Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

List of quantum logic gates

From Wikipedia, the free encyclopedia

This article containsdynamic lists that may never be able to satisfy particular standards for completeness. You can help byediting the page to add missing items, with references toreliable sources.

Ingate-based quantum computing, various sets ofquantum logic gates are commonly used to express quantum operations. The following tables list several unitary quantum logic gates, together with their common name, how they are represented, and some of their properties.Controlled orconjugate transpose (adjoint) versions of some of these gates may not be listed.

Identity gate and global phase

[edit]
Name# qubitsOperator symbolMatrixCircuit diagramPropertiesRefs
Identity,

no-op

1 (any)I,I{\textstyle I,\;\mathbb {I} }, 𝟙[1001]{\displaystyle {\begin{bmatrix}1&0\\0&1\end{bmatrix}}}
or

[1]
Global phase1 (any)Ph{\textstyle \mathrm {Ph} },Phase{\textstyle \mathrm {Phase} } oreiδI{\textstyle \mathrm {e} ^{i\delta }I}eiδ[1001]{\displaystyle \mathrm {e} ^{i\delta }{\begin{bmatrix}1&0\\0&1\end{bmatrix}}}[1]

The identity gate is theidentity operationI|ψ=|ψ{\displaystyle I|\psi \rangle =|\psi \rangle }, most of the times this gate is not indicated in circuit diagrams, but it is useful when describing mathematical results. It has been described as being a "wait cycle",[2] and aNOP.[3][1]

The global phase gate introduces a global phaseeiφ{\displaystyle e^{i\varphi }} to the whole qubit quantum state. A quantum state is uniquely defined up to a phase. Because of theBorn rule, aphase factor has no effect on ameasurement outcome:|eiφ|=1{\displaystyle |e^{i\varphi }|=1} for anyφ{\displaystyle \varphi }. Becauseeiδ|ψ|ϕ=eiδ(|ψ|ϕ),{\displaystyle e^{i\delta }|\psi \rangle \otimes |\phi \rangle =e^{i\delta }(|\psi \rangle \otimes |\phi \rangle ),} when the global phase gate is applied to a single qubit in aquantum register, the entire register's global phase is changed. Also,Ph(0)=I.{\displaystyle \mathrm {Ph} (0)=I.}

These gates can be extended to any number ofqubits orqudits.

Clifford qubit gates

[edit]

This table includes commonly usedClifford gates for qubits.[1][4][5]

Names# qubitsOperator symbolMatrixCircuit diagramSome propertiesRefs
PauliX,
NOT,
bit flip
1X,NOT,σx{\textstyle X,\;\mathrm {NOT} ,\;\sigma _{x}}[0110]{\displaystyle {\begin{bmatrix}0&1\\1&0\end{bmatrix}}}


or

[1][6]
PauliY1Y,σy{\textstyle Y,\;\sigma _{y}}[0ii0]{\displaystyle {\begin{bmatrix}0&-i\\i&0\end{bmatrix}}}
  • Hermitian
  • Pauli group
  • Traceless
  • Involutory
[1][6]
PauliZ,
phase flip
1Z,σz{\textstyle Z,\;\sigma _{z}}[1001]{\displaystyle {\begin{bmatrix}1&0\\0&-1\end{bmatrix}}}
  • Hermitian
  • Pauli group
  • Traceless
  • Involutory
[1][6]
Phase gateS,
square root ofZ
1S,P,Z{\textstyle S,\;P,\;{\sqrt {Z}}}[100i]{\displaystyle {\begin{bmatrix}1&0\\0&i\end{bmatrix}}}[1][6]
Square root ofX,
square root of NOT
1X{\textstyle {\sqrt {X}}},V{\textstyle V},NOT,SX{\textstyle {\sqrt {\mathrm {NOT} }},\;\mathrm {SX} }12[1+i1i1i1+i]{\displaystyle {\frac {1}{2}}{\begin{bmatrix}1+i&1-i\\1-i&1+i\end{bmatrix}}}[1][7]
Hadamard,
Walsh-Hadamard
1H{\textstyle H}12[1111]{\displaystyle {\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&1\\1&-1\end{bmatrix}}}
  • Hermitian
  • Traceless
  • Involutory
[1][6]
Controlled NOT,
controlled-X,
controlled-bit flip,
reversibleexclusive OR,
Feynman
2CNOT{\textstyle \mathrm {CNOT} },XOR,CX{\textstyle \mathrm {XOR} ,\;\mathrm {CX} }[1000010000010010]{\displaystyle {\begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&0&1\\0&0&1&0\end{bmatrix}}}
[1000000100100100]{\displaystyle {\begin{bmatrix}1&0&0&0\\0&0&0&1\\0&0&1&0\\0&1&0&0\end{bmatrix}}}

  • Hermitian
  • Involutory

Implementation:

[1][6]
Anticontrolled-NOT,
anticontrolled-X,
open-controlled-CNOT,
zero control,
control-on-0-NOT,
reversibleexclusive NOR
2C¯X{\textstyle {\overline {\mathrm {C} }}\mathrm {X} },controlled[0]-NOT{\textstyle {\text{controlled[0]-NOT}}},XNOR{\textstyle \mathrm {XNOR} }[0100100000100001]{\displaystyle {\begin{bmatrix}0&1&0&0\\1&0&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix}}}
  • Hermitian
  • Involutory
[1]
Controlled-Z,
controlled sign flip,
controlled phase flip
2CZ{\textstyle \mathrm {CZ} },CPF{\textstyle \mathrm {CPF} },CSIGN{\textstyle \mathrm {CSIGN} },CPHASE{\textstyle \mathrm {CPHASE} }[1000010000100001]{\displaystyle {\begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&-1\end{bmatrix}}}
  • Hermitian
  • Involutory
  • Symmetrical

Implementation:

  • Duan-Kimble gate
[1][6]
Double-controlled NOT2DCNOT{\textstyle \mathrm {DCNOT} }[1000001000010100]{\displaystyle {\begin{bmatrix}1&0&0&0\\0&0&1&0\\0&0&0&1\\0&1&0&0\end{bmatrix}}}[8]
Swap2SWAP{\textstyle \mathrm {SWAP} }[1000001001000001]{\displaystyle {\begin{bmatrix}1&0&0&0\\0&0&1&0\\0&1&0&0\\0&0&0&1\end{bmatrix}}}
or
  • Hermitian
  • Involutory
  • Symmetrical
[1][6]
Imaginary swap2iSWAP{\displaystyle {\mbox{iSWAP}}}[100000i00i000001]{\displaystyle {\begin{bmatrix}1&0&0&0\\0&0&i&0\\0&i&0&0\\0&0&0&1\end{bmatrix}}}
or
  • Special unitary
  • Symmetrical
[1]

Other Clifford gates, including higher dimensional ones are not included here but by definition can be generated usingH,S{\textstyle H,S} andCNOT{\textstyle \mathrm {CNOT} }.

Note that if a Clifford gateA is not in the Pauli group,A{\displaystyle {\sqrt {A}}} or controlled-A are not in the Clifford gates.[citation needed]

The Clifford set is not a universal quantum gate set.

Non-Clifford qubit gates

[edit]

Relative phase gates

[edit]
Names# qubitsOperator symbolMatrixCircuit diagramPropertiesRefs
Phase shift1P(φ),R(φ),u1(φ){\textstyle P(\varphi ),\;R(\varphi ),\;u_{1}(\varphi )}[100eiφ]{\displaystyle {\begin{bmatrix}1&0\\0&\mathrm {e} ^{i\varphi }\end{bmatrix}}}[9][10][11]
Phase gateT,
π/8 gate,
fourth root ofZ
1T,P(π/4){\textstyle T,P(\pi /4)} orZ4{\textstyle {\sqrt[{4}]{Z}}}[100eiπ/4]{\displaystyle {\begin{bmatrix}1&0\\0&\mathrm {e} ^{i\pi /4}\end{bmatrix}}}[1][6]
Controlled phase2CPhase(φ),CR(φ){\textstyle \mathrm {CPhase} (\varphi ),\mathrm {CR} (\varphi )}[100001000010000eiφ]{\displaystyle {\begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&e^{i\varphi }\end{bmatrix}}}

Implementation:

[11]
Controlled phase S2CS,controlled-S{\displaystyle \mathrm {CS} ,{\text{controlled-}}S}[100001000010000i]{\displaystyle {\begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&i\end{bmatrix}}}
  • Symmetrical
[6]

The phase shift is a family of single-qubit gates that map the basis statesP(φ)|0=|0{\displaystyle P(\varphi )|0\rangle =|0\rangle } andP(φ)|1=eiφ|1{\displaystyle P(\varphi )|1\rangle =e^{i\varphi }|1\rangle }. The probability of measuring a|0{\displaystyle |0\rangle } or|1{\displaystyle |1\rangle } is unchanged after applying this gate, however it modifies the phase of the quantum state. This is equivalent to tracing a horizontal circle (a line of latitude), or a rotation along the z-axis on theBloch sphere byφ{\displaystyle \varphi } radians. A common example is theT gate whereφ=π4{\textstyle \varphi ={\frac {\pi }{4}}} (historically known as theπ/8{\displaystyle \pi /8} gate), the phase gate. Note that some Clifford gates are special cases of the phase shift gate:P(0)=I,P(π)=Z;P(π/2)=S.{\displaystyle P(0)=I,\;P(\pi )=Z;P(\pi /2)=S.}

The argument to the phase shift gate is inU(1), and the gate performs a phase rotation in U(1) along the specified basis state (e.g.P(φ){\displaystyle P(\varphi )} rotates the phase about|1{\displaystyle |1\rangle }). ExtendingP(φ){\displaystyle P(\varphi )} to a rotation about a generic phase of both basis states of a 2-level quantum system (aqubit) can be done with aseries circuit:P(β)XP(α)X=[eiα00eiβ]{\displaystyle P(\beta )\cdot X\cdot P(\alpha )\cdot X={\begin{bmatrix}e^{i\alpha }&0\\0&e^{i\beta }\end{bmatrix}}}. Whenα=β{\displaystyle \alpha =-\beta } this gate is therotation operatorRz(2β){\displaystyle R_{z}(2\beta )} gate and ifα=β{\displaystyle \alpha =\beta } it is a global phase.[a][b]

TheT gate's historic name ofπ/8{\displaystyle \pi /8} gate comes from the identityRz(π/4)Ph(π8)=P(π/4){\displaystyle R_{z}(\pi /4)\operatorname {Ph} \left({\frac {\pi }{8}}\right)=P(\pi /4)}, whereRz(π/4)=[eiπ/800eiπ/8]{\displaystyle R_{z}(\pi /4)={\begin{bmatrix}e^{-i\pi /8}&0\\0&e^{i\pi /8}\end{bmatrix}}}.

Arbitrary single-qubit phase shift gatesP(φ){\displaystyle P(\varphi )} are natively available fortransmon quantum processors through timing of microwave control pulses.[13] It can be explained in terms ofchange of frame.[14][15]

As with any single qubit gate one can build a controlled version of the phase shift gate. With respect to the computational basis, the 2-qubit controlled phase shift gate is: shifts the phase withφ{\displaystyle \varphi } only if it acts on the state|11{\displaystyle |11\rangle }:

|a,b{eiφ|a,bfor a=b=1|a,botherwise.{\displaystyle |a,b\rangle \mapsto {\begin{cases}e^{i\varphi }|a,b\rangle &{\mbox{for }}a=b=1\\|a,b\rangle &{\mbox{otherwise.}}\end{cases}}}

The controlled-Z (or CZ) gate is the special case whereφ=π{\displaystyle \varphi =\pi }.

The controlled-S gate is the case of the controlled-P(φ){\displaystyle P(\varphi )} whenφ=π/2{\displaystyle \varphi =\pi /2} and is a commonly used gate.[6]

Rotation operator gates

[edit]
Further information:Bloch sphere § Rotations, andRotation operator (quantum mechanics)
Names# qubitsOperator symbolExponential formMatrixCircuit diagramPropertiesRefs
Rotation aboutx-axis1Rx(θ){\textstyle R_{x}(\theta )}exp(iXθ/2){\displaystyle \exp(-iX\theta /2)}[cos(θ/2)isin(θ/2)isin(θ/2)cos(θ/2)]{\displaystyle {\begin{bmatrix}\cos(\theta /2)&-i\sin(\theta /2)\\-i\sin(\theta /2)&\cos(\theta /2)\end{bmatrix}}}[1][6]
Rotation about y-axis1Ry(θ){\textstyle R_{y}(\theta )}exp(iYθ/2){\displaystyle \exp(-iY\theta /2)}[cos(θ/2)sin(θ/2)sin(θ/2)cos(θ/2)]{\displaystyle {\begin{bmatrix}\cos(\theta /2)&-\sin(\theta /2)\\\sin(\theta /2)&\cos(\theta /2)\end{bmatrix}}}[1][6]
Rotation about z-axis1Rz(θ){\textstyle R_{z}(\theta )}exp(iZθ/2){\displaystyle \exp(-iZ\theta /2)}[exp(iθ/2)00exp(iθ/2)]{\displaystyle {\begin{bmatrix}\exp(-i\theta /2)&0\\0&\exp(i\theta /2)\end{bmatrix}}}[1][6]

The rotation operator gatesRx(θ),Ry(θ){\displaystyle R_{x}(\theta ),R_{y}(\theta )} andRz(θ){\displaystyle R_{z}(\theta )} are the analogrotation matrices in threeCartesian axes ofSO(3),[c] along the x, y or z-axes of theBloch sphere projection.

AsPauli matrices are related to thegenerator of rotations, these rotation operators can be written asmatrix exponentials with Pauli matrices in the argument. Any2×2{\displaystyle 2\times 2}unitary matrix inSU(2) can be written as a product (i.e. series circuit) of three rotation gates or less. Note that for two-level systems such as qubits andspinors, these rotations have a period of. A rotation of (360 degrees) returns the same statevector with a differentphase.[16]

We also haveRb(θ)=Rb(θ){\displaystyle R_{b}(-\theta )=R_{b}(\theta )^{\dagger }} andRb(0)=I{\displaystyle R_{b}(0)=I} for allb{x,y,z}.{\displaystyle b\in \{x,y,z\}.}

The rotation matrices are related to the Pauli matrices in the following way:Rx(π)=iX,Ry(π)=iY,Rz(π)=iZ.{\displaystyle R_{x}(\pi )=-iX,R_{y}(\pi )=-iY,R_{z}(\pi )=-iZ.}

It is possible to work out the adjoint action of rotations on thePauli vector, namely rotation effectively by double the anglea to applyRodrigues' rotation formula:

Rn(a)σRn(a)=eia2(n^σ) σ eia2(n^σ)=σcos(a)+n^×σ sin(a)+n^ n^σ (1cos(a)) .{\displaystyle R_{n}(-a){\vec {\sigma }}R_{n}(a)=e^{i{\frac {a}{2}}\left({\hat {n}}\cdot {\vec {\sigma }}\right)}~{\vec {\sigma }}~e^{-i{\frac {a}{2}}\left({\hat {n}}\cdot {\vec {\sigma }}\right)}={\vec {\sigma }}\cos(a)+{\hat {n}}\times {\vec {\sigma }}~\sin(a)+{\hat {n}}~{\hat {n}}\cdot {\vec {\sigma }}~(1-\cos(a))~.}

Taking thedot product of any unit vector with the above formula generates the expression of any single qubit gate when sandwiched within adjoint rotation gates. For example, it can be shown thatRy(π/2)XRy(π/2)=x^(y^×σ)=Z{\displaystyle R_{y}(-\pi /2)XR_{y}(\pi /2)={\hat {x}}\cdot ({\hat {y}}\times {\vec {\sigma }})=Z}. Also, using the anticommuting relation we haveRy(π/2)XRy(π/2)=XRy(+π/2)Ry(π/2)=X(iY)=Z{\displaystyle R_{y}(-\pi /2)XR_{y}(\pi /2)=XR_{y}(+\pi /2)R_{y}(\pi /2)=X(-iY)=Z}.

Rotation operators have interesting identities. For example,Ry(π/2)Z=H{\displaystyle R_{y}(\pi /2)Z=H} andXRy(π/2)=H.{\displaystyle XR_{y}(\pi /2)=H.} Also, using the anticommuting relations we haveZRy(π/2)=H{\displaystyle ZR_{y}(-\pi /2)=H} andRy(π/2)X=H.{\displaystyle R_{y}(-\pi /2)X=H.}

Global phase and phase shift can be transformed into each other's with the Z-rotation operator:Rz(γ)Ph(γ2)=P(γ){\displaystyle R_{z}(\gamma )\operatorname {Ph} \left({\frac {\gamma }{2}}\right)=P(\gamma )}.[5]: 11 [1]: 77–83 

TheX{\displaystyle {\sqrt {X}}} gate represents a rotation ofπ/2 about thex axis at the Bloch sphereX=eiπ/4Rx(π/2){\displaystyle {\sqrt {X}}=e^{i\pi /4}R_{x}(\pi /2)}.

Similar rotation operator gates exist forSU(3) usingGell-Mann matrices. They are the rotation operators used withqutrits.

Two-qubit interaction gates

[edit]
Names# qubitsOperator symbolExponential formMatrixCircuit diagramPropertiesRefs
XX interaction2Rxx(ϕ){\displaystyle R_{xx}(\phi )},XX(ϕ){\displaystyle {\text{XX}}(\phi )}exp(iϕ2XX){\displaystyle \exp \left(-i{\frac {\phi }{2}}X\otimes X\right)}[cos(ϕ2)00isin(ϕ2)0cos(ϕ2)isin(ϕ2)00isin(ϕ2)cos(ϕ2)0isin(ϕ2)00cos(ϕ2)]{\displaystyle {\begin{bmatrix}\cos \left({\frac {\phi }{2}}\right)&0&0&-i\sin \left({\frac {\phi }{2}}\right)\\0&\cos \left({\frac {\phi }{2}}\right)&-i\sin \left({\frac {\phi }{2}}\right)&0\\0&-i\sin \left({\frac {\phi }{2}}\right)&\cos \left({\frac {\phi }{2}}\right)&0\\-i\sin \left({\frac {\phi }{2}}\right)&0&0&\cos \left({\frac {\phi }{2}}\right)\\\end{bmatrix}}}

Implementation:

[citation needed]
YY interaction2Ryy(ϕ){\displaystyle R_{yy}(\phi )},YY(ϕ){\displaystyle {\text{YY}}(\phi )}exp(iϕ2YY){\displaystyle \exp \left(-i{\frac {\phi }{2}}Y\otimes Y\right)}[cos(ϕ2)00isin(ϕ2)0cos(ϕ2)isin(ϕ2)00isin(ϕ2)cos(ϕ2)0isin(ϕ2)00cos(ϕ2)]{\displaystyle {\begin{bmatrix}\cos \left({\frac {\phi }{2}}\right)&0&0&i\sin \left({\frac {\phi }{2}}\right)\\0&\cos \left({\frac {\phi }{2}}\right)&-i\sin \left({\frac {\phi }{2}}\right)&0\\0&-i\sin \left({\frac {\phi }{2}}\right)&\cos \left({\frac {\phi }{2}}\right)&0\\i\sin \left({\frac {\phi }{2}}\right)&0&0&\cos \left({\frac {\phi }{2}}\right)\\\end{bmatrix}}}

Implementation:

[citation needed]
ZZ interaction2Rzz(ϕ){\textstyle {\displaystyle R_{zz}(\phi )}},ZZ(ϕ){\displaystyle {\text{ZZ}}(\phi )}exp(iϕ2ZZ){\displaystyle {\displaystyle \exp \left(-i{\frac {\phi }{2}}Z\otimes Z\right)}}[eiϕ/20000eiϕ/20000eiϕ/20000eiϕ/2]{\displaystyle {\begin{bmatrix}e^{-i\phi /2}&0&0&0\\0&e^{i\phi /2}&0&0\\0&0&e^{i\phi /2}&0\\0&0&0&e^{-i\phi /2}\\\end{bmatrix}}}[citation needed]
XY,
XX plus YY
2Rxy(ϕ){\textstyle {\displaystyle R_{xy}(\phi )}},XY(ϕ){\displaystyle {\text{XY}}(\phi )}exp[iϕ4(XX+YY)]{\displaystyle {\displaystyle \exp \left[-i{\frac {\phi }{4}}(X\otimes X+Y\otimes Y)\right]}}[10000cos(ϕ/2)isin(ϕ/2)00isin(ϕ/2)cos(ϕ/2)00001]{\displaystyle {\begin{bmatrix}1&0&0&0\\0&\cos(\phi /2)&-i\sin(\phi /2)&0\\0&-i\sin(\phi /2)&\cos(\phi /2)&0\\0&0&0&1\\\end{bmatrix}}}[citation needed]

The qubit-qubit Ising coupling or Heisenberg interaction gatesRxx,Ryy andRzz are 2-qubit gates that are implemented natively in sometrapped-ion quantum computers, using for example theMølmer–Sørensen gate procedure.[17][18]

Note that these gates can be expressed in sinusoidal form also, for exampleRxx(ϕ)=exp(iϕ2XX)=cos(ϕ2)IIisin(ϕ2)XX{\displaystyle R_{xx}(\phi )=\exp \left(-i{\frac {\phi }{2}}X\otimes X\right)=\cos \left({\frac {\phi }{2}}\right)I\otimes I-i\sin \left({\frac {\phi }{2}}\right)X\otimes X}.

The CNOT gate can be further decomposed as products of rotation operator gates and exactly a single two-qubit interaction gate, for example

CNOT=eiπ4Ry1(π/2)Rx1(π/2)Rx2(π/2)Rxx(π/2)Ry1(π/2).{\displaystyle {\mbox{CNOT}}=e^{-i{\frac {\pi }{4}}}R_{y_{1}}(-\pi /2)R_{x_{1}}(-\pi /2)R_{x_{2}}(-\pi /2)R_{xx}(\pi /2)R_{y_{1}}(\pi /2).}

The SWAP gate can be constructed from other gates, for example using thetwo-qubit interaction gates:SWAP=eiπ4Rxx(π/2)Ryy(π/2)Rzz(π/2){\displaystyle {\text{SWAP}}=e^{i{\frac {\pi }{4}}}R_{xx}(\pi /2)R_{yy}(\pi /2)R_{zz}(\pi /2)}.

In superconducting circuits, the family of gates resulting from Heisenberg interactions is sometimes called thefSim gate set. They can be realized using flux-tunable qubits with flux-tunable coupling,[19] or using microwave drives in fixed-frequency qubits with fixed coupling.[20]

Non-Clifford swap gates

[edit]
Names# qubitsOperator symbolMatrixCircuit diagramPropertiesRefs
Square root swap2SWAP{\displaystyle {\sqrt {\mathrm {SWAP} }}}[1000012(1+i)12(1i)0012(1i)12(1+i)00001]{\displaystyle {\begin{bmatrix}1&0&0&0\\0&{\frac {1}{2}}(1+i)&{\frac {1}{2}}(1-i)&0\\0&{\frac {1}{2}}(1-i)&{\frac {1}{2}}(1+i)&0\\0&0&0&1\\\end{bmatrix}}}[1]
Square root imaginary swap2iSWAP{\displaystyle {\sqrt {\mbox{iSWAP}}}}[1000012i200i21200001]{\displaystyle {\begin{bmatrix}1&0&0&0\\0&{\frac {1}{\sqrt {2}}}&{\frac {i}{\sqrt {2}}}&0\\0&{\frac {i}{\sqrt {2}}}&{\frac {1}{\sqrt {2}}}&0\\0&0&0&1\end{bmatrix}}}
  • Special unitary
[11]
Swap (raised to a power)2SWAPα{\displaystyle {\mbox{SWAP}}^{\alpha }}[100001+eiπα21eiπα2001eiπα21+eiπα200001]{\displaystyle {\begin{bmatrix}1&0&0&0\\0&{\frac {1+e^{i\pi \alpha }}{2}}&{\frac {1-e^{i\pi \alpha }}{2}}&0\\0&{\frac {1-e^{i\pi \alpha }}{2}}&{\frac {1+e^{i\pi \alpha }}{2}}&0\\0&0&0&1\end{bmatrix}}}[1]
Fredkin,

controlled swap

3CSWAP{\displaystyle \mathrm {CSWAP} },FREDKIN{\displaystyle \mathrm {FREDKIN} }[1000000001000000001000000001000000001000000000100000010000000001]{\displaystyle {\begin{bmatrix}1&0&0&0&0&0&0&0\\0&1&0&0&0&0&0&0\\0&0&1&0&0&0&0&0\\0&0&0&1&0&0&0&0\\0&0&0&0&1&0&0&0\\0&0&0&0&0&0&1&0\\0&0&0&0&0&1&0&0\\0&0&0&0&0&0&0&1\\\end{bmatrix}}}
or
  • Hermitian
  • Involutory
  • Functionally complete reversible gate for Boolean algebra
[1][6]

TheSWAP gate performs half-way of a two-qubit swap (see Clifford gates). It is universal such that any many-qubit gate can be constructed from onlySWAP and single qubit gates. More than one application of theSWAP is required to produce aBell state from product states. TheSWAP gate arises naturally in systems that exploitexchange interaction.[21][1]

For systems with Ising like interactions, it is sometimes more natural to introduce the imaginary swap[22] or iSWAP.[23][24] Note thatiSWAP=Rxx(π/2)Ryy(π/2){\displaystyle i{\mbox{SWAP}}=R_{xx}(-\pi /2)R_{yy}(-\pi /2)} andiSWAP=Rxx(π/4)Ryy(π/4){\displaystyle {\sqrt {i{\mbox{SWAP}}}}=R_{xx}(-\pi /4)R_{yy}(-\pi /4)}, or more generallyiSWAPn=Rxx(π/2n)Ryy(π/2n){\displaystyle {\sqrt[{n}]{i{\mbox{SWAP}}}}=R_{xx}(-\pi /2n)R_{yy}(-\pi /2n)} for all realn except 0.

SWAPα arises naturally in spintronic quantum computers.[1]

TheFredkin gate (also CSWAP or CS gate), named afterEdward Fredkin, is a 3-bit gate that performs acontrolledswap. It isuniversal for classical computation. It has the useful property that the numbers of 0s and 1s are conserved throughout, which in thebilliard ball model means the same number of balls are output as input.

Other named gates

[edit]
Names# qubitsOperator symbolMatrixCircuit diagramPropertiesNamed afterRefs
General single qubit rotation1U(θ,ϕ,λ){\displaystyle U(\theta ,\phi ,\lambda )}[cos(θ/2)eiλsin(θ/2)eiϕsin(θ/2)ei(λ+ϕ)cos(θ/2)]{\displaystyle {\begin{bmatrix}\cos(\theta /2)&-e^{i\lambda }\sin(\theta /2)\\e^{i\phi }\sin(\theta /2)&e^{i(\lambda +\phi )}\cos(\theta /2)\end{bmatrix}}}OpenQASM U gate[d][11][25]
Barenco2BARENCO(α,ϕ,θ){\displaystyle \mathrm {BARENCO} (\alpha ,\phi ,\theta )}[1000010000eiαcosθiei(αϕ)sinθ00iei(α+ϕ)sinθeiαcosθ]{\displaystyle {\begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&e^{i\alpha }\cos \theta &-\mathrm {i} e^{\mathrm {i} (\alpha -\phi )}\sin \theta \\0&0&-\mathrm {i} e^{\mathrm {i} (\alpha +\phi )}\sin \theta &e^{i\alpha }\cos \theta \end{bmatrix}}}Adriano Barenco[1]
BerkeleyB2B{\displaystyle B}[cos(π/8)00isin(π/8)0cos(3π/8)isin(3π/8)00isin(3π/8)cos(3π/8)0isin(π/8)00cos(π/8)]{\displaystyle {\begin{bmatrix}\cos(\pi /8)&0&0&i\sin(\pi /8)\\0&\cos(3\pi /8)&i\sin(3\pi /8)&0\\0&i\sin(3\pi /8)&\cos(3\pi /8)&0\\i\sin(\pi /8)&0&0&\cos(\pi /8)\\\end{bmatrix}}}
  • Special unitary
  • Exponential form:
exp[iπ8(2XX+YY)]{\displaystyle \exp \left[i{\frac {\pi }{8}}(2X\otimes X+Y\otimes Y)\right]}
University of California Berkeley[26][1]
Controlled-V,

controlled square root NOT

2CSX,controlled-X,{\displaystyle \mathrm {CSX} ,{\text{controlled-}}{\sqrt {X}},}controlled-V{\displaystyle {\text{controlled-}}V}[1000010000eiπ/4eiπ/400eiπ/4eiπ/4]{\displaystyle {\begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&e^{i\pi /4}&e^{-i\pi /4}\\0&0&e^{-i\pi /4}&e^{i\pi /4}\end{bmatrix}}}[9]
Core entangling, canonical decomposition2N(a,b,c){\displaystyle N(a,b,c)},can(a,b,c){\displaystyle \mathrm {can} (a,b,c)}[eiccos(ab)00ieicsin(ab)0eiccos(a+b)ieicsin(a+b)00ieicsin(a+b)eiccos(a+b)0ieicsin(ab)00eiccos(ab)]{\displaystyle {\begin{bmatrix}e^{ic}\cos(a-b)&0&0&ie^{ic}\sin(a-b)\\0&e^{-ic}\cos(a+b)&ie^{-ic}\sin(a+b)&0\\0&ie^{-ic}\sin(a+b)&e^{-ic}\cos(a+b)&0\\ie^{ic}\sin(a-b)&0&0&e^{ic}\cos(a-b)\\\end{bmatrix}}}
  • Special unitary
  • Universal quantum gate
  • Exponential form
exp[i(aXX+bYY+cZZ)]{\displaystyle \exp \left[i(aX\otimes X+bY\otimes Y+cZ\otimes Z)\right]}
[1]
Dagwood Bumstead2DB{\displaystyle {\text{DB}}}[10000cos(3π/8)isin(3π/8)00isin(3π/8)cos(3π/8)00001]{\displaystyle {\begin{bmatrix}1&0&0&0\\0&\cos(3\pi /8)&-i\sin(3\pi /8)&0\\0&-i\sin(3\pi /8)&\cos(3\pi /8)&0\\0&0&0&1\\\end{bmatrix}}}
  • Special unitary
  • Exponential form:
exp[i3π16(XX+YY)]{\displaystyle \exp \left[-i{\frac {3\pi }{16}}(X\otimes X+Y\otimes Y)\right]}
ComicbookDagwood Bumstead[27][28][27]
Echoed cross resonance2ECR{\displaystyle {\text{ECR}}}12[001i00i11i00i100]{\displaystyle {\frac {1}{\sqrt {2}}}{\begin{bmatrix}0&0&1&i\\0&0&i&1\\1&-i&0&0\\-i&1&0&0\\\end{bmatrix}}}
  • Special unitary
[29]
Fermionic simulation2UfSim(θ,ϕ){\displaystyle U_{\text{fSim}}(\theta ,\phi )},fSim(θ,ϕ){\displaystyle {\text{fSim}}(\theta ,\phi )}[10000cos(θ)isin(θ)00isin(θ)cos(θ)0000eiϕ]{\displaystyle {\begin{bmatrix}1&0&0&0\\0&\cos(\theta )&-i\sin(\theta )&0\\0&-i\sin(\theta )&\cos(\theta )&0\\0&0&0&e^{i\phi }\\\end{bmatrix}}}[30][19][20]
Givens2G(θ){\displaystyle G(\theta )},Givens(θ){\displaystyle {\text{Givens}}(\theta )}[10000cos(θ)sin(θ)00sin(θ)cos(θ)00001]{\displaystyle {\begin{bmatrix}1&0&0&0\\0&\cos(\theta )&-\sin(\theta )&0\\0&\sin(\theta )&\cos(\theta )&0\\0&0&0&1\\\end{bmatrix}}}
  • Special unitary
  • Exponential form:
exp[iθ2(YXXY)]{\displaystyle \exp \left[-i{\frac {\theta }{2}}(Y\otimes X-X\otimes Y)\right]}
Givens rotations[31]
Magic2M{\displaystyle {\mathcal {M}}}12[1i0000i100i11i00]{\displaystyle {\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&i&0&0\\0&0&i&1\\0&0&i&-1\\1&-i&0&0\\\end{bmatrix}}}[1]
Sycamore2syc{\displaystyle {\text{syc}}},fSim(π/2,π/6){\displaystyle {\text{fSim}}(\pi /2,\pi /6)}[100000i00i00000eiπ/6]{\displaystyle {\begin{bmatrix}1&0&0&0\\0&0&-i&0\\0&-i&0&0\\0&0&0&\mathrm {e} ^{-i\pi /6}\end{bmatrix}}}Google'sSycamore processor[32]
CZ-SWAP2CZS(θ,ϕ,γ){\displaystyle {\text{CZS}}(\theta ,\phi ,\gamma )},[10000eiγsin2(θ/2)+cos2(θ/2)12(1+eiγ)eiϕsin(θ)0012(1+eiγ)eiϕsin(θ)eiγcos2(θ/2)+sin2(θ/2)0000eiγ]{\displaystyle {\begin{bmatrix}1&0&0&0\\0&-e^{i\gamma }\sin ^{2}(\theta /2)+\cos ^{2}(\theta /2)&{\frac {1}{2}}(1+e^{i\gamma })e^{-i\phi }\sin(\theta )&0\\0&{\frac {1}{2}}(1+e^{i\gamma })e^{i\phi }\sin(\theta )&-e^{i\gamma }\cos ^{2}(\theta /2)+\sin ^{2}(\theta /2)&0\\0&0&0&\mathrm {-} e^{i\gamma }\end{bmatrix}}}[33]
Deutsch3Dθ{\displaystyle D_{\theta }},D(θ){\displaystyle D(\theta )}[100000000100000000100000000100000000100000000100000000icosθsinθ000000sinθicosθ]{\displaystyle {\begin{bmatrix}1&0&0&0&0&0&0&0\\0&1&0&0&0&0&0&0\\0&0&1&0&0&0&0&0\\0&0&0&1&0&0&0&0\\0&0&0&0&1&0&0&0\\0&0&0&0&0&1&0&0\\0&0&0&0&0&0&i\cos \theta &\sin \theta \\0&0&0&0&0&0&\sin \theta &i\cos \theta \\\end{bmatrix}}}David Deutsch[1]
Margolus,
simplified Toffoli
3M{\displaystyle M},RCCX{\displaystyle {\text{RCCX}}}[1000000001000000001000000001000000001000000001000000000100000010]{\displaystyle {\begin{bmatrix}1&0&0&0&0&0&0&0\\0&1&0&0&0&0&0&0\\0&0&1&0&0&0&0&0\\0&0&0&1&0&0&0&0\\0&0&0&0&1&0&0&0\\0&0&0&0&0&-1&0&0\\0&0&0&0&0&0&0&1\\0&0&0&0&0&0&1&0\\\end{bmatrix}}}
  • Hermitian
  • Involutory
  • Special unitary
  • Functionally complete reversible gate for Boolean algebra
Norman Margolus[34][35]
Peres3PG{\displaystyle \mathrm {PG} },Peres{\displaystyle \mathrm {Peres} }[1000000001000000001000000001000000000001000000100000100000000100]{\displaystyle {\begin{bmatrix}1&0&0&0&0&0&0&0\\0&1&0&0&0&0&0&0\\0&0&1&0&0&0&0&0\\0&0&0&1&0&0&0&0\\0&0&0&0&0&0&0&1\\0&0&0&0&0&0&1&0\\0&0&0&0&1&0&0&0\\0&0&0&0&0&1&0&0\\\end{bmatrix}}}
  • Functionally complete reversible gate for Boolean algebra
Asher Peres[36]
Toffoli,
controlled-controlled NOT
3CCNOT,CCX,Toff{\displaystyle \mathrm {CCNOT} ,\mathrm {CCX} ,\mathrm {Toff} }[1000000001000000001000000001000000001000000001000000000100000010]{\displaystyle {\begin{bmatrix}1&0&0&0&0&0&0&0\\0&1&0&0&0&0&0&0\\0&0&1&0&0&0&0&0\\0&0&0&1&0&0&0&0\\0&0&0&0&1&0&0&0\\0&0&0&0&0&1&0&0\\0&0&0&0&0&0&0&1\\0&0&0&0&0&0&1&0\\\end{bmatrix}}}
  • Hermitian
  • Involutory
  • Functionally complete reversible gate for Boolean algebra
Tommaso Toffoli[1][6]

Fermionic-Fredkin,

Controlled-fermionic SWAP

3fFredkin{\displaystyle \mathrm {fFredkin} },

CCZS(π/2,0,0){\displaystyle \mathrm {CCZS} (\pi /2,0,0)},CfSWAP{\displaystyle \mathrm {CfSWAP} }

[1000000001000000001000000001000000001000000000100000010000000001]{\displaystyle {\begin{bmatrix}1&0&0&0&0&0&0&0\\0&1&0&0&0&0&0&0\\0&0&1&0&0&0&0&0\\0&0&0&1&0&0&0&0\\0&0&0&0&1&0&0&0\\0&0&0&0&0&0&1&0\\0&0&0&0&0&1&0&0\\0&0&0&0&0&0&0&-1\\\end{bmatrix}}}[33]

[37]

Notes

[edit]
  1. ^α=β{\displaystyle \alpha =-\beta } whenP(α)=P(β){\displaystyle P(\alpha )=P(\beta )^{\dagger }}, where{\displaystyle \dagger } is theconjugate transpose (orHermitian adjoint).
  2. ^Also:(P(δ)Y)2=eiδI{\displaystyle \left(P(\delta )\cdot Y\right)^{2}=e^{i\delta }I}
  3. ^aSU(2)double cover. See alsoHopf fibration.
  4. ^The matrix shown here is fromopenQASM 3.0, which differs fromU(θ,ϕ,λ){\displaystyle U(\theta ,\phi ,\lambda )} from a global phase (OpenQASM 2.0 U gate is inSU(2)).

References

[edit]
  1. ^abcdefghijklmnopqrstuvwxyzaaabacadaeWilliams, Colin P. (2011).Explorations in Quantum Computing.Springer.ISBN 978-1-84628-887-6.
  2. ^"IGate".qiskit.org.Qiskit online documentation.
  3. ^"I operation".docs.microsoft.com. 28 July 2023.Q# online documentation.
  4. ^Feynman, Richard P. (1986). "Quantum mechanical computers".Foundations of Physics.16 (6). Springer Science and Business Media LLC:507–531.Bibcode:1986FoPh...16..507F.doi:10.1007/bf01886518.ISSN 0015-9018.S2CID 122076550.
  5. ^abBarenco, Adriano; Bennett, Charles H.; Cleve, Richard; DiVincenzo, David P.; Margolus, Norman; Shor, Peter; Sleator, Tycho; Smolin, John A.; Weinfurter, Harald (1995-11-01). "Elementary gates for quantum computation".Physical Review A.52 (5). American Physical Society (APS):3457–3467.arXiv:quant-ph/9503016.Bibcode:1995PhRvA..52.3457B.doi:10.1103/physreva.52.3457.ISSN 1050-2947.PMID 9912645.S2CID 8764584.
  6. ^abcdefghijklmnopNielsen, Michael A. (2010).Quantum computation and quantum information. Isaac L. Chuang (10th anniversary ed.). Cambridge: Cambridge University Press.ISBN 978-1-107-00217-3.OCLC 665137861.
  7. ^Hung, W. N. N.; Song, Xiaoyu; Yang, Guowu; Yang, Jin; Perkowski, M. (September 2006). "Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis".IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.25 (9):1652–1663.doi:10.1109/tcad.2005.858352.ISSN 0278-0070.S2CID 14123321.
  8. ^Collins, Daniel; Linden, Noah; Popescu, Sandu (2001-08-07)."Nonlocal content of quantum operations".Physical Review A.64 (3) 032302.arXiv:quant-ph/0005102.Bibcode:2001PhRvA..64c2302C.doi:10.1103/PhysRevA.64.032302.ISSN 1050-2947.S2CID 29769034.
  9. ^abPathak, Anirban (2013-06-20).Elements of Quantum Computation and Quantum Communication. Taylor & Francis.ISBN 978-1-4665-1792-9.
  10. ^Yanofsky, Noson S.; Mannucci, Mirco A. (2008-08-11).Quantum Computing for Computer Scientists. Cambridge University Press.ISBN 978-1-139-64390-0.
  11. ^abcdStancil, Daniel D.; Byrd, Gregory T. (2022-04-19).Principles of Superconducting Quantum Computers. John Wiley & Sons.ISBN 978-1-119-75074-1.
  12. ^Jaksch, D.; Cirac, J. I.; Zoller, P.; Rolston, S. L.; Côté, R.; and Lukin, M. D. (2000)."Fast Quantum Gates for Neutral Atoms".Phys. Rev. Lett.85 (10):2208–2211.arXiv:quant-ph/0004038.Bibcode:2000PhRvL..85.2208J.doi:10.1103/PhysRevLett.85.2208.PMID 10970499.
  13. ^Chatterjee, Dibyendu; Roy, Arijit (2015)."A transmon-based quantum half-adder scheme".Progress of Theoretical and Experimental Physics.2015 (9):7–8.Bibcode:2015PTEP.2015i3A02C.doi:10.1093/ptep/ptv122.
  14. ^McKay, David C.; Wood, Christopher J.; Sheldon, Sarah; Chow, Jerry M.; Gambetta, Jay M. (31 August 2017). "Efficient Z gates for quantum computing".Physical Review A.96 (2): 022330.arXiv:1612.00858.Bibcode:2015PTEP.2015i3A02C.doi:10.1093/ptep/ptv122.
  15. ^"qiskit.circuit.library.PhaseGate". IBM (qiskit documentation).
  16. ^Griffiths, D. J. (2008).Introduction to Elementary Particles (2nd ed.).John Wiley & Sons. pp. 127–128.ISBN 978-3-527-40601-2.
  17. ^"Monroe Conference"(PDF).online.kitp.ucsb.edu.
  18. ^"Demonstration of a small programmable quantum computer with atomic qubits"(PDF). Retrieved2019-02-10.
  19. ^abFoxen, B.; Neill, C.; Dunsworth, A.; Roushan, P.; Chiaro, B.; Megrant, A.; Kelly, J.; Chen, Zijun; Satzinger, K.; Barends, R.; Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J. C.; Boixo, S.; Buell, D.; Burkett, B.; Chen, Yu; Collins, R.; Farhi, E.; Fowler, A.; Gidney, C.; Giustina, M.; Graff, R.; Harrigan, M.; Huang, T.; Isakov, S. V.; Jeffrey, E.; Jiang, Z.; Kafri, D.; Kechedzhi, K.; Klimov, P.; Korotkov, A.; Kostritsa, F.; Landhuis, D.; Lucero, E.; McClean, J.; McEwen, M.; Mi, X.; Mohseni, M.; Mutus, J. Y.; Naaman, O.; Neeley, M.; Niu, M.; Petukhov, A.; Quintana, C.; Rubin, N.; Sank, D.; Smelyanskiy, V.; Vainsencher, A.; White, T. C.; Yao, Z.; Yeh, P.; Zalcman, A.; Neven, H.; Martinis, J. M. (2020-09-15). "Demonstrating a Continuous Set of Two-qubit Gates for Near-term Quantum Algorithms".Physical Review Letters.125 (12) 120504.arXiv:2001.08343.Bibcode:2020PhRvL.125l0504F.doi:10.1103/PhysRevLett.125.120504.ISSN 0031-9007.PMID 33016760.
  20. ^abNguyen, L.B.; Kim, Y.; Hashim, A.; Goss, N.; Marinelli, B.; Bhandari, B.; Das, D.; Naik, R.K.; Kreikebaum, J.M.; Jordan, A.; Santiago, D.I.; Siddiqi, I. (16 January 2024)."Programmable Heisenberg interactions between Floquet qubits".Nature Physics.20 (1):240–246.arXiv:2211.10383.Bibcode:2024NatPh..20..240N.doi:10.1038/s41567-023-02326-7.
  21. ^Nemirovsky, Jonathan; Sagi, Yoav (2021), "Fast universal two-qubit gate for neutral fermionic atoms in optical tweezers",Physical Review Research,3 (1) 013113,arXiv:2008.09819,Bibcode:2021PhRvR...3a3113N,doi:10.1103/PhysRevResearch.3.013113
  22. ^Rasmussen, S. E.; Zinner, N. T. (2020-07-17)."Simple implementation of high fidelity controlled- i swap gates and quantum circuit exponentiation of non-Hermitian gates".Physical Review Research.2 (3) 033097.arXiv:2002.11728.Bibcode:2020PhRvR...2c3097R.doi:10.1103/PhysRevResearch.2.033097.ISSN 2643-1564.
  23. ^Schuch, Norbert; Siewert, Jens (2003-03-10)."Natural two-qubit gate for quantum computation using the XY interaction".Physical Review A.67 (3) 032301.arXiv:quant-ph/0209035.Bibcode:2003PhRvA..67c2301S.doi:10.1103/PhysRevA.67.032301.ISSN 1050-2947.S2CID 50823541.
  24. ^Dallaire-Demers, Pierre-Luc; Wilhelm, Frank K. (2016-12-05)."Quantum gates and architecture for the quantum simulation of the Fermi-Hubbard model".Physical Review A.94 (6) 062304.arXiv:1606.00208.Bibcode:2016PhRvA..94f2304D.doi:10.1103/PhysRevA.94.062304.ISSN 2469-9926.S2CID 118408193.
  25. ^Cross, Andrew; Javadi-Abhari, Ali; Alexander, Thomas; De Beaudrap, Niel; Bishop, Lev S.; Heidel, Steven; Ryan, Colm A.; Sivarajah, Prasahnt; Smolin, John; Gambetta, Jay M.; Johnson, Blake R. (2022)."OpenQASM 3: A Broader and Deeper Quantum Assembly Language".ACM Transactions on Quantum Computing.3 (3):1–50.arXiv:2104.14722.doi:10.1145/3505636.ISSN 2643-6809.S2CID 233476587.
  26. ^Zhang, Jun; Vala, Jiri; Sastry, Shankar; Whaley, K. Birgitta (2004-07-07)."Minimum Construction of Two-Qubit Quantum Operations".Physical Review Letters.93 (2) 020502.arXiv:quant-ph/0312193.Bibcode:2004PhRvL..93b0502Z.doi:10.1103/PhysRevLett.93.020502.ISSN 0031-9007.PMID 15323888.S2CID 9632700.
  27. ^abAbuGhanem, M. (2021-01-01)."Two-qubit Entangling Gate for Superconducting Quantum Computers". Rochester, NY.doi:10.2139/ssrn.4188257.S2CID 252264545.SSRN 4188257.{{cite journal}}:Cite journal requires|journal= (help)
  28. ^Peterson, Eric C.; Crooks, Gavin E.; Smith, Robert S. (2020-03-26)."Fixed-Depth Two-Qubit Circuits and the Monodromy Polytope".Quantum.4: 247.arXiv:1904.10541.doi:10.22331/q-2020-03-26-247.S2CID 214690323.
  29. ^Córcoles, A. D.; Magesan, Easwar; Srinivasan, Srikanth J.; Cross, Andrew W.; Steffen, M.; Gambetta, Jay M.; Chow, Jerry M. (2015-04-29)."Demonstration of a quantum error detection code using a square lattice of four superconducting qubits".Nature Communications.6 (1): 6979.arXiv:1410.6419.Bibcode:2015NatCo...6.6979C.doi:10.1038/ncomms7979.ISSN 2041-1723.PMC 4421819.PMID 25923200.
  30. ^Kyriienko, Oleksandr; Elfving, Vincent E. (2021-11-15)."Generalized quantum circuit differentiation rules".Physical Review A.104 (5) 052417.arXiv:2108.01218.Bibcode:2021PhRvA.104e2417K.doi:10.1103/PhysRevA.104.052417.hdl:10871/127818.ISSN 2469-9926.S2CID 236881494.
  31. ^Arrazola, Juan Miguel; Matteo, Olivia Di; Quesada, Nicolás; Jahangiri, Soran; Delgado, Alain; Killoran, Nathan (2022-06-20)."Universal quantum circuits for quantum chemistry".Quantum.6 742.arXiv:2106.13839.Bibcode:2022Quant...6..742A.doi:10.22331/q-2022-06-20-742.S2CID 235658488.
  32. ^Arute, Frank; Arya, Kunal; Babbush, Ryan; Bacon, Dave; Bardin, Joseph C.; Barends, Rami; Biswas, Rupak; Boixo, Sergio; Brandao, Fernando G. S. L.; Buell, David A.; Burkett, Brian; Chen, Yu; Chen, Zijun; Chiaro, Ben; Collins, Roberto (2019)."Quantum supremacy using a programmable superconducting processor".Nature.574 (7779):505–510.arXiv:1910.11333.Bibcode:2019Natur.574..505A.doi:10.1038/s41586-019-1666-5.ISSN 1476-4687.PMID 31645734.S2CID 204836822.
  33. ^abGu, Xiu; Fernández-Pendás, Jorge; Vikstål, Pontus; Abad, Tahereh; Warren, Christopher; Bengtsson, Andreas; Tancredi, Giovanna; Shumeiko, Vitaly; Bylander, Jonas; Johansson, Göran; Frisk Kockum, Anton (2021)."Fast Multiqubit Gates through Simultaneous Two-Qubit Gates".PRX Quantum.2 (4) 040348.arXiv:2108.11358.Bibcode:2021PRXQ....2d0348G.doi:10.1103/PRXQuantum.2.040348.ISSN 2691-3399.
  34. ^Maslov, Dmitri (2016-02-10)."Advantages of using relative-phase Toffoli gates with an application to multiple control Toffoli optimization".Physical Review A.93 (2) 022311.arXiv:1508.03273.Bibcode:2016PhRvA..93b2311M.doi:10.1103/PhysRevA.93.022311.ISSN 2469-9926.S2CID 5226873.
  35. ^Song, Guang; Klappenecker, Andreas (2003-12-31). "The simplified Toffoli gate implementation by Margolus is optimal".arXiv:quant-ph/0312225.Bibcode:2003quant.ph.12225S.{{cite journal}}:Cite journal requires|journal= (help)
  36. ^Peres, Asher (1985). "Reversible logic and quantum computers".Physical Review A.32 (5). American Physical Society (APS):3266–3276.
  37. ^Warren, Christopher; Fernández-Pendás, Jorge; Ahmed, Shahnawaz; Abad, Tahereh; Bengtsson, Andreas; Biznárová, Janka; Debnath, Kamanasish; Gu, Xiu; Križan, Christian; Osman, Amr; Fadavi Roudsari, Anita; Delsing, Per; Johansson, Göran; Frisk Kockum, Anton; Tancredi, Giovanna; Bylander, Jonas (2023)."Extensive characterization and implementation of a family of three-qubit gates at the coherence limit".npj Quantum Information.9 (1): 44.arXiv:2207.02938.Bibcode:2023npjQI...9...44W.doi:10.1038/s41534-023-00711-x.ISSN 2056-6387.
Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_quantum_logic_gates&oldid=1315791775"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp