Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

List of pitch intervals

From Wikipedia, the free encyclopedia

Comparison between tunings:Pythagorean,equal-tempered,quarter-comma meantone, and others. For each, the common origin is arbitrarily chosen as C. The degrees are arranged in the order or the cycle of fifths; as in each of these tunings exceptjust intonation all fifths are of the same size, the tunings appear as straight lines, the slope indicating the relative tempering with respect to Pythagorean, which has pure fifths (3:2, 702 cents). The Pythagorean A (at the left) is at 792 cents, G (at the right) at 816 cents; the difference is the Pythagorean comma. Equal temperament by definition is such that A and G are at the same level.14-comma meantone produces the "just" major third (5:4, 386 cents, a syntonic comma lower than the Pythagorean one of 408 cents).13-comma meantone produces the "just" minor third (6:5, 316 cents, a syntonic comma higher than the Pythagorean one of 294 cents). In both these meantone temperaments, the enharmony, here the difference between A and G, is much larger than in Pythagorean, and with the flat degree higher than the sharp one.
Comparison of two sets of musical intervals. The equal-tempered intervals are black; the Pythagorean intervals are green.

Below is a list ofintervals expressible in terms of a prime limit (seeTerminology), completed by a choice of intervals in various equal subdivisions of the octave or of other intervals.

For commonly encountered harmonic or melodic intervals between pairs ofnotes in contemporary Westernmusic theory, without consideration of the way in which they are tuned, seeInterval (music) § Main intervals.

Terminology

[edit]
  • Theprime limit[1] henceforth referred to simply as thelimit, is the largestprime number occurring in thefactorizations of the numerator and denominator of the frequency ratio describing a rational interval. For instance, the limit of thejust perfect fourth (4:3) is 3, but thejust minor tone (10:9) has a limit of 5, because 10 can be factored into2 × 5 (and 9 into3 × 3). There exists another type of limit, theodd limit, a concept used byHarry Partch (bigger of odd numbers obtained after dividing numerator and denominator by highest possible powers of 2), but it is not used here. The term "limit" was devised by Partch.[1]
  • By definition, every interval in a given limit can also be part of a limit of higher order. For instance, a 3-limit unit can also be part of a 5-limit tuning and so on. By sorting the limit columns in the table below, all intervals of a given limit can be brought together (sort backwards by clicking the button twice).
  • Pythagorean tuning means 3-limit intonation—a ratio of numbers withprime factors no higher than three.
  • Just intonation means5-limit intonation—a ratio of numbers withprime factors no higher than five.
  • Septimal,undecimal,tridecimal, andseptendecimal mean, respectively, 7, 11, 13, and 17-limit intonation.
  • Meantone refers tomeantone temperament, where the whole tone is the mean of the major third. In general, a meantone is constructed in the same way as Pythagorean tuning, as a stack of fifths: the tone is reached after two fifths, the major third after four, so that as all fifths are the same, the tone is the mean of the third. In a meantone temperament, each fifth is narrowed ("tempered") by the same small amount. The most common of meantone temperaments is thequarter-comma meantone, in which each fifth is tempered by14 of the syntonic comma, so that after four steps the major third (as C-G-D-A-E) is a full syntonic comma lower than the Pythagorean one. The extremes of the meantone systems encountered in historical practice are the Pythagorean tuning, where the whole tone corresponds to 9:8, i.e.(3:2)2/2, the mean of the major third(3:2)4/4, and the fifth (3:2) is not tempered; and the13-comma meantone, where the fifth is tempered to the extent that three ascending fifths produce a pure minor third.(Seemeantone temperaments). The music programLogic Pro uses also12-comma meantone temperament.
  • Equal-tempered refers toX-toneequal temperament with intervals corresponding toX divisions per octave.
  • Tempered intervals however cannot be expressed in terms of prime limits and, unless exceptions, are not found in the table below.
  • The table can also be sorted by frequency ratio, by cents, or alphabetically.
  • Superparticular ratios are intervals that can be expressed as the ratio of two consecutive integers.

List

[edit]
ColumnLegend
TETX-tone equal temperament (12-tet, etc.).
Limit3-limit intonation, orPythagorean.
5-limit "just" intonation, orjust.
7-limit intonation, orseptimal.
11-limit intonation, orundecimal.
13-limit intonation, ortridecimal.
17-limit intonation, orseptendecimal.
19-limit intonation, ornovendecimal.
Higher limits.
MMeantone temperament or tuning.
SSuperparticular ratio (no separate color code).
List of musical intervals
CentsNote (from C)Freq. ratioPrime factorsInterval nameTETLimitMS
0.00
C[2]1 : 11 : 1playUnison,[3] monophony,[4] perfect prime/first,[3]tonic,[5] orfundamental1, 123M
0.03
65537 : 6553665537 : 216playSixty-five-thousand-five-hundred-thirty-seventh harmonic65537S
0.40
C74375 : 437454×7 : 2×37playRagisma[3][6]7S
0.72
E7777triple flat+2401 : 240074 : 25×3×52playBreedsma[3][6]7S
1.00
21/120021/1200playCent[7]1200
1.20
21/100021/1000playMillioctave1000
1.95
B++32805 : 3276838×5 : 215playSchisma[3][5]5
1.96
3:2÷(27/12)3 : 219/12Grad, Werckmeister[8]
3.99
101/100021/1000×51/1000playSavart oreptaméride301.03
7.71
B7 upside-down225 : 22432×52 : 25×7playSeptimal kleisma,[3][6] marvel comma7S
8.11
Bdouble sharp15625 : 1555256 : 26×35playKleisma or semicomma majeur[3][6]5
10.06
Adouble sharpdouble sharp++2109375 : 209715233×57 : 221playSemicomma,[3][6] Fokker's comma[3]5
10.85
C43U160 : 15925×5 : 3×53playDifference between 5:3 & 53:3253S
11.98
C29145 : 1445×29 : 24×32playDifference between 29:16 & 9:529S
12.50
21/9621/96playSixteenth tone96
13.07
B7 upside-down7 upside-down7 upside-down1728 : 171526×33 : 5×73playOrwell comma[3][9]7
13.47
C43129 : 1283×43 : 27playHundred-twenty-ninth harmonic43S
13.79
Ddouble flat7126 : 1252×32×7 : 53playSmallseptimal semicomma,[6] small septimal comma,[3] starling comma7S
14.37
C121 : 120112 : 23×3×5playUndecimalseconds comma[3]11S
16.67
C[a]21/7221/72play1 step in72 equal temperament72
18.13
C19U96 : 9525×3 : 5×19playDifference between 19:16 & 6:519S
19.55
Ddouble flat--[2]2048 : 2025211 : 34×52playDiaschisma,[3][6] minor comma5
21.51
C+[2]81 : 8034 : 24×5playSyntonic comma,[3][5][6] major comma, komma, chromatic diesis, or comma of Didymus[3][6][10][11]5S
22.64
21/5321/53playHoldrian comma, Holder's comma, 1 step in53 equal temperament53
23.46
B+++531441 : 524288312 : 219playPythagorean comma,[3][5][6][10][11] ditonic comma, Pythagoreanaugmented seventh[3][6]3
25.00
21/4821/48playEighth tone48
26.84
C1365 : 645×13 : 26playSixty-fifth harmonic,[5] 13th-partial chroma[3]13S
27.26
C7 upside-down64 : 6326 : 32×7playSeptimal comma,[3][6][11] Archytas' comma,[3] 63rd subharmonic7S
29.27
21/4121/41play1 step in41 equal temperament41
31.19
D756 : 5523×7 : 5×11play Undecimal diesis,[3] Ptolemy's enharmonic:[5] difference between (11 : 8) and (7 : 5) tritone11S
33.33
C/D[a]21/3621/36playSixth tone36, 72
34.28
C1751 : 503×17 : 2×52playDifference between 17:16 & 25:2417S
34.98
B7 upside-down7 upside-down-50 : 492×52 : 72playSeptimal sixth tone or jubilisma, Erlich's decatonic comma or tritonic diesis[3][6]7S
35.70
D7749 : 4872 : 24×3playSeptimal diesis, slendro diesis or septimal 1/6-tone[3]7S
38.05
C2346 : 452×23 : 32×5playInferior quarter tone,[5] difference between 23:16 & 45:3223S
38.71
21/3121/31play1 step in31 equal temperament or NormalDiesis31
38.91
C+45 : 4432×5 : 4×11playUndecimal diesis or undecimal fifth tone11S
40.00
21/3021/30playFifth tone30
41.06
Ddouble flat128 : 12527 : 53playEnharmonic diesis or 5-limit limma, minor diesis,[6] diminished second,[5][6] minor diesis or diesis,[3] 125th subharmonic5
41.72
D41U742 : 412×3×7 : 41playLesser 41-limit fifth tone41S
42.75
C4141 : 4041 : 23×5playGreater 41-limit fifth tone41S
43.83
C13 upside down40 : 3923×5 : 3×13playTridecimal fifth tone13S
44.97
C19U1339 : 383×13 : 2×19playSuperior quarter-tone,[5] novendecimal fifth tone19S
46.17
D37U19double flat-38 : 372×19 : 37playLesser 37-limit quarter tone37S
47.43
C3737 : 3637 : 22×32playGreater 37-limit quarter tone37S
48.77
C7 upside-down36 : 3522×32 : 5×7playSeptimal quarter tone, septimal diesis,[3][6] septimal chroma,[2] superior quarter tone[5]7S
49.98
246 : 2393×41 : 239playJust quarter tone[11]239
50.00
Chalf sharp/Dthree quarter flat21/2421/24playEqual-temperedquarter tone24
50.18
D17 upside down735 : 345×7 : 2×17playET quarter-tone approximation,[5] lesser 17-limit quarter tone17S
50.72
B7 upside-down++59049 : 57344310 : 213×7playHarrison's comma (10 P5s – 1 H7)[3]7
51.68
C1734 : 332×17 : 3×11playGreater 17-limit quarter tone17S
53.27
C33 : 323×11 : 25playThirty-third harmonic,[5] undecimal comma, undecimal quarter tone11S
54.96
D31U-32 : 3125 : 31playInferior quarter-tone,[5] thirty-first subharmonic31S
56.55
B2323+529 : 512232 : 29playFive-hundred-twenty-ninth harmonic23
56.77
C3131 : 3031 : 2×3×5playGreater quarter-tone,[5] difference between 31:16 & 15:831S
58.69
C29U30 : 292×3×5 : 29playLesser 29-limit quarter tone29S
60.75
C297 upside-down29 : 2829 : 22×7playGreater 29-limit quarter tone29S
62.96
D7-28 : 2722×7 : 33playSeptimal minor second, small minor second, inferior quarter tone[5]7S
63.81
(3 : 2)1/1131/11 : 21/11playBeta scale step18.80
65.34
C13 upside down+27 : 2633 : 2×13playChromatic diesis,[12] tridecimal comma[3]13S
66.34
D197133 : 1287×19 : 27playOne-hundred-thirty-third harmonic19
66.67
C/C[a]21/1821/18playThird tone18, 36, 72
67.90
D13double flat-26 : 252×13 : 52playTridecimal third tone, third tone[5]13S
70.67
C[2]25 : 2452 : 23×3playJust chromatic semitone or minor chroma,[3] lesser chromatic semitone, small (just) semitone[11] or minor second,[4] minor chromatic semitone,[13] or minor semitone,[5]27-comma meantone chromatic semitone, augmented unison5S
73.68
D23U-24 : 2323×3 : 23playLesser 23-limit semitone23S
75.00
21/1623/48play1 step in 16 equal temperament, 3 steps in 4816, 48
76.96
C23+23 : 2223 : 2×11playGreater 23-limit semitone23S
78.00
(3 : 2)1/931/9 : 21/9playAlpha scale step15.39
79.31
67 : 6467 : 26playSixty-seventh harmonic[5]67
80.54
C7 upside-down-22 : 212×11 : 3×7playHard semitone,[5] two-fifth tone small semitone11S
84.47
D721 : 203×7 : 22×5playSeptimal chromatic semitone, minor semitone[3]7S
88.80
C19U20 : 1922×5 : 19playNovendecimal augmented unison19S
90.22
D−−[2]256 : 24328 : 35playPythagoreanminor second orlimma,[3][6][11] Pythagorean diatonic semitone, Low Semitone[14]3
92.18
C+[2]135 : 12833×5 : 27playGreater chromatic semitone, chromatic semitone, semitone medius, major chroma or major limma,[3] small limma,[11] major chromatic semitone,[13] limma ascendant[5]5
93.60
D19-19 : 1819 : 2×32Novendecimal minor secondplay19S
97.36
D↓↓128 : 12127 : 112play121st subharmonic,[5][6] undecimal minor second11
98.95
D17 upside down18 : 172×32 : 17playJust minor semitone, Arabic lute index finger[3]17S
100.00
C/D21/1221/12playEqual-temperedminor second orsemitone12M
104.96
C17[2]17 : 1617 : 24playMinor diatonic semitone, just major semitone, overtone semitone,[5] 17th harmonic,[3] limma[citation needed]17S
111.45
255(5 : 1)1/25playStudie II interval (compound just major third, 5:1, divided into 25 equal parts)10.77
111.73
D-[2]16 : 1524 : 3×5playJust minor second,[15]just diatonic semitone, large just semitone or major second,[4] major semitone,[5] limma, minor diatonic semitone,[3] diatonic second[16] semitone,[14] diatonic semitone,[11]16-comma meantone minor second5S
113.69
C++2187 : 204837 : 211playApotome[3][11] or Pythagorean major semitone,[6] Pythagoreanaugmented unison, Pythagorean chromatic semitone, orPythagorean apotome3
116.72
(18 : 5)1/1921/19×32/19 : 51/19playSecor10.28
119.44
C7 upside-down15 : 143×5 : 2×7playSeptimal diatonic semitone, major diatonic semitone,[3] Cowell semitone[5]7S
125.00
25/4825/48play5 steps in 48 equal temperament48
128.30
D13 upside down714 : 132×7 : 13playLesser tridecimal 2/3-tone[17]13S
130.23
C23+69 : 643×23 : 26playSixty-ninth harmonic[5]23
133.24
D27 : 2533 : 52playSemitone maximus, minor second, large limma or Bohlen-Pierce small semitone,[3] high semitone,[14] alternate Renaissance half-step,[5] large limma, acute minor second[citation needed]5
133.33
C/D[a]21/922/18playTwo-third tone9, 18, 36, 72
138.57
D13-13 : 1213 : 22×3playGreater tridecimal 2/3-tone,[17] Three-quarter tone[5]13S
150.00
Cthree quarter sharp/Dhalf flat23/2421/8playEqual-temperedneutral second8, 24
150.64
D↓[2]12 : 1122×3 : 11play34 tone or Undecimalneutral second,[3][5] trumpet three-quarter tone,[11] middle finger [between frets][14]11S
155.14
D735 : 325×7 : 25playThirty-fifth harmonic[5]7
160.90
D−−800 : 72925×52 : 36playGrave whole tone,[3] neutral second, grave major second[citation needed]5
165.00
D[2]11 : 1011 : 2×5playGreater undecimal minor/major/neutral second, 4/5-tone[6] or Ptolemy's second[3]11S
171.43
21/721/7play1 step in7 equal temperament7
175.00
27/4827/48play7 steps in 48 equal temperament48
179.70
71 : 6471 : 26playSeventy-first harmonic[5]71
180.45
Edouble flat−−−65536 : 59049216 : 310playPythagoreandiminished third,[3][6] Pythagorean minor tone3
182.40
D−[2]10 : 92×5 : 32playSmall just whole tone or major second,[4] minor whole tone,[3][5] lesser whole tone,[16] minor tone,[14] minor second,[11] half-comma meantone major second5S
200.00
D22/1221/6playEqual-temperedmajor second6, 12M
203.91
D[2]9 : 832 : 23playPythagoreanmajor second,Large just whole tone or major second[11] (sesquioctavan),[4]tonus, major whole tone,[3][5] greater whole tone,[16] major tone[14]3S
215.89
D29145 : 1285×29 : 27playHundred-forty-fifth harmonic29
223.46
Edouble flat[2]256 : 22528 : 32×52playJustdiminished third,[16] 225th subharmonic5
225.00
23/1629/48play9 steps in 48 equal temperament16, 48
227.79
73 : 6473 : 26playSeventy-third harmonic[5]73
231.17
D7 upside-down[2]8 : 723 : 7playSeptimal major second,[4] septimal whole tone[3][5]7S
240.00
21/521/5play1 step in5 equal temperament5
247.74
D13 upside down15 : 133×5 : 13playTridecimal54 tone[3]13
250.00
Dhalf sharp/Ethree quarter flat25/2425/24play5 steps in 24 equal temperament24
251.34
D3737 : 3237 : 25playThirty-seventh harmonic[5]37
253.08
D125 : 10853 : 22×33playSemi-augmented whole tone,[3] semi-augmented second[citation needed]5
262.37
E↓64 : 5526 : 5×11play55th subharmonic[5][6]11
266.87
E7[2]7 : 67 : 2×3playSeptimal minor third[3][4][11] or Sub minor third[14]7S
268.80
D2313299 : 25613×23 : 28playTwo-hundred-ninety-ninth harmonic23
274.58
D[2]75 : 643×52 : 26playJustaugmented second,[16] Augmented tone,[14] augmented second[5][13]5
275.00
211/48211/48play11 steps in 48 equal temperament48
289.21
E1313 : 1113 : 11playTridecimal minor third[3]13
294.13
E[2]32 : 2725 : 33playPythagorean minor third[3][5][6][14][16]semiditone, or 27th subharmonic3
297.51
E19[2]19 : 1619 : 24play19th harmonic,[3] 19-limit minor third, overtone minor third[5]19
300.00
D/E23/1221/4playEqual-temperedminor third4, 12M
301.85
D7 upside-down-25 : 21[5]52 : 3×7playQuasi-equal-tempered minor third, 2nd 7-limit minor third, Bohlen-Pierce second[3][6]7
310.26
6:5÷(81:80)1/422 : 53/4playQuarter-comma meantone minor thirdM
311.98
(3 : 2)4/934/9 : 24/9playAlpha scaleminor third15.39
315.64
E[2]6 : 52×3 : 5playJust minor third,[3][4][5][11][16] minor third,[14]13-comma meantone minor third5MS
317.60
D++19683 : 1638439 : 214playPythagoreanaugmented second[3][6]3
320.14
E777 : 647×11 : 26playSeventy-seventh harmonic[5]11
325.00
213/48213/48play13 steps in 48 equal temperament48
336.13
D177 upside-down-17 : 1417 : 2×7playSuperminor third[18]17
337.15
E+243 : 20035 : 23×52playAcute minor third[3]5
342.48
E1339 : 323×13 : 25playThirty-ninth harmonic[5]13
342.86
22/722/7play2 steps in7 equal temperament7
342.91
E7 upside-down-128 : 10527 : 3×5×7play105th subharmonic,[5] septimal neutral third[6]7
347.41
E[2]11 : 911 : 32playUndecimalneutral third[3][5]11
350.00
Dthree quarter sharp/Ehalf flat27/2427/24playEqual-temperedneutral third24
354.55
E+27 : 2233 : 2×11playZalzal's wosta[6] 12:11 X 9:8[14]11
359.47
E13 upside down[2]16 : 1324 : 13playTridecimalneutral third[3]13
364.54
79 : 6479 : 26playSeventy-ninth harmonic[5]79
364.81
E−100 : 8122×52 : 34playGrave major third[3]5
375.00
25/16215/48play15 steps in 48 equal temperament16, 48
384.36
F−−8192 : 6561213 : 38playPythagoreandiminished fourth,[3][6] Pythagorean 'schismatic' third[5]3
386.31
E[2]5 : 45 : 22playJust major third,[3][4][5][11][16] major third,[14] quarter-comma meantone major third5MS
397.10
E237+161 : 1287×23 : 27playOne-hundred-sixty-first harmonic23
400.00
E24/1221/3playEqual-temperedmajor third3, 12M
402.47
E1917323 : 25617×19 : 28playThree-hundred-twenty-third harmonic19
407.82
E+[2]81 : 6434 : 26playPythagoreanmajor third,[3][5][6][14][16]ditone3
417.51
F7+[2]14 : 112×7 : 11playUndecimal diminished fourth or major third[3]11
425.00
217/48217/48play17 steps in 48 equal temperament48
427.37
F[2]32 : 2525 : 52playJustdiminished fourth,[16] diminished fourth,[5][13] 25th subharmonic5
429.06
E4141 : 3241 : 25playForty-first harmonic[5]41
435.08
E7 upside-down[2]9 : 732 : 7playSeptimal major third,[3][5] Bohlen-Pierce third,[3] Super major Third[14]7
444.77
F↓128 : 9927 : 32×11play99th subharmonic[5][6]11
450.00
Ehalf sharp/Fhalf flat29/2429/24play9 steps in 24 equal temperament8, 24
450.05
83 : 6483 : 26playEighty-third harmonic[5]83
454.21
F1313 : 1013 : 2×5playTridecimal major third or diminished fourth13
456.99
E[2]125 : 9653 : 25×3playJustaugmented third, augmented third[5]5
462.35
E7 upside-down7 upside-down-64 : 4926 : 72play49th subharmonic[5][6]7
470.78
F7+[2]21 : 163×7 : 24playTwenty-first harmonic, narrow fourth,[3] septimal fourth,[5] wide augmented third,[citation needed] H7 on G7
475.00
219/48219/48play19 steps in 48 equal temperament48
478.49
E+675 : 51233×52 : 29playSix-hundred-seventy-fifth harmonic, wide augmented third[3]5
480.00
22/522/5play2 steps in5 equal temperament5
491.27
E1785 : 645×17 : 26playEighty-fifth harmonic[5]17
498.04
F[2]4 : 322 : 3playPerfect fourth,[3][5][16] Pythagoreanperfect fourth, Just perfect fourth ordiatessaron[4]3S
500.00
F25/1225/12playEqual-temperedperfect fourth12M
501.42
F19+171 : 12832×19 : 27playOne-hundred-seventy-first harmonic19
510.51
(3 : 2)8/1138/11 : 28/11playBeta scaleperfect fourth18.80
511.52
F4343 : 3243 : 25playForty-third harmonic[5]43
514.29
23/723/7play3 steps in7 equal temperament7
519.55
F+[2]27 : 2033 : 22×5play5-limitwolf fourth, acute fourth,[3] imperfect fourth[16]5
521.51
E+++177147 : 131072311 : 217playPythagoreanaugmented third[3][6] (F+ (pitch))3
525.00
27/16221/48play21 steps in 48 equal temperament16, 48
531.53
F29+87 : 643×29 : 26playEighty-seventh harmonic[5]29
536.95
F+15 : 113×5 : 11playUndecimal augmented fourth[3]11
550.00
Fhalf sharp/Gthree quarter flat211/24211/24play11 steps in 24 equal temperament24
551.32
F[2]11 : 811 : 23playeleventh harmonic,[5] undecimal tritone,[5] lesser undecimal tritone, undecimal semi-augmented fourth[3]11
563.38
F13 upside down+18 : 132×9 : 13playTridecimal augmented fourth[3]13
568.72
F[2]25 : 1852 : 2×32playJust augmented fourth[3][5]5
570.88
89 : 6489 : 26playEighty-ninth harmonic[5]89
575.00
223/48223/48play23 steps in 48 equal temperament48
582.51
G7[2]7 : 57 : 5playLesserseptimal tritone, septimal tritone[3][4][5] Huygens' tritone or Bohlen-Pierce fourth,[3] septimal fifth,[11] septimal diminished fifth[19]7
588.27
G−−1024 : 729210 : 36playPythagoreandiminished fifth,[3][6] low Pythagorean tritone[5]3
590.22
F+[2]45 : 3232×5 : 25playJust augmented fourth, just tritone,[4][11] tritone,[6] diatonic tritone,[3] 'augmented' or 'false' fourth,[16] high 5-limit tritone,[5]16-comma meantone augmented fourth5
595.03
G1919361 : 256192 : 28playThree-hundred-sixty-first harmonic19
600.00
F/G26/1221/2=2playEqual-temperedtritone2, 12M
609.35
G13791 : 647×13 : 26playNinety-first harmonic[5]13
609.78
G[2]64 : 4526 : 32×5playJust tritone,[4] 2nd tritone,[6] 'false' fifth,[16] diminished fifth,[13] low 5-limit tritone,[5] 45th subharmonic5
611.73
F++729 : 51236 : 29playPythagoreantritone,[3][6] Pythagorean augmented fourth, high Pythagorean tritone[5]3
617.49
F7 upside-down[2]10 : 72×5 : 7playGreaterseptimal tritone, septimal tritone,[4][5] Euler's tritone[3]7
625.00
225/48225/48play25 steps in 48 equal temperament48
628.27
F23+23 : 1623 : 24playTwenty-third harmonic,[5] classic diminished fifth[citation needed]23
631.28
G[2]36 : 2522×32 : 52playJustdiminished fifth[5]5
646.99
F31+93 : 643×31 : 26playNinety-third harmonic[5]31
648.68
G↓[2]16 : 1124 : 11play` undecimal semi-diminished fifth[3]11
650.00
Fthree quarter sharp/Ghalf flat213/24213/24play13 steps in 24 equal temperament24
665.51
G43U47 : 3247 : 25playForty-seventh harmonic[5]47
675.00
29/16227/48play27 steps in 48 equal temperament16, 48
678.49
Adouble flat−−−262144 : 177147218 : 311playPythagoreandiminished sixth[3][6]3
680.45
G−40 : 2723×5 : 33play5-limitwolf fifth,[5] ordiminished sixth, grave fifth,[3][6][11] imperfect fifth,[16]5
683.83
G1995 : 645×19 : 26playNinety-fifth harmonic[5]19
684.82
E232323double sharp++12167 : 8192233 : 213play12167th harmonic23
685.71
24/7 : 1play4 steps in 7 equal temperament7
691.20
3:2÷(81:80)1/22×51/2 : 3playHalf-comma meantone perfect fifthM
694.79
3:2÷(81:80)1/321/3×51/3 : 31/3play13-comma meantone perfect fifthM
695.81
3:2÷(81:80)2/721/7×52/7 : 31/7play27-comma meantone perfect fifthM
696.58
3:2÷(81:80)1/451/4playQuarter-comma meantone perfect fifthM
697.65
3:2÷(81:80)1/531/5×51/5 : 21/5play15-comma meantone perfect fifthM
698.37
3:2÷(81:80)1/631/3×51/6 : 21/3play16-comma meantone perfect fifthM
700.00
G27/1227/12playEqual-temperedperfect fifth12M
701.89
231/53231/53play53-TETperfect fifth53
701.96
G[2]3 : 23 : 2playPerfect fifth,[3][5][16] Pythagorean perfect fifth, Just perfect fifth ordiapente,[4] fifth,[14] Just fifth[11]3S
702.44
224/41224/41play41-TETperfect fifth41
703.45
217/29217/29play29-TETperfect fifth29
719.90
97 : 6497 : 26playNinety-seventh harmonic[5]97
720.00
23/5 : 1play3 steps in 5 equal temperament5
721.51
Adouble flat1024 : 675210 : 33×52playNarrow diminished sixth[3]5
725.00
229/48229/48play29 steps in 48 equal temperament48
729.22
G7 upside-down-32 : 2124 : 3×7play21st subharmonic,[5][6] septimaldiminished sixth7
733.23
F2317double sharp+391 : 25617×23 : 28playThree-hundred-ninety-first harmonic23
737.65
A77+49 : 327×7 : 25playForty-ninth harmonic[5]7
743.01
Adouble flat192 : 12526×3 : 53playClassicdiminished sixth[3]5
750.00
Ghalf sharp/Athree quarter flat215/24215/24play15 steps in 24 equal temperament8, 24
755.23
G99 : 6432×11 : 26playNinety-ninth harmonic[5]11
764.92
A7[2]14 : 92×7 : 32playSeptimal minor sixth[3][5]7
772.63
G25 : 1652 : 24playJustaugmented fifth[5][16]5
775.00
231/48231/48play31 steps in 48 equal temperament48
781.79
π : 2playWallis product
782.49
G7 upside-down-[2]11 : 711 : 7playUndecimal minor sixth,[5] undecimal augmented fifth,[3]Lucas numbers11
789.85
101 : 64101 : 26playHundred-first harmonic[5]101
792.18
A[2]128 : 8127 : 34playPythagoreanminor sixth,[3][5][6] 81st subharmonic3
798.40
A297+203 : 1287×29 : 27playTwo-hundred-third harmonic29
800.00
G/A28/1222/3playEqual-temperedminor sixth3, 12M
806.91
G1751 : 323×17 : 25playFifty-first harmonic[5]17
813.69
A[2]8 : 523 : 5playJustminor sixth[3][4][11][16]5
815.64
G++6561 : 409638 : 212playPythagoreanaugmented fifth,[3][6] Pythagorean 'schismatic' sixth[5]3
823.80
103 : 64103 : 26playHundred-third harmonic[5]103
825.00
211/16233/48play33 steps in 48 equal temperament16, 48
832.18
G23+207 : 12832×23 : 27playTwo-hundred-seventh harmonic23
833.09
(51/2+1)/2φ : 1playGolden ratio (833 cents scale)
835.19
A+81 : 5034 : 2×52playAcute minor sixth[3]5
840.53
A13[2]13 : 813 : 23playTridecimalneutral sixth,[3]Fibonacci numbers, overtone sixth,[5]thirteenth harmonic13
848.83
A19209 : 12811×19 : 27playTwo-hundred-ninth harmonic19
850.00
Gthree quarter sharp/Ahalf flat217/24217/24playEqual-temperedneutral sixth24
852.59
A↓+[2]18 : 112×32 : 11playUndecimalneutral sixth,[3][5] Zalzal's neutral sixth11
857.09
A7+105 : 643×5×7 : 26playHundred-fifth harmonic[5]7
857.14
25/725/7play5 steps in7 equal temperament7
862.85
A−400 : 24324×52 : 35playGrave major sixth[3]5
873.50
A43U53 : 3253 : 25playFifty-third harmonic[5]53
875.00
235/48235/48play35 steps in 48 equal temperament48
879.86
A↓7 upside-down128 : 7727 : 7×11play77th subharmonic[5][6]11
882.40
Bdouble flat−−−32768 : 19683215 : 39playPythagoreandiminished seventh[3][6]3
884.36
A[2]5 : 35 : 3playJustmajor sixth,[3][4][5][11][16] Bohlen-Pierce sixth,[3]13-comma meantone major sixth5M
889.76
107 : 64107 : 26playHundred-seventh harmonic[5]107
892.54
B191919double flat6859 : 4096193 : 212play6859th harmonic19
900.00
A29/1223/4playEqual-temperedmajor sixth4, 12M
902.49
A19U32 : 1925 : 19play19th subharmonic[5][6]19
905.87
A+[2]27 : 1633 : 24playPythagoreanmajor sixth[3][5][11][16]3
921.82
109 : 64109 : 26playHundred-ninth harmonic[5]109
925.00
237/48237/48play37 steps in 48 equal temperament48
925.42
Bdouble flat[2]128 : 7527 : 3×52playJustdiminished seventh,[16] diminished seventh,[5][13] 75th subharmonic5
925.79
A2319+437 : 25619×23 : 28playFour-hundred-thirty-seventh harmonic23
933.13
A7 upside-down[2]12 : 722×3 : 7playSeptimal major sixth[3][4][5]7
937.63
A55 : 325×11 : 25playFifty-fifth harmonic[5][20]11
950.00
Ahalf sharp/Bthree quarter flat219/24219/24play19 steps in 24 equal temperament24
953.30
A37+111 : 643×37 : 26playHundred-eleventh harmonic[5]37
955.03
A[2]125 : 7253 : 23×32playJustaugmented sixth[5]5
957.21
(3 : 2)15/11315/11 : 215/11play15 steps inBeta scale18.80
960.00
24/524/5play4 steps in5 equal temperament5
968.83
B7[2]7 : 47 : 22playSeptimal minor seventh,[4][5][11] harmonic seventh,[3][11] augmented sixth[citation needed]7
975.00
213/16239/48play39 steps in 48 equal temperament16, 48
976.54
A+[2]225 : 12832×52 : 27playJustaugmented sixth[16]5
984.21
113 : 64113 : 26playHundred-thirteenth harmonic[5]113
996.09
B[2]16 : 924 : 32playPythagoreanminor seventh,[3] Small just minor seventh,[4] lesser minor seventh,[16] just minor seventh,[11] Pythagorean small minor seventh[5]3
999.47
B1957 : 323×19 : 25playFifty-seventh harmonic[5]19
1000.00
A/B210/1225/6playEqual-temperedminor seventh6, 12M
1014.59
A23+115 : 645×23 : 26playHundred-fifteenth harmonic[5]23
1017.60
B[2]9 : 532 : 5playGreater justminor seventh,[16] large just minor seventh,[4][5] Bohlen-Pierce seventh[3]5
1019.55
A+++59049 : 32768310 : 215playPythagoreanaugmented sixth[3][6]3
1025.00
241/48241/48play41 steps in 48 equal temperament48
1028.57
26/726/7play6 steps in7 equal temperament7
1029.58
B2929 : 1629 : 24playTwenty-ninth harmonic,[5] minor seventh[citation needed]29
1035.00
B↓[2]20 : 1122×5 : 11playLesser undecimalneutral seventh, large minor seventh[3]11
1039.10
B+729 : 40036 : 24×52playAcute minor seventh[3]5
1044.44
B13117 : 6432×13 : 26playHundred-seventeenth harmonic[5]13
1044.86
B7 upside-down-64 : 3526 : 5×7play35th subharmonic,[5] septimal neutral seventh[6]7
1049.36
B[2]11 : 611 : 2×3play214-tone or Undecimalneutral seventh,[3] undecimal 'median' seventh[5]11
1050.00
Athree quarter sharp/Bhalf flat221/2427/8playEqual-temperedneutral seventh8, 24
1059.17
59 : 3259 : 25playFifty-ninth harmonic[5]59
1066.76
B−50 : 272×52 : 33playGrave major seventh[3]5
1071.70
B137 upside-down-13 : 713 : 7playTridecimal neutral seventh[21]13
1073.78
B717119 : 647×17 : 26playHundred-nineteenth harmonic[5]17
1075.00
243/48243/48play43 steps in 48 equal temperament48
1086.31
C′−−4096 : 2187212 : 37playPythagoreandiminished octave[3][6]3
1088.27
B[2]15 : 83×5 : 23playJustmajor seventh,[3][5][11][16] small just major seventh,[4]16-comma meantone major seventh5
1095.04
C17 upside down32 : 1725 : 17play17th subharmonic[5][6]17
1100.00
B211/12211/12playEqual-temperedmajor seventh12M
1102.64
B-121 : 64112 : 26playHundred-twenty-first harmonic[5]11
1107.82
C′256 : 13528 : 33×5playOctave − major chroma,[3] 135th subharmonic, narrow diminished octave[citation needed]5
1109.78
B+[2]243 : 12835 : 27playPythagoreanmajor seventh[3][5][6][11]3
1116.88
61 : 3261 : 25playSixty-first harmonic[5]61
1125.00
215/16245/48play45 steps in 48 equal temperament16, 48
1129.33
C′[2]48 : 2524×3 : 52playClassic diminished octave,[3][6] large justmajor seventh[4]5
1131.02
B41123 : 643×41 : 26playHundred-twenty-third harmonic[5]41
1137.04
B7 upside-down27 : 1433 : 2×7playSeptimal major seventh[5]7
1138.04
C1913247 : 12813×19 : 27playTwo-hundred-forty-seventh harmonic19
1145.04
B3131 : 1631 : 24playThirty-first harmonic,[5] augmented seventh[citation needed]31
1146.73
C↓64 : 3326 : 3×11play33rd subharmonic[6]11
1150.00
Bhalf sharp/Chalf flat223/24223/24play23 steps in 24 equal temperament24
1151.23
C735 : 185×7 : 2×32playSeptimal supermajor seventh, septimal quarter tone inverted7
1158.94
B[2]125 : 6453 : 26playJustaugmented seventh,[5] 125th harmonic5
1172.74
C7+63 : 3232×7 : 25playSixty-third harmonic[5]7
1175.00
247/48247/48play47 steps in 48 equal temperament48
1178.49
C′−160 : 8125×5 : 34playOctave − syntonic comma,[3] semi-diminished octave[citation needed]5
1179.59
B23253 : 12811×23 : 27playTwo-hundred-fifty-third harmonic[5]23
1186.42
127 : 64127 : 26playHundred-twenty-seventh harmonic[5]127
1200.00
C′2 : 12 : 1playOctave,[3][11] perfect eighth ordiapason[4]1, 123MS

See also

[edit]

Notes

[edit]
  1. ^abcdManeri-Sims notation

References

[edit]
  1. ^abFox, Christopher (2003). "Microtones and Microtonalities",Contemporary Music Review, v. 22, pt. 1–2. (Abingdon, Oxfordshire, UK: Routledge): p. 13.
  2. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiajakalamanaoapaqarasatauavawaxayazbabbbcbdbebfbgbhbiFonville, John. 1991. "Ben Johnston's Extended Just Intonation: A Guide for Interpreters".Perspectives of New Music 29, no. 2 (Summer): 106–137.
  3. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiajakalamanaoapaqarasatauavawaxayazbabbbcbdbebfbgbhbibjbkblbmbnbobpbqbrbsbtbubvbwbxbybzcacbcccdcecfcgchcicjckclcmcncocpcqcrcsctcucvcwcxcyczdadbdcdddedfdgdhdi"List of intervals",Huygens-Fokker Foundation. The Foundation uses "classic" to indicate "just" or leaves off any adjective, as in "major sixth".
  4. ^abcdefghijklmnopqrstuvwxPartch, Harry (1979).Genesis of a Music. Hachette Books. pp. 68–69.ISBN 978-0-306-80106-8.
  5. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiajakalamanaoapaqarasatauavawaxayazbabbbcbdbebfbgbhbibjbkblbmbnbobpbqbrbsbtbubvbwbxbybzcacbcccdcecfcgchcicjckclcmcncocpcqcrcsctcucvcwcxcyczdadbdcdddedfdgdhdidjdkdldmdndodpdqdrdsdtdudvdwdxdydz"Anatomy of an Octave",Kyle Gann (1998). Gann leaves off "just" but includes "5-limit". He uses "median" for "neutral".
  6. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiajakalamanaoapaqarasatauavawaxayHaluška, Ján (2003).The Mathematical Theory of Tone Systems, pp. xxv–xxix.ISBN 978-0-8247-4714-5.
  7. ^Ellis, Alexander J.;Hipkins, Alfred J. (1884)."Tonometrical Observations on Some Existing Non-Harmonic Musical Scales".Proceedings of the Royal Society of London.37 (232–234):368–385.doi:10.1098/rspl.1884.0041.JSTOR 114325.S2CID 122407786.
  8. ^"Logarithmic Interval Measures",Huygens-Fokker Foundation. Accessed 2015-06-06.
  9. ^"Orwell Temperaments",Xenharmony.org.
  10. ^abPartch 1979, p. 70
  11. ^abcdefghijklmnopqrstuvwxyzaaabAlexander John Ellis (March 1885).On the musical scales of various nations, p. 488.Journal of the Society of Arts, vol. XXXII, no. 1688
  12. ^William Smythe Babcock Mathews (1895).Pronouncing Dictionary and Condensed Encyclopedia of Musical Terms, p. 13.ISBN 1-112-44188-3.
  13. ^abcdefAnger, Joseph Humfrey (1912).A Treatise on Harmony, with Exercises, Volume 3, pp. xiv–xv. W. Tyrrell.
  14. ^abcdefghijklmnoHermann Ludwig F. von Helmholtz (Alexander John Ellis, trans.) (1875). "Additions by the translator",On the sensations of tone as a physiological basis for the theory of music, p. 644. [ISBN unspecified]
  15. ^A. R. Meuss (2004).Intervals, Scales, Tones and the Concert Pitch C. Temple Lodge Publishing. p. 15.ISBN 1902636465.
  16. ^abcdefghijklmnopqrstuvwxyPaul, Oscar (1885).A Manual of Harmony for Use in Music-schools and Seminaries and for Self-instruction, p. 165. Theodore Baker, trans. G. Schirmer. Paul uses "natural" for "just".
  17. ^ab"13th-harmonic",31et.com.
  18. ^Brabner, John H. F. (1884).The National Encyclopaedia, vol. 13, p. 182. London. [ISBN unspecified]
  19. ^Sabat, Marc andvon Schweinitz, Wolfgang (2004). "The Extended Helmholtz-Ellis JI Pitch Notation" [PDF],NewMusicBox. Accessed: 15 March 2014.
  20. ^Hermann L. F. von Helmholtz (2007).On the Sensations of Tone, p. 456.ISBN 978-1-60206-639-7.
  21. ^"Gallery of Just Intervals",Xenharmonic Wiki.

External links

[edit]
Perfect Consonances
Imperfect Consonances
Dissonances
Twelve-
semitone

(post-Bach
Western)
(Numbers in brackets
are the number of
semitones in the
interval.)
Perfect
Major
Minor
Augmented
Diminished
Compound
Other
tuning
systems
24-tone equal temperament
(Numbers in brackets refer
to fractional semitones.)
Just intonations
(Numbers in brackets
refer to pitch ratios.)
7-limit
Higher-limit
Other
intervals
Groups
Semitones
Quarter tones
Commas
Measurement
Others
Measurement
Just intonation
Temperaments
Equal
Linear
Irregular
Traditional
non-Western
Non-octave
Subdividing
Single ratio
Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_pitch_intervals&oldid=1315789417"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp