retrieved16 September 2025.detecting a galaxy that existed just 280 million years after the Big Bang
  6. ^Amos, Jonathan (31 May 2024)."Earliest and most distant galaxy ever observed".BBC.Archived from the original on 8 August 2025. Retrieved16 September 2025.was spied as it was a mere 290 million years after the Big Bang
  7. ^Carniani, S.; D'Eugenio, F.; Ji, X.; Parlanti, Eleonora; Scholtz, J.; Sun, F.; Venturi, Giacomo; Bakx, T. J. L. C.; Curti, M.; Maiolino, R.; Tacchella, S.; Zavala, J. A.; Hainline, K.; Witstok, J.; Johnson, B. D.; Alberts, S. (8 April 2025)."The eventful life of a luminous galaxy at z = 14: metal enrichment, feedback, and low gas fraction?".Astronomy & Astrophysics.696: 14.arXiv:2409.20533v2.Bibcode:2025A&A...696A..87C.doi:10.1051/0004-6361/202452451.
  8. ^Carniani, S.; et al. (2024-05-28)."A shining cosmic dawn: spectroscopic confirmation of two luminous galaxies at z ~ 14".Astrophysical Journal.633 (8029):318–322.arXiv:2405.18485.doi:10.1038/s41586-024-07860-9.PMC 11390484.PMID 39074505.galaxies were already in place 300 million years after the Big Bang
  9. ^Carniani, S.; et al. (2024-05-28)."A shining cosmic dawn: spectroscopic confirmation of two luminous galaxies at z ~ 14".Astrophysical Journal.633 (8029):318–322.arXiv:2405.18485.doi:10.1038/s41586-024-07860-9.PMC 11390484.PMID 39074505.
  10. ^Donnan, C. T.; McLeod, D. J.; McLure, R. J.; Dunlop, J. S.; Cullen, F.; Dickinson, M.; Arrabal Haro, P.; Taylor, A. J.; Bondestam, C.; Liu, F.-Y.; Arellano-Córdova, K. Z.; Barrufet, L.; Begley, R.; Carnall, A. C.; Golawska, H.; Leung, H.-H.; Scholte, D.; Stanton, T. M. (16 January 2026). "Spectroscopic confirmation of a large and luminous galaxy with weak emission lines at z = 13.53".arXiv:2601.11515v1 [astro-ph.GA].
  11. ^Carpineti, Alfredo (9 December 2022)."JWST Confirms One Of The Furthest Galaxies Ever Discovered".IFLScience.Archived from the original on 7 April 2024. Retrieved16 September 2025.One of them was in place just 330 million years after the Big Bang
  12. ^abcdeRobertson, B. E.; et al. (2023). "Identification and properties of intense star-forming galaxies at redshifts z > 10".Nature Astronomy.7 (5):611–621.arXiv:2212.04480.Bibcode:2023NatAs...7..611R.doi:10.1038/s41550-023-01921-1.S2CID 257968812.
  13. ^Cooper, Keith (14 November 2023)."James Webb Space Telescope finds 2 of the most distant galaxies ever seen".space.com.Archived from the original on 6 September 2025. Retrieved13 September 2025.as it existed just 330 million years after the Big Bang
  14. ^abWang, Bingjie; et al. (2023-11-13)."UNCOVER: Illuminating the Early Universe—JWST/NIRSpec Confirmation of z > 12 Galaxies".The Astrophysical Journal Letters.957 (2): L34.arXiv:2308.03745.Bibcode:2023ApJ...957L..34W.doi:10.3847/2041-8213/acfe07.ISSN 2041-8205.
  15. ^"JADES-GS-z13-1 in the GOODS-S field (NIRCam image, annotated)".ESA. 26 March 2025.Archived from the original on 19 May 2025. Retrieved16 September 2025.observed just 330 million years after the Big Bang
  16. ^Wistok, Joris (2025)."Witnessing the onset of reionization through Lyman-α emission at redshift 13".Nature.639 (8056):897–901.arXiv:2408.16608.Bibcode:2025Natur.639..897W.doi:10.1038/s41586-025-08779-5.hdl:11384/152525.PMC 11946913.PMID 40140594.
  17. ^D’Eugenio, F.; Maiolino, R.; Carniani, S.; Chevallard (9 September 2024). "JADES: Carbon enrichment 350 Myr after the Big Bang".Astronomy & Astrophysics.689: 16.arXiv:2311.09908v1.Bibcode:2024A&A...689A.152D.doi:10.1051/0004-6361/202348636.
  18. ^abcBunker, Andrew J.; et al. (2023). "JADES NIRSpec Spectroscopy of GN-z11: Lyman-α emission and possible enhanced nitrogen abundance in az = 10.60 luminous galaxy".Astronomy & Astrophysics.677: A88.arXiv:2302.07256.Bibcode:2023A&A...677A..88B.doi:10.1051/0004-6361/202346159.S2CID 256846361.
  19. ^Cooper, Keith (14 November 2023)."James Webb Space Telescope finds 2 of the most distant galaxies ever seen".space.com.Archived from the original on 6 September 2025. Retrieved17 September 2025.as it was just 350 million years after the Big Bang
  20. ^"ALMA Confirms Discovery of Oxygen-Rich Galaxy in Very Early Universe".sci.news. 25 January 2023. Retrieved13 September 2025.we see the galaxy as it was just 367 million years after the Big Bang
  21. ^Zavala, J.A.; Bakx, T.; Mitsuhashi, I.; Castellano, M.; Calabro, A.; Akins, H. (10 December 2024)."ALMA Detection of [O iii] 88 μm at z = 12.33: Exploring the Nature and Evolution of GHZ2 as a Massive Compact Stellar System".The Astrophysical Journal.977 (1): L9.arXiv:2411.03593v1.Bibcode:2024ApJ...977L...9Z.doi:10.3847/2041-8213/ad8f38.report a successful detection of the rest-frame 88 μm atomic transition from doubly ionized oxygen at z = 12.3327 ± 0.0035
  22. ^Matson, John (13 November 2012)."Shifty Sightings: Hubble Images Reveal 7 of the Most Distant Galaxies Ever Seen".Scientific American. Retrieved13 September 2025.corresponding to 380 million years after the big bang
  23. ^Lea, Robert (17 August 2023)."James Webb Space Telescope confirms 'Maisie's galaxy' is one of the earliest ever seen".space.com.Archived from the original on 19 August 2023. Retrieved16 September 2025.was just around 390 million years old
  24. ^Haro, Pablo Arrabal; Dickinson, Mark; Finkelstein, Steven L.; Kartaltepe, Jeyhan S.; Donnan, Callum T.; Burgarella, Denis; Carnall, Adam; Cullen, Fergus; Dunlop, James S.; Fernández, Vital; Fujimoto, Seiji; Jung, Intae; Krips, Melanie; Larson, Rebecca L.; Papovich, Casey (2023-08-14). "Confirmation and refutation of very luminous galaxies in the early universe".Nature.622 (7984):707–711.arXiv:2303.15431.Bibcode:2023Natur.622..707A.doi:10.1038/s41586-023-06521-7.ISSN 0028-0836.PMID 37579792.S2CID 257766818.
  25. ^Blue, Charles (19 September 2023)."Peering Back to the Early Universe: A Story of Confirmation and Refutation".NOIRLab.Archived from the original on 12 May 2025. Retrieved16 September 2025.410 million years after the Big Bang
  26. ^Harikane, Y.; Nakajima, K.; Ouchi, M.; Umeda, H.; Isobe, Y.; Ono, Y.; Xu, Y.; Zhang, Y. (22 December 2023)."Pure Spectroscopic Constraints on UV Luminosity Functions and Cosmic Star Formation History from 25 Galaxies at zspec = 8.61–13.20 Confirmed with JWST/NIRSpec".The Astrophysical Journal.960 (1): 22.arXiv:2304.06658v3.Bibcode:2024ApJ...960...56H.doi:10.3847/1538-4357/ad0b7e.
  27. ^Bunker, Andrew J.; Saxena, Aayush; Cameron, Alex J.; Willott, Chris J. (September 2023). "JADES NIRSpec Spectroscopy of GN-z11: Lyman-α emission and possible enhanced nitrogen abundance in az = 10.60 luminous galaxy".Astronomy & Astrophysics.677: A88.arXiv:2302.07256.Bibcode:2023A&A...677A..88B.doi:10.1051/0004-6361/202346159.S2CID 256846361.a remarkable galaxy with extreme properties seen 430 Myr after the Big Bang
  28. ^abOesch, P. A.; Brammer, G.; van Dokkum, P.; et al. (March 2016)."A Remarkably Luminous Galaxy atz=11.1 Measured withHubble Space Telescope Grism Spectroscopy".The Astrophysical Journal.819 (2). 129.arXiv:1603.00461.Bibcode:2016ApJ...819..129O.doi:10.3847/0004-637X/819/2/129.S2CID 119262750.
  29. ^abJiang, Linhua; et al. (January 2021). "Evidence for GN-z11 as a luminous galaxy at redshift 10.957".Nature Astronomy.5 (3):256–261.arXiv:2012.06936.Bibcode:2021NatAs...5..256J.doi:10.1038/s41550-020-01275-y.S2CID 229156468.
  30. ^"JADES-GS+053.15884-27.77349".SIMBAD. June 2025. Retrieved3 June 2025.[BIL2011] (Bouwens+Illengworth+Labbe+, 2011)
  31. ^Colleen, Juliette; Lawler, Daniel (6 April 2023)."JWST Captures Details of The Four Most Distant Galaxies Ever Seen".ScienceAlert. Retrieved14 September 2023.which dates from 450 million years after the Big Bang
  32. ^"Ultra-Faint Dwarf Galaxy Spotted Just 480 Million Years after Big Bang".Sci.News. 3 June 2023. Retrieved13 September 2025.480 Million Years after Big Bang
  33. ^Roberts-Borsani, Guido; Treu, Tommaso; Chen, Wenlei; Morishita, Takahiro; Vanzella, Eros; Zitrin, Adi; Bergamini, Pietro; Castellano, Marco; Fontana, Adriano; Grillo, Claudio; Kelly, Patrick L.; Merlin, Emiliano; Paris, Diego; Rosati, Piero; Acebron, Ana (2023). "A shot in the Dark (Ages): a faint galaxy at $z=9.76$ confirmed with JWST".Nature Astronomy.618 (7965):480–483.arXiv:2210.15639.Bibcode:2023Natur.618..480R.doi:10.1038/s41586-023-05994-w.PMID 37198479.S2CID 258741077.
  34. ^abBoyett, Kristan; Trenti, Michele; Leethochawalit, Nicha; Calabró, Antonello; Metha, Benjamin; Roberts-Borsani, Guido; Dalmasso, Nicoló; Yang, Lilan; Santini, Paola; Treu, Tommaso; Jones, Tucker; Henry, Alaina; Mason, Charlotte A.; Morishita, Takahiro; Nanayakkara, Themiya (2024-03-07)."A massive interacting galaxy 510 million years after the Big Bang".Nature Astronomy.8 (5):657–672.arXiv:2303.00306.Bibcode:2024NatAs...8..657B.doi:10.1038/s41550-024-02218-7.ISSN 2397-3366.
  35. ^"NASA Telescopes Spy Ultra-Distant Galaxy".NASA. 18 September 2012.Archived from the original on 31 March 2025. Retrieved16 September 2025.universe was just 500 million years old
  36. ^T. Hashimoto; N. Laporte; K. Mawatari; R. S. Ellis; A. K. Inoue; E. Zackrisson; G. Roberts-Borsani; W. Zheng; Y. Tamura; F. E. Bauer; T. Fletcher; Y. Harikane; B. Hatsukade; N. H. Hayatsu; Y. Matsuda; H. Matsuo; T. Okamoto; M. Ouchi; R. Pello; C. Rydberg; I. Shimizu; Y. Taniguchi; H. Umehata; N. Yoshida (2019). "The Onset of Star Formation 250 Million Years After the Big Bang".Nature.557 (7705):312–313.arXiv:1805.05966.Bibcode:2018Natur.557..392H.doi:10.1038/s41586-018-0117-z.PMID 29765123.S2CID 21702406.
  37. ^Larson, R.L.; Finkelstein, S.L.; Kocevski, D.D.; Hutchison, T.A. (22 August 2023)."A CEERS Discovery of an Accreting Supermassive Black Hole 570 Myr after the Big Bang: Identifying a Progenitor of Massive z > 6 Quasars".The Astrophysical Journal Letters.953 (2): L29.arXiv:2303.08918v2.Bibcode:2023ApJ...953L..29L.doi:10.3847/2041-8213/ace619.
  38. ^Adi Zitrin; Ivo Labbe; Sirio Belli; Rychard Bouwens; Richard S. Ellis; Guido Roberts-Borsani; Daniel P. Stark; Pascal A. Oesch; Renske Smit (2015). "Lyman-alpha Emission from a Luminous z = 8.68 Galaxy: Implications for Galaxies as Tracers of Cosmic Reionization".The Astrophysical Journal.810 (1): L12.arXiv:1507.02679.Bibcode:2015ApJ...810L..12Z.doi:10.1088/2041-8205/810/1/L12.S2CID 11524667.
  39. ^abcCurti, Mirko; et al. (January 2023)."The chemical enrichment in the early Universe as probed by JWST via direct metallicity measurements at z 8".Monthly Notices of the Royal Astronomical Society.518 (1):425–438.arXiv:2207.12375.Bibcode:2023MNRAS.518..425C.doi:10.1093/mnras/stac2737.
  40. ^abcCarnall, A. C.; et al. (January 2023)."A first look at the SMACS0723 JWST ERO: spectroscopic redshifts, stellar masses, and star-formation histories".Monthly Notices of the Royal Astronomical Society: Letters.518 (1):L45–L50.arXiv:2207.08778.Bibcode:2023MNRAS.518L..45C.doi:10.1093/mnrasl/slac136.
  41. ^abcSchaerer, D.; et al. (September 2022). "First look with JWST spectroscopy: Resemblance among z ~ 8 galaxies and local analogs".Astronomy & Astrophysics.665: 6.arXiv:2207.10034.Bibcode:2022A&A...665L...4S.doi:10.1051/0004-6361/202244556.S2CID 252175886. L4.
  42. ^abcKatz, Harley; et al. (January 2023)."First insights into the ISM at z > 8 with JWST: possible physical implications of a high [O III] λ4363/[O III] λ5007".Monthly Notices of the Royal Astronomical Society.518 (1):592–603.arXiv:2207.13693.Bibcode:2023MNRAS.518..592K.doi:10.1093/mnras/stac2657.
  43. ^"Ancient Stardust Sheds Light on the First Stars".European Southern Observatory (Press release). 8 March 2017.Archived from the original on 2 December 2024. Retrieved16 September 2025.the Universe was only 600 million years old
  44. ^Laporte, N.; Ellis, R. S.; Boone, F.; Bauer, F. E.; Quénard, D.; Roberts-Borsani, G. W.; Pelló, R.; Pérez-Fournon, I.; Streblyanska, A. (2017)."Dust in the Reionization Era: ALMA Observations of a z = 8.38 Gravitationally Lensed Galaxy".The Astrophysical Journal.832 (2): L21.arXiv:1703.02039.Bibcode:2017ApJ...837L..21L.doi:10.3847/2041-8213/aa62aa.S2CID 51841290.
  45. ^"The rise and fall of Ziggy star formation and the rich dust from ancient stars".Science Daily. 19 March 2019. Retrieved13 September 2025.which is only 600 million years after the Big Bang
  46. ^Tamura, Y.; Mawatari, K.; Hashimoto, T.; Inoue, A. K.; Zackrisson, E.; Christensen, L.; Binggeli, C; Matsuda, Y.; Matsuo, H.; Takeuchi, T. T.; Asano, R. S.; Sunaga, K.; Shimizu, I.; Okamoto, T.; Yoshida, N.; Lee, M.; Shibuya, T.; Taniguchi, Y.; Umehata, H.; Hatsukade, B.; Kohno, K.; Ota, K. (2017)."Detection of the Far-infrared [O III] and Dust Emission in a Galaxy at Redshift 8.312: Early Metal Enrichment in the Heart of the Reionization Era".The Astrophysical Journal.874 (1): 27.arXiv:1806.04132.Bibcode:2019ApJ...874...27T.doi:10.3847/1538-4357/ab0374.S2CID 55313459.
  47. ^Atkinson, Nancy (28 October 2009)."More Observations of GRB 090423, the Most Distant Known Object in the Universe".Universe Today. Retrieved14 September 2025.occurred 630 million years after the Big Bang
  48. ^abcdTanvir, N. R.; Fox, D. B.; Levan, A. J.; Berger, E.; Wiersema, K.; Fynbo, J. P. U.; Cucchiara, A.; Krühler, T.; Gehrels, N.; Bloom, J. S.; Greiner, J.; Evans, P. A.; Rol, E.; Olivares, F.; Hjorth, J.; Jakobsson, P.; Farihi, J.; Willingale, R.; Starling, R. L. C.; Cenko, S. B.; Perley, D.; Maund, J. R.; Duke, J.; Wijers, R. A. M. J.; Adamson, A. J.; Allan, A.; Bremer, M. N.; Burrows, D. N.; Castro-Tirado, A. J.; et al. (2009). "A gamma-ray burst at a redshift of z~8.2".Nature.461 (7268):1254–7.arXiv:0906.1577.Bibcode:2009Natur.461.1254T.doi:10.1038/nature08459.PMID 19865165.S2CID 205218350.
  49. ^Hensley, Kerry (8 July 2024)."Signs of the First Stars in a Distant Galaxy".NOVA.American Astronomical Society.Archived from the original on 14 July 2025. Retrieved27 September 2025.JWST spectra of this galaxy place it at a redshift of z = 8.1623, just 613 million years after the Big Bang
  50. ^abLangeroodi, Danial; Hjorth, Jens; Chen, Wenlei; Kelly, Patrick L.; Williams, Hayley; Lin, Yu-Heng; Scarlata, Claudia; Zitrin, Adi; Broadhurst, Tom; Diego, Jose M.; Huang, Xiaosheng; Filippenko, Alexei V.; Foley, Ryan J.; Jha, Saurabh; Koekemoer, Anton M.; Oguri, Masamune; Perez-Fournon, Ismael; Pierel, Justin; Poidevin, Frederick; Strolger, Lou (25 October 2023)."Evolution of the Mass-Metallicity Relation from Redshift z≈8 to the Local Universe".The Astrophysical Journal.957 (39): 23.arXiv:2212.02491v2.Bibcode:2023ApJ...957...39L.doi:10.3847/1538-4357/acdbc1.
  51. ^Borenstein, Seth (5 May 2015)."Astronomers find farthest galaxy: 13.1 billion light-years".Associated Press.Archived from the original on 17 September 2025. Retrieved17 September 2015.from about 670 million years after the Big Bang
  52. ^P. A. Oesch; P. G. van Dokkum; G. D. Illingworth; R. J. Bouwens; I. Momcheva; B. Holden; G. W. Roberts-Borsani; R. Smit; M. Franx; I. Labbe; V. Gonzalez; D. Magee (2015). "A Spectroscopic Redshift Measurement for a Luminous Lyman Break Galaxy at z = 7.730 using Keck/MOSFIRE".The Astrophysical Journal.804 (2): L30.arXiv:1502.05399.Bibcode:2015ApJ...804L..30O.doi:10.1088/2041-8205/804/2/L30.S2CID 55115344.
  53. ^Song, M.; Finkelstein, S. L.; Livermore, R. C.; Capak, P. L.; Dickinson, M.; Fontana, A. (2016)."Keck/MOSFIRE Spectroscopy of z = 7–8 Galaxies: Lyman-alpha Emission from a Galaxy at z = 7.66".The Astrophysical Journal.826 (2): 113.arXiv:1602.02160.Bibcode:2016ApJ...826..113S.doi:10.3847/0004-637X/826/2/113.S2CID 51806693.
  54. ^"Astronomers have discovered the earliest known supermassive black hole at the center of an ancient, faraway galaxy".Business Insider. 13 January 2021. Retrieved14 September 2025.just 670 million years after the Big Bang
  55. ^Wang, Feige; Yang, Jinyi;Fan, Xiaohui; Hennawi, Joseph F.; Barth, Aaron J.; Banados, Eduardo; Bian, Fuyan; Boutsia, Konstantina; Connor, Thomas; Davies, Frederick B.; Decarli, Roberto; Eilers, Anna-Christina; Farina, Emanuele Paolo; Green, Richard; Jiang, Linhua; Li, Jiang-Tao; Mazzucchelli, Chiara; Nanni, Riccardo; Schindler, Jan-Torge; Venemans, Bram; Walter, Fabian; Wu, Xue-Bing; Yue, Minghao (2021)."A Luminous Quasar at Redshift 7.642".The Astrophysical Journal.907 (1): L1.arXiv:2101.03179.Bibcode:2021ApJ...907L...1W.doi:10.3847/2041-8213/abd8c6.S2CID 231572944.
  56. ^Choi, Charles Q. (6 December 2017)."Oldest Monster Black Hole Ever Found Is 800 Million Times More Massive Than the Sun".space.com. Retrieved14 September 2025.formed just 690 million years after the Big Bang
  57. ^Bañados, Eduardo; et al. (6 December 2017). "An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5".Nature.553 (7689):473–476.arXiv:1712.01860.Bibcode:2018Natur.553..473B.doi:10.1038/nature25180.PMID 29211709.S2CID 205263326.
  58. ^"Texas Astronomer Discovers Most Distant Known Galaxy".University of Texas. 23 October 2013.Archived from the original on 9 July 2025. Retrieved16 September 2025.at a time just 700 million years after the Big Bang
  59. ^S. L. Finkelstein; C. Papovich; M. Dickinson; M. Song; V. Tilvi; A. M. Koekemoer; K. D. Finkelstein; B. Mobasher; H. C. Ferguson; M. Giavalisco; N. Reddy; M. L. N. Ashby; A. Dekel; G. G. Fazio; A. Fontana; N. A. Grogin; J.-S. Huang; D. Kocevski; M. Rafelski; B. J. Weiner; S. P. Willner (2013). "A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51".Nature.502 (7472):524–527.arXiv:1310.6031.Bibcode:2013Natur.502..524F.doi:10.1038/nature12657.PMID 24153304.S2CID 4448085.
  60. ^"Hubble finds strong contender for galaxy distance record".European Space Agency. 12 February 2008.Archived from the original on 21 June 2025. Retrieved16 September 2025.just 700 million years after the beginning
  61. ^Watson, Darach; Christensen, Lise;Knudsen, Kirsten Kraiberg; Richard, Johan; Gallazzi, Anna; Michałowski, Michał Jerzy (2015). "A dusty, normal galaxy in the epoch of reionization".Nature.519 (7543):327–330.arXiv:1503.00002.Bibcode:2015Natur.519..327W.doi:10.1038/nature14164.PMID 25731171.S2CID 2514879.
  62. ^Larson, R. L.; Finkelstein, S. L.; Pirzkal, N.; Ryan, R.; Tilvi, V.; Malhotra, S.; Rhoads, J.; Finkelstein, K.; Jung, I.; Christensen, L.; Cimatti, A.; Ferreras, I.; Grogin, N.; Koekemoer, A. M.; Hathi, N.; O'Connell, R.; Östlin, G.; Pasquali, A.; Pharo, J.; Rothberg, B.; Windhorst, R. A. (2018)."Discovery of a z = 7.452 High Equivalent Width Lyman alpha Emitter from the Hubble Space Telescope Faint Infrared Grism Survey".The Astrophysical Journal.858 (2): 113.arXiv:1712.05807.Bibcode:2018ApJ...858...94L.doi:10.3847/1538-4357/aab893.S2CID 119257857.
  63. ^"NASA telescopes help find rare galaxy at dawn of time".astronomy.com. 27 December 2011. Retrieved14 September 2025.a mere 750 million years after our universe was created
  64. ^abOno, Yoshiaki; Ouchi, Masami; Mobasher, Bahram; Dickinson, Mark; Penner, Kyle; Shimasaku, Kazuhiro; Weiner, Benjamin J.; Kartaltepe, Jeyhan S.; Nakajima, Kimihiko; Nayyeri, Hooshang; Stern, Daniel; Kashikawa, Nobunari; Spinrad, Hyron (2011). "Spectroscopic Confirmation of Three z-Dropout Galaxies at z = 6.844 – 7.213: Demographics of Lyman-Alpha Emission in z ~ 7 Galaxies".The Astrophysical Journal.744 (2): 83.arXiv:1107.3159.Bibcode:2012ApJ...744...83O.doi:10.1088/0004-637X/744/2/83.S2CID 119306980.
  65. ^"Newfound Galaxy May Be Most Distant Ever Seen".space.com. 14 June 2012. Retrieved14 September 2025.existed around 800 million years after the Big Bang
  66. ^Inoue, Akio K.; et al. (June 2016)."Detection of an oxygen emission line from a high redshift galaxy in the reionization epoch"(PDF).Science.352 (6293):1559–1562.arXiv:1606.04989.Bibcode:2016Sci...352.1559I.doi:10.1126/science.aaf0714.PMID 27312046.S2CID 206646433.
  67. ^"ALMA witnesses assembly of galaxy in early Universe".European Southern Observatory. 22 July 2015.Archived from the original on 9 September 2025. Retrieved16 September 2025.when the Universe was less than 800 million years old
  68. ^abVanzella; et al. (2011). "Spectroscopic Confirmation of Two Lyman Break Galaxies at Redshift Beyond 7".The Astrophysical Journal Letters.730 (2): L35.arXiv:1011.5500.Bibcode:2011ApJ...730L..35V.doi:10.1088/2041-8205/730/2/L35.S2CID 53459241.
  69. ^"Astronomers find universe's most distant quasar".phys.org. 29 June 2022. Retrieved14 September 2025.only 770 million years after the Big Bang
  70. ^Daniel J. Mortlock; Stephen J. Warren; Bram P. Venemans; et al. (2011). "A luminous quasar at a redshift of z = 7.085".Nature.474 (7353):616–619.arXiv:1106.6088.Bibcode:2011Natur.474..616M.doi:10.1038/nature10159.PMID 21720366.S2CID 2144362.
  71. ^Schenker, Matthew A.; et al. (January 2012). "Keck Spectroscopy of Faint 3 < z < 8 Lyman Break Galaxies: Evidence for a Declining Fraction of Emission Line Sources in the Redshift Range 6 < z < 8".The Astrophysical Journal.744 (2): 7.arXiv:1107.1261.Bibcode:2012ApJ...744..179S.doi:10.1088/0004-637X/744/2/179.S2CID 119244384.
  72. ^"Cosmic Archeology Uncovers the Universe's Dark Ages".The Subaru Telescope (Press release). 13 September 2006.Archived from the original on 14 December 2024. Retrieved16 September 2025.In this case, 780 million years after the Big Bang
  73. ^Vanzella, E.; Fontana, A.; Pentericci, L.; Castellano, M.; Grazian, A.; Giavalisco, M.; Nonino, M.; Cristiani, S.; Zamorani, G.; Vignali, C. (2014). "A 52 hours VLT/FORS2 spectrum of a bright z ~ 7 HUDF galaxy: no Ly-α emission".Astronomy & Astrophysics.569: 8.arXiv:1407.3787v1.Bibcode:2014A&A...569A..78V.doi:10.1051/0004-6361/201424285.
  74. ^abcdefghijkAdams, N. J.; et al. (November 2022)."Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field".Monthly Notices of the Royal Astronomical Society.518 (3):4755–4766.arXiv:2207.11217.Bibcode:2023MNRAS.518.4755A.doi:10.1093/mnras/stac3347.
  75. ^abcdefghijklmnYan, Haojing; et al. (January 2023)."First Batch of z ≈ 11–20 Candidate Objects Revealed by the James Webb Space Telescope Early Release Observations on SMACS 0723-73".The Astrophysical Journal Letters.942 (L9): 20.arXiv:2207.11558.Bibcode:2023ApJ...942L...9Y.doi:10.3847/2041-8213/aca80c.
  76. ^Garth Illingworth; Rychard Bouwens; Pascal Oesch; Ivo Labbe; Dan Magee (December 2012)."Our Latest Results".FirstGalaxies. RetrievedMarch 10, 2016.
  77. ^abHarikane, Yuichi; et al. (2023)."A Comprehensive Study of Galaxies at z ~ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch".The Astrophysical Journal Supplement Series.265 (1): 5.arXiv:2208.01612.Bibcode:2023ApJS..265....5H.doi:10.3847/1538-4365/acaaa9.S2CID 251253150.
  78. ^González-Nuevo, J. (2019)."SHALOS: Statistical Herschel-ATLAS lensed objects selection".NASA Ads.627: A31.arXiv:1903.06424.Bibcode:2019A&A...627A..31G.doi:10.1051/0004-6361/201935475. Retrieved2026-01-01.
  79. ^González-Nuevo, J. (2024-03-01)."Statistical HATLAS Lensed Objects Selec. : J/A+A/627/A31".Strasbourg astronomical Data Center. Retrieved2026-01-05.
  80. ^Gandolfi, Giovanni (1 September 2025). "Mysteries of Capotauro - investigating the puzzling nature of an extreme F356W-dropout".arXiv:2509.01664v1 [astro-ph.GA].
  81. ^Pérez-González, P.G.; Östlin, G.; Costantin, L.; Melinder, J.; Finkelstein, S.L.; Somerville, R. S.; Annunziatella, M.; Álvarez-Márquez, J.; Colina, L.; Dekel, A.; Ferguson, H.C.; Li, Z.; Yung, L.Y.A.; Bagley, M.B.; Boogaard, L.A.; Burgarella, D. (26 September 2025)."The Rise of the Galactic Empire: Ultraviolet Luminosity Functions at z ~ 17 and z ~ 25 Estimated with the MIDIS+NGDEEP Ultra-deep JWST/NIRCam Data Set".The Astrophysical Journal.991 (2): 179.arXiv:2503.15594v4.Bibcode:2025ApJ...991..179P.doi:10.3847/1538-4357/adf8c9.
  82. ^abMorishita, Takahiro; Stiavelli, Massimo (2023)."Physical Characterization of Early Galaxies in the Webb's First Deep Field SMACS J0723.3-7323".The Astrophysical Journal Letters.946 (2): L35.arXiv:2207.11671v2.Bibcode:2023ApJ...946L..35M.doi:10.3847/2041-8213/acbf50.S2CID 254220684.
  83. ^Harikane, Yuichi; Ouchi, Masami; Oguri, Masamune; Ono, Yoshiaki; Nakajima, Kimihiko; Isobe, Yuki; Umeda, Hiroya; Mawatari, Ken; Zhang, Yechi (2023)."A Comprehensive Study of Galaxies at z ~ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch".The Astrophysical Journal Supplement Series.265 (1): 5.arXiv:2208.01612v3.Bibcode:2023ApJS..265....5H.doi:10.3847/1538-4365/acaaa9.S2CID 251253150.
  84. ^abKokorev, V.; Atek, H.; Chisholm, J.; Endsley, R.; Chemerynska, I.; Muñoz, J. B.; Furtak, L. J.; Pan, R.; Berg, D.; Fujimoto, S.; Oesch, P. A.; Weibel, A.; Adamo, A.; Blaizot, J.; Bouwens, R.; Dessauges-Zavadsky, M.; Khullar, G. (8 April 2025)."A Glimpse of the New Redshift Frontier through AS1063".The Astrophysical Journal Letters.983 (1): 13.arXiv:2411.13640v3.Bibcode:2025ApJ...983L..22K.doi:10.3847/2041-8213/adc458.
  85. ^Fujimoto, Seiji; et al. (2023)."ALMA FIR View of Ultra High-redshift Galaxy Candidates at z ~ 11-17: Blue Monsters or Low- z Red Interlopers?".The Astrophysical Journal.955 (2): 130.arXiv:2211.03896.Bibcode:2023ApJ...955..130F.doi:10.3847/1538-4357/aceb67.
  86. ^abcdHakim, Atek; et al. (November 2022)."Revealing galaxy candidates out to z 16 with JWST observations of the lensing cluster SMACS0723".Monthly Notices of the Royal Astronomical Society.519 (1):1201–1220.arXiv:2207.12338.Bibcode:2023MNRAS.519.1201A.doi:10.1093/mnras/stac3144.
  87. ^abcdeEthan Siegel (21 May 2025)."JWST breaks its own record with new most distant galaxy MoM-z14". Big Think.
  88. ^abIsaac Schultz (24 May 2025)."Image Reveals the Most Distant Galaxy Ever Seen, From Just 280 Million Years After the Big Bang". Gizmodo.
  89. ^Wang, Tao; Elbaz, David; Daddi, Emanuele; Finoguenov, Alexis; Liu, Daizhong; Schrieber, Corenin; Martin, Sergio; Strazzullo, Veronica; Valentino, Francesco; van Der Burg, Remco; Zanella, Anita; Cisela, Laure; Gobat, Raphael; Le Brun, Amandine; Pannella, Maurilio; Sargent, Mark; Shu, Xinwen; Tan, Qinghua; Cappelluti, Nico; Li, Xanxia (2016)."Discovery of a galaxy cluster with a violently starbursting core at z=2.506".The Astrophysical Journal.828 (1): 56.arXiv:1604.07404.Bibcode:2016ApJ...828...56W.doi:10.3847/0004-637X/828/1/56.S2CID 8771287.
  90. ^Cucciati, O.; Lemaux, B. C.; Zamorani, G.; Le Fevre, O.; Tasca, L. A. M.; Hathi, N. P.; Lee, K-G.; Bardelli, S.; Cassata, P.; Garilli, B.; Le Brun, V.; Maccagni, D.; Pentericci, L.; Thomas, R.; Vanzella, E.; Zucca, E.; Lubin, L. M.; Amorin, R.; Cassara', L. P.; Cimatti, A.; Talia, M.; Vergani, D.; Koekemoer, A.; Pforr, J.; Salvato, M. (2018). "The progeny of a Cosmic Titan: a massive multi-component proto-supercluster in formation at z=2.45 in VUDS".Astronomy & Astrophysics.619: A49.arXiv:1806.06073.Bibcode:2018A&A...619A..49C.doi:10.1051/0004-6361/201833655.S2CID 119472428.
  91. ^Morishita, Takahiro; Roberts-Borsani, Guido; Treu, Tommaso; Brammer, Gabriel; Mason, Charlotte A.; Trenti, Michele; Vulcani, Benedetta; Wang, Xin; Acebron, Ana; Bahé, Yannick; Bergamini, Pietro; Boyett, Kristan; Bradac, Marusa; Calabrò, Antonello; Castellano, Marco; Chen, Wenlei; De Lucia, Gabriella; Filippenko, Alexei V.; Fontana, Adriano; Glazebrook, Karl; Grillo, Claudio; Henry, Alaina; Jones, Tucker; Kelly, Patrick L.; Koekemoer, Anton M.; Leethochawalit, Nicha; Lu, Ting-Yi; Marchesini, Danilo; Mascia, Sara; Mercurio, Amata; Merlin, Emiliano; Metha, Benjamin; Nanayakkara, Themiya; Nonino, Mario; Paris, Diego; Pentericci, Laura; Santini, Paola; Strait, Victoria; Vanzella, Eros; Windhorst, Rogier A.; Rosati, Piero; Xie, Lizhi (30 January 2023)."Early results from GLASS-JWST. XVIII: A spectroscopically confirmed protocluster 650 million years after the Big Bang".Astrophysical Journal Letters.947 (2).arXiv:2211.09097.Bibcode:2023ApJ...947L..24M.doi:10.3847/2041-8213/acb99e.S2CID 253553396.
  92. ^Bogdán, Ákos; et al. (2023-11-06),"Evidence for heavy-seed origin of early supermassive black holes from a z ≈ 10 X-ray quasar",Nature Astronomy,8 (1):126–133,arXiv:2305.15458,Bibcode:2024NatAs...8..126B,doi:10.1038/s41550-023-02111-9,S2CID 258887541, retrieved2024-08-31
  93. ^Bunker, Andrew J.; et al. (2023). "JADES NIRSpec Spectroscopy of GN-z11: Lyman-α emission and possible enhanced nitrogen abundance in az = 10.60 luminous galaxy".Astronomy & Astrophysics.677: A88.arXiv:2302.07256.Bibcode:2023A&A...677A..88B.doi:10.1051/0004-6361/202346159.
  94. ^Robert Lea (January 17, 2024)."James Webb Space Telescope discovers oldest and most distant black hole ever seen".Space.com.
  95. ^Joe Pinkstone (January 17, 2024)."Oldest black hole ever seen challenges what we know about their formation".The Telegraph.
  96. ^Maiolino, Roberto; Scholtz, Jan; Witstok, Joris; Carniani, Stefano; D'Eugenio, Francesco; de Graaff, Anna; Übler, Hannah; Tacchella, Sandro; Curtis-Lake, Emma; Arribas, Santiago; Bunker, Andrew; Charlot, Stéphane; Chevallard, Jacopo; Curti, Mirko; Looser, Tobias J.; Maseda, Michael V.; Rawle, Timothy D.; Rodríguez del Pino, Bruno; Willott, Chris J.; Egami, Eiichi; Eisenstein, Daniel J.; Hainline, Kevin N.; Robertson, Brant; Williams, Christina C.; Willmer, Christopher N. A.; Baker, William M.; Boyett, Kristan; DeCoursey, Christa; Fabian, Andrew C.; Helton, Jakob M.; Ji, Zhiyuan; Jones, Gareth C.; Kumari, Nimisha; Laporte, Nicolas; Nelson, Erica J.; Perna, Michele; Sandles, Lester; Shivaei, Irene; Sun, Fengwu (17 January 2024)."A small and vigorous black hole in the early Universe".Nature.627 (8002):59–63.arXiv:2305.12492.Bibcode:2024Natur.627...59M.doi:10.1038/s41586-024-07052-5.hdl:11384/139005.PMC 10917688.PMID 38232944.
  97. ^abNASA,"New Gamma-Ray Burst Smashes Cosmic Distance Record"Archived 2011-03-10 at theWayback Machine, 28 April 2009
  98. ^abScience Codex,"GRB 090429B – most distant gamma-ray burst yet"Archived 2011-05-31 at theWayback Machine,NASA/Goddard, 27 May 2011
  99. ^Welch, Brian; et al. (30 March 2022)."A highly magnified star at redshift 6.2".Nature.603 (7903):815–818.arXiv:2209.14866.Bibcode:2022Natur.603..815W.doi:10.1038/s41586-022-04449-y.hdl:2268/332914.PMID 35354998.S2CID 247842625. Retrieved30 March 2022.
  100. ^Gianopoulos, Andrea (30 March 2022)."Record Broken: Hubble Spots Farthest Star Ever Seen".NASA. Retrieved30 March 2022.
  101. ^Camille M. Carlisle (12 April 2013)."The Most Distant Star Ever Seen?".Sky and Telescope.
  102. ^Kelly, Patrick L.; et al. (2018). "Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens".Nature Astronomy.2 (4):334–342.arXiv:1706.10279.Bibcode:2018NatAs...2..334K.doi:10.1038/s41550-018-0430-3.S2CID 119412560.
  103. ^Mowla, Lamiya; et al. (October 2022)."The Sparkler: Evolved High-redshift Globular Cluster Candidates Captured by JWST".The Astrophysical Journal Letters.937 (2): 9.arXiv:2208.02233.Bibcode:2022ApJ...937L..35M.doi:10.3847/2041-8213/ac90ca. L35.
  104. ^Connor, Thomas; Bañados, Eduardo; Stern, Daniel; Carilli, Chris; Fabian, Andrew; Momjian, Emmanuel; Rojas-Ruiz, Sofía; Decarli, Roberto; Farina, Emanuele Paolo; Mazzucchelli, Chiara; Earnshaw, Hannah P. (2021)."Enhanced X-Ray Emission from the Most Radio-powerful Quasar in the Universe's First Billion Years".The Astrophysical Journal.911 (2): 120.arXiv:2103.03879.Bibcode:2021ApJ...911..120C.doi:10.3847/1538-4357/abe710.S2CID 232148026.
  105. ^NASA.gov
  106. ^SpaceDaily,"Record-Setting X-ray Jet Discovered", 30 November 2012 (accessed 4 December 2012)
  107. ^ESA,"Artist's impression of the X-ray binary XMMU J004243.6+412519", 12 December 2012 (accessed 18 December 2012)
  108. ^e! Science News,"XMMU J004243.6+412519: Black-Hole Binary At The Eddington Limit", 12 December 2012 (accessed 18 December 2012)
  109. ^SpaceDaily,"Microquasar found in neighbor galaxy, tantalizing scientists", 17 December 2012 (accessed 18 December 2012)
  110. ^Ouchi, Masami; Ono, Yoshiaki; Egami, Eiichi; Saito, Tomoki; Oguri, Masamune; McCarthy, Patrick J.; Farrah, Duncan; Kashikawa, Nobunari; Momcheva, Ivelina; Shimasaku, Kazuhiro; Nakanishi, Kouichiro; Furusawa, Hisanori; Akiyama, Masayuki; Dunlop, James S.; Mortier, Angela M. J. (2009-05-01)."Discovery of a Giant Lyα Emitter Near the Reionization Epoch".The Astrophysical Journal.696 (2):1164–1175.arXiv:0807.4174.Bibcode:2009ApJ...696.1164O.doi:10.1088/0004-637X/696/2/1164.ISSN 0004-637X.S2CID 15246638.
  111. ^Hsu, Jeremy (2009-04-22)."Giant Mystery Blob Discovered Near Dawn of Time".SPACE.com. Retrieved2009-04-24.
  112. ^USA Today,"Smallest, most distant planet outside solar system found", Malcolm Ritter,25 January 2006 (accessed 5 August 2010)
  113. ^Schneider, J."Notes for star PA-99-N2".Extrasolar Planets Encyclopaedia. Archived fromthe original on February 6, 2010. Retrieved2010-08-06.
  114. ^Exoplaneten.de,"The Microlensing Event of Q0957+561"Archived 2012-02-11 at theWayback Machine (accessed 5 August 2010)
  115. ^Schild, R.E. (1996). "Microlensing Variability of the Gravitationally Lensed Quasar Q0957+561 A, B".Astrophysical Journal.464: 125.Bibcode:1996ApJ...464..125S.doi:10.1086/177304.
  116. ^Coulter, David (2026). "A spectroscopically confirmed, strongly lensed, metal-poor Type II supernova at z = 5.13".arXiv:2601.04156 [astro-ph.HE].
  117. ^Cooke, Jeff; Sullivan, Mark; Gal-Yam, Avishay; Barton, Elizabeth J.; Carlberg, Raymond G.;Ryan-Weber, Emma V.; Horst, Chuck; Omori, Yuuki; Díaz, C. Gonzalo (2012). "Superluminous supernovae at redshifts of 2.05 and 3.90".Nature.491 (7423):228–31.arXiv:1211.2003.Bibcode:2012Natur.491..228C.doi:10.1038/nature11521.PMID 23123848.S2CID 4397580.
  118. ^"Record-breaking supernova in the CANDELS Ultra Deep Survey: before, after, and difference".www.spacetelescope.org.
  119. ^abRobert Lea (20 May 2024)."James Webb Space Telescope spots the most distant galaxy ever seen (image)". SPACE.com.
  120. ^Amos, Jonathan (3 March 2016)."Hubble sets new cosmic distance record".BBC News.
  121. ^Wall, Mike (5 August 2015)."Ancient Galaxy Is Most Distant Ever Found".Space.com.
  122. ^W. M. Keck Observatory (6 August 2015)."A new record: Keck Observatory measures most distant galaxy".Astronomy Now.
  123. ^Mario De Leo Winkler (15 July 2015)."The Farthest Object in the Universe".Huffington Post.
  124. ^abCourtland, Rachel (27 April 2009)."Most distant object in the universe spotted".New Scientist. Retrieved2009-11-11.
  125. ^Shiga, David (13 September 2006)."First generation of galaxies glimpsed forming".New Scientist. Retrieved2009-11-11.
  126. ^Iye, M.; Ota, K.; Kashikawa, N.; Furusawa, H.; Hashimoto, T.; Hattori, T.; Matsuda, Y.; Morokuma, T.; Ouchi, M.; Shimasaku, K. (2006). "A galaxy at a redshift z = 6.96".Nature.443 (7108):186–188.arXiv:astro-ph/0609393.Bibcode:2006Natur.443..186I.doi:10.1038/nature05104.PMID 16971942.S2CID 2876103.
  127. ^abTaniguchi, Yoshi (23 June 2008). "Star Forming Galaxies at z > 5".Proceedings of the International Astronomical Union.3 (S250):429–436.arXiv:0804.0644.Bibcode:2008IAUS..250..429T.doi:10.1017/S1743921308020796.S2CID 198472.
  128. ^abTaniguchi, Yoshiaki; Ajiki, Masaru; Nagao, Tohru; Shioya, Yasuhiro; Murayama, Takashi; Kashikawa, Nobunari; et al. (2005)."The SUBARU Deep Field Project: Lymanα Emitters at a Redshift of 6.6"(PDF).Publications of the Astronomical Society of Japan.57:165–182.arXiv:astro-ph/0407542.Bibcode:2005PASJ...57..165T.doi:10.1093/pasj/57.1.165.
  129. ^ab"Most distant galaxy detected".BBC News. 25 March 2003.
  130. ^ab"Subaru Telescope Detects the Most Distant Galaxy Yet and Expects Many More".SpaceRef. March 24, 2003. Archived fromthe original on 2012-12-09.
  131. ^Kodaira, K.; Taniguchi, Y.; Kashikawa, N.; Kaifu, N.; Ando, H.; Karoji, H.; et al. (2003). "The Discovery of Two Lyman$α$ Emitters Beyond Redshift 6 in the Subaru Deep Field".Publications of the Astronomical Society of Japan.55 (2): L17.arXiv:astro-ph/0301096.Bibcode:2003PASJ...55L..17K.doi:10.1093/pasj/55.2.L17.
  132. ^"New record for Universe's most distant object".New Scientist. 14 March 2002.
  133. ^"Far away stars light early cosmos".BBC News. 14 March 2002.
  134. ^Hu, E. M. (2002)."A Redshiftz = 6.56 Galaxy behind the Cluster Abell 370".The Astrophysical Journal.568 (2):L75–L79.arXiv:astro-ph/0203091.Bibcode:2002ApJ...568L..75H.doi:10.1086/340424.
  135. ^"K2.1 HCM 6A — Discovery of a redshift z = 6.56 galaxy lying behind the cluster Abell 370". Hera.ph1.uni-koeln.de. 2008-04-14. Archived fromthe original on 2011-05-18. Retrieved2010-10-22.
  136. ^Pentericci, L.; Fan, X.; Rix, H. W.; Strauss, M. A.; Narayanan, V. K.; Richards, G T.; Schneider, D. P.; Krolik, J.; Heckman, T.; Brinkmann, J.; Lamb, D. Q.; Szokoly, G. P. (2002). "VLT observations of the z = 6.28 quasar SDSS 1030+0524".The Astronomical Journal.123 (5): 2151.arXiv:astro-ph/0112075.Bibcode:2002AJ....123.2151P.doi:10.1086/340077.S2CID 119041760.
  137. ^Haiman, Zoltan; Cen, Renyue (20 October 2002). "A Constraint on the Gravitational Lensing Magnification and Age of the Redshift z = 6.28 Quasar SDSS 1030+0524".The Astrophysical Journal.578 (2):702–707.arXiv:astro-ph/0205143.Bibcode:2002ApJ...578..702H.doi:10.1086/342610.
  138. ^White, Richard L.; Becker, Robert H.; Fan, Xiaohui; Strauss, Michael A. (2003). "Probing the Ionization State of the Universe atz>6".The Astronomical Journal.126 (1):1–14.arXiv:astro-ph/0303476.Bibcode:2003AJ....126....1W.doi:10.1086/375547.S2CID 51505828.
  139. ^Farrah, D.; Priddey, R.; Wilman, R.; Haehnelt, M.; McMahon, R. (2004). "The X-Ray Spectrum of the z = 6.30 QSO SDSS J1030+0524".The Astrophysical Journal.611 (1):L13–L16.arXiv:astro-ph/0406561.Bibcode:2004ApJ...611L..13F.doi:10.1086/423669.S2CID 14854831.
  140. ^ab"Discovery Announced of Two Most Distant Objects". Eberly College of Science, Penn State University. 5 June 2001. Archived fromthe original on 2007-11-21.
  141. ^ab"Early results from the Sloan Digital Sky Survey: From under our nose to the edge of the universe".Space News (Press release). SDSS. 5 June 2001.
  142. ^abcd"International Team of Astronomers Finds Most Distant Object".Science Journal.17 (1). Eberly College of Science, Penn State University. Summer 2000. Archived fromthe original on 2009-09-12.
  143. ^abHu, Esther M.; McMahon, Richard G.; Cowie, Lennox L. (1999-09-01). "An Extremely Luminous Galaxy at z = 5.74".The Astrophysical Journal.522 (1):L9–L12.arXiv:astro-ph/9907079.Bibcode:1999ApJ...522L...9H.doi:10.1086/312205.
  144. ^"X-rays from the Most Distant Quasar Captured with the XMM-Newton Satellite". Eberly College of Science, Penn State University. 1 December 2000. Archived fromthe original on 2007-11-21.
  145. ^"Confirmed High Redshift (z > 5.5) Galaxies". University of Wisconsin-Madison. 10 February 2005. Archived fromthe original on 2007-06-18.
  146. ^Lloyd, Robin (1 December 2000)."Most Distant Object in Universe Comes Closer".Space.com. Archived fromthe original on 2009-12-09.
  147. ^abcdefStern, Daniel; Spinrad, Hyron (December 1999)."Search Techniques for Distant Galaxies".Publications of the Astronomical Society of the Pacific.111 (766):1475–1502.arXiv:astro-ph/9912082.Bibcode:1999PASP..111.1475S.doi:10.1086/316471.
  148. ^Wilford, John Noble (October 20, 1998)."Peering Back in Time, Astronomers Glimpse Galaxies Aborning".The New York Times.
  149. ^ab"A Baby Galaxy". Astronomy Picture of the Day. NASA. March 24, 1998.
  150. ^abDey, Arjun; Spinrad, Hyron; Stern, Daniel; Graham, James R.; Chaffee, Frederic H. (1998). "A Galaxy at z = 5.34".The Astrophysical Journal.498 (2): L93.arXiv:astro-ph/9803137.Bibcode:1998ApJ...498L..93D.doi:10.1086/311331.
  151. ^"A New Most Distant Object: z = 5.34". Astro.ucla.edu. Retrieved2010-10-22.
  152. ^"Behind CL1358+62: A New Farthest Object". Astronomy Picture of the Day. NASA. July 31, 1997.
  153. ^Franx, Marijn; Illingworth, Garth D.; Kelson, Daniel D.; Van Dokkum, Pieter G.; Tran, Kim-Vy (1997). "A Pair of Lensed Galaxies atz = 4.92 in the Field of CL 1358+62".The Astrophysical Journal.486 (2): L75.arXiv:astro-ph/9704090.Bibcode:1997ApJ...486L..75F.doi:10.1086/310844.S2CID 14502310.
  154. ^abcdefIllingworth, Garth (1999)."Galaxies at High Redshift".Astrophysics and Space Science. 269/270:165–181.arXiv:astro-ph/0009187.Bibcode:1999Ap&SS.269..165I.doi:10.1023/a:1017052809781.S2CID 119363931.
  155. ^Schneider, Donald P.; Schmidt, Maarten; Gunn, James E. (September 1991). "PC 1247 + 3406 - an optically selected quasar with a redshift of 4.897".The Astronomical Journal.102: 837.Bibcode:1991AJ....102..837S.doi:10.1086/115914.
  156. ^Smith, J. D.; Djorgovski, S.; Thompson, D.; Brisken, W. F.; Neugebauer, G.; Matthews, K.; Meylan, G.; Piotto, G.; Suntzeff, N. B. (1994)."Multicolor detection of high-redshift quasars, 2: Five objects with Z greater than or approximately equal to 4"(PDF).The Astronomical Journal.108: 1147.Bibcode:1994AJ....108.1147S.doi:10.1086/117143.
  157. ^Croswell, Ken (10 October 1992)."Science: Infant galaxy's light show".New Scientist. No. 1842. p. 17.
  158. ^"Scientists of Sloan Digital Sky Survey Discover Most Distant Quasar" (Press release). FermiLab. December 8, 1998. Archived fromthe original on 2009-09-12.
  159. ^abHook, Isobel M.; McMahon, Richard G. (1998)."Discovery of radio-loud quasars with z = 4.72 and z = 4.01".Monthly Notices of the Royal Astronomical Society.294 (1):L7–L12.arXiv:astro-ph/9801026.Bibcode:1998MNRAS.294L...7H.doi:10.1046/j.1365-8711.1998.01368.x.
  160. ^abcdeTurner, Edwin L. (1991). "Quasars and galaxy formation. I – the Z greater than 4 objects".Astronomical Journal.101: 5.Bibcode:1991AJ....101....5T.doi:10.1086/115663.
  161. ^SIMBAD,Object query : PC 1158+4635, QSO B1158+4635 – Quasar
  162. ^Cowie, Lennox L. (1991). "Young Galaxies".Annals of the New York Academy of Sciences.647 (1 Texas/ESO–Cer):31–41.Bibcode:1991NYASA.647...31C.doi:10.1111/j.1749-6632.1991.tb32157.x.S2CID 222074763.
  163. ^abNew York Times,Peering to Edge of Time, Scientists Are Astonished, November 20, 1989
  164. ^abcWarren, S. J.; Hewett, P. C.; Osmer, P. S.; Irwin, M. J. (1987). "Quasars of redshift z = 4.43 and z = 4.07 in the South Galactic Pole field".Nature.330 (6147): 453.Bibcode:1987Natur.330..453W.doi:10.1038/330453a0.S2CID 4352819.
  165. ^Levshakov, S. A. (1989). "Absorption spectra of quasars".Astrophysics.29 (2):657–671.Bibcode:1988Ap.....29..657L.doi:10.1007/BF01005972.S2CID 122978350.
  166. ^Wilford, John Noble (January 14, 1988)."Objects Detected in Universe May Be the Most Distant Ever Sighted".The New York Times.
  167. ^Wilford, John Noble (May 10, 1988)."Astronomers Peer Deeper Into Cosmos".The New York Times.
  168. ^"Object query : Q0000-26".SIMBAD.
  169. ^abcdSchmidt, Maarten; Schneider, Donald P.; Gunn, James E. (1987). "PC 0910 + 5625 – an optically selected quasar with a redshift of 4.04".Astrophysical Journal.321: L7.Bibcode:1987ApJ...321L...7S.doi:10.1086/184996.
  170. ^"Object query : PC 0910+5625".SIMBAD.
  171. ^Warren, S. J.; Hewett, P. C.; Irwin, M. J.; McMahon, R. G.; Bridgeland, M. T.; Bunclark, P. S.; Kibblewhite, E. J. (1987). "First observation of a quasar with a redshift of 4".Nature.325 (6100): 131.Bibcode:1987Natur.325..131W.doi:10.1038/325131a0.S2CID 4335291.
  172. ^"Object query : Q0046-293".SIMBAD.
  173. ^"Object query : Q1208+1011".SIMBAD.
  174. ^Henbest, Nigel (16 November 1991)."Quasar doubles help to fix the Hubble constant".New Scientist.
  175. ^"Archived Astronomy News Items, 1972–1997". Ipswich: Orwell Astronomical Society. Archived fromthe original on 2009-09-12.
  176. ^"Object query : PKS 2000-330".SIMBAD.
  177. ^ab"History of the OSU Radio Observatory".OSU Big Ear.
  178. ^"Object query : OQ172".SIMBAD.
  179. ^abc"Quasars – Three Years Later". Archived fromthe original on 2017-01-18. Retrieved2010-02-17.
  180. ^"The Edge of Night".Time. April 23, 1973. Archived fromthe original on 2008-12-14.
  181. ^"QSO B0642+449 – Quasar".SIMBAD.
  182. ^Warren, S. J.; Hewett, P. C. (1990). "The detection of high-redshift quasars".Reports on Progress in Physics.53 (8): 1095.Bibcode:1990RPPh...53.1095W.doi:10.1088/0034-4885/53/8/003.S2CID 250880776.
  183. ^abLarson, Dewey Bernard (1984). "Chapter 23 – Quasar Redshifts".The Structure of the Physical Universe. Vol. III: The Universe of Motion. North Pacific Publishers.ISBN 0-913138-11-8. Archived fromthe original on 2008-06-19.
  184. ^Bahcall, John N.; Oke, J. B. (1971)."Some Inferences from Spectrophotometry of Quasi-Stellar Sources".Astrophysical Journal.163: 235.Bibcode:1971ApJ...163..235B.doi:10.1086/150762.
  185. ^abcLynds, R.; Wills, D. (1970)."The Unusually Large Redshift of 4C 05.34".Nature.226 (5245): 532.Bibcode:1970Natur.226..532L.doi:10.1038/226532a0.PMID 16057373.S2CID 28297458.
  186. ^"7C 105517.75+495540.95 – Quasar".SIMBAD.
  187. ^abBurbidge, Geoffrey (1968)."The Distribution of Redshifts in Quasi-Stellar Objects, N-Systems and Some Radio and Compact Galaxies".Astrophysical Journal.154: L41.Bibcode:1968ApJ...154L..41B.doi:10.1086/180265.
  188. ^"A Farther-Out Quasar".Time. April 7, 1967. Archived fromthe original on 2008-12-15.
  189. ^"Object query : QSO B0237-2321".SIMBAD.
  190. ^abcdBurbidge, Geoffrey (1967). "On the Wavelengths of the Absorption Lines in Quasi-Stellar Objects".Astrophysical Journal.147: 851.Bibcode:1967ApJ...147..851B.doi:10.1086/149072.
  191. ^abTime Magazine,The Man on the Mountain, Friday, Mar. 11, 1966
  192. ^SIMBAD,Object query : Q1116+12, 4C 12.39 – Quasar
  193. ^SIMBAD,Object query : Q0106+01, 4C 01.02 – Quasar
  194. ^Time Magazine,Toward the Edge of the Universe, Friday, May. 21, 1965
  195. ^Time Magazine,The Quasi-Quasars, Friday, Jun. 18, 1965
  196. ^The Cosmic Century: A History of Astrophysics and Cosmologyp. 379 by Malcolm S. Longair – 2006
  197. ^Schmidt, Maarten (1965). "Large Redshifts of Five Quasi-Stellar Sources".Astrophysical Journal.141: 1295.Bibcode:1965ApJ...141.1295S.doi:10.1086/148217.
  198. ^The Discovery of Radio Galaxies and Quasars, 1965
  199. ^Schmidt, Maarten; Matthews, Thomas A. (1965). "Redshifts of the Quasi-Stellar Radio Sources 3c 47 and 3c 147".Quasi-Stellar Sources and Gravitational Collapse: 269.Bibcode:1965qssg.conf..269S.
  200. ^Schneider, Donald P.; Van Gorkom, J. H.; Schmidt, Maarten; Gunn, James E. (1992). "Radio properties of optically selected high-redshift quasars. I – VLA observations of 22 quasars at 6 CM".Astronomical Journal.103: 1451.Bibcode:1992AJ....103.1451S.doi:10.1086/116159.
  201. ^"Astronomy: Finding the Fastest Galaxy: 76,000 Miles per Second".Time Magazine. Vol. 83, no. 15. April 10, 1964.
  202. ^Schmidt, Maarten; Matthews, Thomas A. (1964). "Redshift of the Quasi-Stellar Radio Sources 3c 47 and 3c 147".Astrophysical Journal.139: 781.Bibcode:1964ApJ...139..781S.doi:10.1086/147815.
  203. ^"The Discovery of Radio Galaxies and Quasars". Retrieved2010-10-22.
  204. ^McCarthy, Patrick J. (1993). "High Redshift Radio Galaxies".Annual Review of Astronomy and Astrophysics.31:639–688.Bibcode:1993ARA&A..31..639M.doi:10.1146/annurev.aa.31.090193.003231.
  205. ^abSandage, Allan (1961). "The Ability of the 200-INCH Telescope to Discriminate Between Selected World Models".Astrophysical Journal.133: 355.Bibcode:1961ApJ...133..355S.doi:10.1086/147041.
  206. ^Hubble, E. P. (1953)."The law of red shifts (George Darwin Lecture)".Monthly Notices of the Royal Astronomical Society.113 (6):658–666.Bibcode:1953MNRAS.113..658H.doi:10.1093/mnras/113.6.658.
  207. ^Sandage, Allan."Observational Tests of World Models: 6.1. Local Tests for Linearity of the Redshift-Distance Relation".Annu. Rev. Astron. Astrophys.1988 (26):561–630.
  208. ^Humason, M. L.; Mayall, N. U.; Sandage, A. R. (1956). "Redshifts and magnitudes of extragalactic nebulae".Astronomical Journal.61: 97.Bibcode:1956AJ.....61...97H.doi:10.1086/107297.
  209. ^abc"1053 May 8 meeting of the Royal Astronomical Society".The Observatory.73: 97. 1953.Bibcode:1953Obs....73...97.
  210. ^Merrill, Paul W. (1958). "From Atoms to Galaxies".Astronomical Society of the Pacific Leaflets.7 (349): 393.Bibcode:1958ASPL....7..393M.
  211. ^abHumason, M. L. (January 1936)."The Apparent Radial Velocities of 100 Extra-Galactic Nebulae".The Astrophysical Journal.83: 10.Bibcode:1936ApJ....83...10H.doi:10.1086/143696.
  212. ^"The First 50 Years At Palomar: 1949–1999; The Early Years of Stellar Evolution, Cosmology, and High-Energy Astrophysics';5.2.1. The Mount Wilson Years;Annu. Rev. Astron. Astrophys. 1999. 37: 445–486
  213. ^abChant, C. A. (1 April 1932). "Notes and Queries (Doings at Mount Wilson-Ritchey's Photographic Telescope-Infra-red Photographic Plates)".Journal of the Royal Astronomical Society of Canada.26: 180.Bibcode:1932JRASC..26..180C.
  214. ^Humason, Milton L. (July 1931). "Apparent Velocity-Shifts in the Spectra of Faint Nebulae".The Astrophysical Journal.74: 35.Bibcode:1931ApJ....74...35H.doi:10.1086/143287.
  215. ^Hubble, Edwin; Humason, Milton L. (July 1931). "The Velocity-Distance Relation among Extra-Galactic Nebulae".The Astrophysical Journal.74: 43.Bibcode:1931ApJ....74...43H.doi:10.1086/143323.
  216. ^abHumason, M. L. (1 January 1931). "The Large Apparent Velocities of Extra-Galactic Nebulae".Leaflet of the Astronomical Society of the Pacific.1 (37): 149.Bibcode:1931ASPL....1..149H.
  217. ^abHumason, M. L. (1930)."The Rayton short-focus spectrographic objective".Astrophysical Journal.71: 351.Bibcode:1930ApJ....71..351H.doi:10.1086/143255.
  218. ^abcdTrimble, Virginia (1996)."H_0: The Incredible Shrinking Constant, 1925–1975"(PDF).Publications of the Astronomical Society of the Pacific.108: 1073.Bibcode:1996PASP..108.1073T.doi:10.1086/133837.S2CID 122165424.
  219. ^"The Berkeley Meeting of the Astronomical Society of the Pacific, June 20–21, 1929".Publications of the Astronomical Society of the Pacific.41 (242): 244. 1929.Bibcode:1929PASP...41..244..doi:10.1086/123945.
  220. ^abFrom theProceedings of the National Academy of Sciences; Volume 15 : March 15, 1929 : Number 3;The Large Radial Velocity of N. G. C. 7619; January 17, 1929
  221. ^The Journal of the Royal Astronomical Society of Canada / Journal de la Société Royale D'astronomie du Canada; Vol. 83, No. 6 December 1989 Whole No. 621;EDWIN HUBBLE 1889–1953
  222. ^abNational Academy of Sciences;Biographical Memoirs: V. 52 – Vesto Melvin Slipher;ISBN 0-309-03099-4
  223. ^Bailey, S. I. (1920). "Comet Skjellerup".Harvard College Observatory Bulletin.739: 1.Bibcode:1920BHarO.739....1B.
  224. ^New York Times,DREYER NEBULA NO. 584 Inconceivably Distant; Dr. Slipher Says the Celestial Speed Champion Is 'Many Millions of Light Years' Away.; January 19, 1921, Wednesday
  225. ^abNew York Times,Nebula Dreyer Breaks All Sky Speed Records; Portion of the Constellation of Cetus Is Rushing Along at Rate of 1,240 Miles a Second.; January 18, 1921, Tuesday
  226. ^Hawera & Normanby Star,"Items of Interest", 29 December 1910, Volume LX, page 3 . Retrieved 25 March 2010.
  227. ^Evening Star (San Jose),"Colossal Arcturus",Pittsburgh Dispatch, 10 June 1910 . Retrieved 25 March 2010.
  228. ^Nelson Evening Mail,"British Bloodthirstiness", 2 November 1891, Volume XXV, Issue 230, Page 3 . Retrieved 25 March 2010.
  229. ^"Handbook of astronomy",Dionysius Lardner & Edwin Dunkin, Lockwood & Co. (1875),p.121
  230. ^"The Three Heavens",Josiah Crampton, William Hunt and Company (1876),p.164
  231. ^(in German)Kosmos: Entwurf einer physischen Weltbeschreibung, Volume 4,Alexander von Humboldt, J. G. Cotta (1858),p.195
  232. ^"Outlines of Astronomy",John F. W. Herschel, Longman & Brown (1849), ch. 'Parallax of Stars',p.551 (section 851)
  233. ^abcThe North American Review, "The Observatory at Pulkowa",FGW Struve, Volume 69 Issue 144 (July 1849)
  234. ^The Sidereal Messenger, "Of the Precession of the Equinoxes, Nutation of the Earth's Axis, And Aberration of Light", Vol.1, No. 12,April 1847: 'Derby, Bradley, & Co.' Cincinnati
  235. ^SEDS,"Friedrich Wilhelm Bessel (July 22, 1784 – March 17, 1846)"Archived February 4, 2012, at theWayback Machine . Retrieved 11 November 2009.
  236. ^Harper's New Monthly Magazine,"Some Talks of an Astronomer",Simon Newcomb, Volume 0049 Issue 294 (November 1874), pp.827 (accessed 2009-Nov-11)
Morphology
Structure
Active nuclei
Energetic galaxies
Low activity
Interaction
Lists
Related
Formation
Evolution
Classification
Remnants
Hypothetical
Nucleosynthesis
Structure
Properties
Star systems
Earth-centric
observations
Lists
Related
Portals:
Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_the_most_distant_astronomical_objects&oldid=1337382213"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp