Epsilon Indi Ab, 12 light-years away, with its parent starEpsilon Indi A blacked out, as pictured byJWST in 2023.[1]Distribution of nearest known exoplanets as of March 2018
There are 6,128 knownexoplanets, or planets outside theSolar System that orbit a star, as of October 30, 2025; only a small fraction of these are located in the vicinity of the Solar System.[2] Within 10parsecs (32.6light-years), there are 106 exoplanets listed as confirmed by theNASA Exoplanet Archive.[note 1][3] Among the over 500 known stars andbrown dwarfs within 10 parsecs,[4][note 2] around 60 have been confirmed to have planetary systems; 51 stars in this range are visible to the naked eye,[note 3][6] eight of which have planetary systems.
The first report of an exoplanet within this range was in 1998 for a planet orbiting aroundGliese 876 (15.3 light-years (ly) away), and the latest as of 2025 is a system aroundBarnard's Star (6.0 ly). The closest exoplanets are those found orbiting the star closest to the Solar System, which isProxima Centauri 4.25 light-years away. The first confirmed exoplanet discovered in the Proxima Centauri system wasProxima Centauri b, in 2016.HD 219134 (21.6 ly) has six exoplanets, the highest number discovered for any star within this range.
Most known nearby exoplanets orbit close to their stars. A majority are significantly larger than Earth, but a few have similar masses, including planets aroundYZ Ceti,Gliese 367, Proxima Centauri, andBarnard's Star which may be less massive than Earth. Several confirmed exoplanets are hypothesized to bepotentially habitable, with Proxima Centauri b andGJ 1002 b (15.8 ly) considered among the most likely candidates.[7] TheInternational Astronomical Union has assigned proper names to some known extrasolar bodies, including nearby exoplanets, through theNameExoWorlds project. Planets named in the 2015 event include the planets aroundEpsilon Eridani (10.5 ly) andFomalhaut,[note 4][10] while planets named in the 2022 event include those aroundGliese 436,Gliese 486, andGliese 367.[11]
Unlike for bodies within theSolar System, there is no clearly established method for officially recognizing an exoplanet. According to theInternational Astronomical Union, an exoplanet should be considered confirmed if it has not been disputed for five years after its discovery.[96] There have been examples where the existence of exoplanets has been proposed, but even after follow-up studies their existence is still considered doubtful by some astronomers. Such cases includeWolf 359 (7.9 ly, in 2019),[24]Tau Ceti (11.9 ly, in 2012 & 2017),[97]Gliese 682 (16.3 ly, in 2014),[77]andHD 102365 A (30.4 ly, in 2011).[97]There are also several instances where proposed exoplanets were later disproved by subsequent studies, including candidates aroundAlpha Centauri B (4.36 ly),[98]Kapteyn's Star (12.8 ly),[99]Van Maanen 2 (14.1 ly),[100]Groombridge 1618 (15.9 ly),[101]AD Leonis (16.2 ly),[102]40 Eridani A (16.3 ly),[103][104]Gliese 229 A (18.8 ly),[105]VB 10 (19.3 ly),[106] andFomalhaut (25.1 ly).[107]
A candidate planet aroundLHS 288 was proposed in 2007, but it has not been confirmed.[108] In 2021, a candidate planet was detected aroundVega, though it has yet to be confirmed.[109] Another candidate planet,Candidate 1, was directly imaged aroundAlpha Centauri A, though it may also be a clump of asteroids or an artifact of the discovery mechanism.[110] Candidate planets aroundLuyten 726-8 (8.77 ly), GJ 3378 (25.2 ly) andAchird (19.3 ly) were reported in 2024, 2024 and 2025, respectively.[111][71][112]
The Working Group on Extrasolar Planets of the International Astronomical Union adopted in 2003 a working definition on the upper limit for what constitutes a planet: not being massive enough to sustain thermonuclear fusion ofdeuterium. Some studies have calculated this to be somewhere around 13 times themass of Jupiter, and therefore objects more massive than this are usually classified asbrown dwarfs.[113] Some proposed candidate exoplanets have been shown to be massive enough to fall above the threshold, and thus are likely brown dwarfs, as is the case for:SCR 1845-6357 B (13.1 ly),[114]SDSS J1416+1348 B (30.3 ly),[115] andWISE 1217+1626 B (30 ly).[116]
^Listed values are primarily taken fromNASA Exoplanet Archive,[3] but other databases include a few additional exoplanet entries tagged as "Confirmed" that have yet to be compiled into the NASA archive. Such databases include:
^For reference, the 100th closest known star system in April 2021 wasEQ Pegasi (20.4 ly).[4]
^According to theBortle scale, an astronomical object is visible to the naked eye under "typical" dark-sky conditions in a rural area if it has anapparent magnitude smaller than +6.5. To the unaided eye, the limiting magnitude is +7.6 to +8.0 under "excellent" dark-sky conditions (with effort).[5]
^Exoplanet naming convention assigns uncapitalized letters starting fromb to each planet based on chronological order of their initial report, and in increasing order of distance from the parent star for planets reported at the same time. Omitted letters signify planets that have yet to be confirmed, or planets that have been retracted altogether.
^Most reported exoplanet masses have very large error margins (typically, between 10% and 30%). The mass of an exoplanet has generally been inferred from measurements on changes in theradial velocity of the host star, but this kind of measurement only allows for an estimate on the exoplanet's orbital parameters, but not on theirorbital inclination (i). As such, most exoplanets only have an estimatedminimum mass (Mreal*sin(i)), where theirtrue masses are statistically expected to come close to this minimum, with only about 13% chance for the mass of an exoplanet to be more than double its minimum mass.[12]
^Hurt, Spencer A.; Fulton, Benjamin; Isaacson, Howard; Rosenthal, Lee J.; Howard, Andrew W.; Weiss, Lauren M.; Petigura, Erik A. (2021), "Confirmation of the Long-Period Planet Orbiting Gliese 411 and the Detection of a New Planet Candidate",The Astronomical Journal,163 (5): 218,arXiv:2107.09087,Bibcode:2022AJ....163..218H,doi:10.3847/1538-3881/ac5c47,S2CID236134034
^Thompson, William; Nielsen, Eric; Ruffio, Jean-Baptiste; Blunt, Sarah; Marois, Christian (2025). "Revised Mass and Orbit of $\varepsilon$ Eridani b: A 1 Jupiter-Mass Planet on a Near-Circular Orbit".arXiv:2502.20561 [astro-ph.EP].
^abcdefghijklBarnes, J. R.; Kiraga, M.; Diaz, M.; Berdiñas, Z.; Jenkins, J. S.; Keiser, S.; Thompson, I.; Crane, J. D.; Shectman, S. A.; Teske, J. K.; Holden, B.; Laughlin, G.; Burt, J.; Vogt, S. S.; Arriagada, P.; Butler, R. P.; Anglada-Escudé, G.; Jones, H. R. A.; Tuomi, M. (11 June 2019). "Frequency of planets orbiting M dwarfs in the Solar neighbourhood".arXiv:1906.04644 [astro-ph.EP].
^Cortes-Zuleta, P.; Boisse, I.; Ould-Elhkim, M.; Wilson, T. G.; Larue, P.; Carmona, A.; Delfosse, X.; Donati, J.-F.; Forveille, T. (2024-11-14). "GI 725A b: A potential super-Earth detected with SOPHIE and SPIRou in an M dwarf binary system at 3.5 pc".Astronomy & Astrophysics.693: A164.arXiv:2411.09506.Bibcode:2025A&A...693A.164C.doi:10.1051/0004-6361/202451646.
^Quirrenbach, A.; Passegger, V. M.; Trifonov, T.; Amado, P. J.; Caballero, J. A.; Reiners, A.; Ribas, I.; Aceituno, J.; Béjar, V. J. S.; Chaturvedi, P.; González-Cuesta, L.; Henning, T.; Herrero, E.; Kaminski, A.; Kürster, M.; Lalitha, S.; Lodieu, N.; López-González, M. J.; Montes, D.; Pallé, E.; Perger, M.; Pollacco, D.; Reffert, S.; Rodríguez, E.; López, C. Rodríguez; Shan, Y.; Tal-Or, L.; Osorio, M. R. Zapatero; Zechmeister, M. (2022). "The CARMENES search for exoplanets around M dwarfs".Astronomy & Astrophysics.663: A48.arXiv:2203.16504.Bibcode:2022A&A...663A..48Q.doi:10.1051/0004-6361/202142915.S2CID247835988.
^von Stauffenberg, A.; Trifonov, T.; Quirrenbach, A.; et al. (2024-06-05). "The CARMENES search for exoplanets around M dwarfs. Revisiting the GJ 581 multi-planetary system with new Doppler measurements from CARMENES, HARPS, and HIRES".Astronomy & Astrophysics.688.arXiv:2407.11520.Bibcode:2024A&A...688A.112V.doi:10.1051/0004-6361/202449375.ISSN0004-6361.
^González-Álvarez, E.; Osorio, M. R. Zapatero; Caballero, J. A.; Sanz-Forcada, J.; Béjar, V. J. S.; González-Cuesta, L.; Dreizler, S.; Bauer, F. F.; Rodríguez, E.; Tal-Or, L.; Zechmeister, M.; Montes, D.; López-González, M. J.; Ribas, I.; Reiners, Ansgar; Quirrenbach, A.; Amado, P. J.; Anglada-Escudé, G.; Azzaro, M.; Cortés-Contreras, M.; Hatzes, A. P.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Morales, J. C.; Pallé, E.; Perger, M.; Schmitt, J. H. M. M. (29 March 2020). "The CARMENES search for exoplanets around M dwarfs. A super-Earth planet orbiting HD 79211 (GJ 338 B)".Astronomy & Astrophysics.A93: 637.arXiv:2003.13052.Bibcode:2020A&A...637A..93G.doi:10.1051/0004-6361/201937050.S2CID214714124.
^"GJ 625".NASA Exoplanet Science Institute. California Institute of Technology. Retrieved2018-03-22.
^Almenara, Jose-Manuel; Berlind, Perry; Bouchy, Franois; Burke, Chris J.; Delfosse, Xavier; Díaz, Rodrigo F.; Dressing, Courtney D.; Esquerdo, Gilbert A.; Figueira, Pedro; Forveille, Thierry; Fur'esz, G'abor; Henze, Christopher E.; Jao, Wei-Chun; L'epine, S'ebastien; Levine, Alan M.; Lovis, Christophe; Mink, Jessica; Muirhead, Philip S.; Murgas, Felipe; Pepe, Francesco; Tenenbaum, Peter; Teske, Johanna K.; Twicken, Dr Joseph D.; Udry, St'ephane; Jenkins, Jon M.; Winn, Joshua N.; Seager, Sara; Latham, David W.; Vanderspek, Roland; Ricker, George R.; Bonfils, Xavier; Winston, Elaine; Diamond-Lowe, Hannah; Henry, Todd J.; Vrijmoet, Eliot; Eastman, Jason D.; Horch, Elliott P.; Astudillo-Defru, Nicola; Charbonneau, David; Irwin, Jonathan M.; Medina, Amber A.; Winters, Jennifer G. (24 June 2019)."Three Red Suns in the Sky: A Transiting, Terrestrial Planet in a Triple M Dwarf System at 6.9 Parsecs".The Astronomical Journal.158 (4): 152.arXiv:1906.10147.Bibcode:2019AJ....158..152W.doi:10.3847/1538-3881/ab364d.S2CID195584444.
^Winters, Jennifer G.; Cloutier, Ryan; Medina, Amber A.; Irwin, Jonathan M.; Charbonneau, David; Astudillo-Defru, Nicola; Bonfils, Xavier; Howard, Andrew W.; Isaacson, Howard; Bean, J. L.; Seifahrt, A.; Teske, J. K.; Eastman, Jason D.; Twicken, Joseph D.; Collins, K. A.; Jensen, E. L. N.; Quinn, S. N.; Payne, M. J.; Kristiansen, M. H.; Spencer, A.; Vanderburg, Andrew; Zechmeister, Mathias; Weiss, L. M.; Wang, S. X.; Wang, G.; Udry, Stéphane; Terentev, I. A.; Sturmer, J.; Stefansson, G.; Shectman, Stephen A.; Sefako, R.; Schwengeler, H. M.; Schwarz, R. P.; Scarsdale, N.; Rubenzahl, R. A.; Roy, A.; Rosenthal, L. J.; Robertson, P.; Petigura, Erik A.; Pepe, Francesco; Omohundro, M.; Murphy, J. M. A.; Murgas, Felipe; Movcnik, T.; Montet, B. T.; Mennickent, R.; Mayo, A. W.; Massey, B.; Lubin, J.; Lovis, Christophe; Lewin, P.; Kasper, D.; Kane, S. R.; Jenkins, J. M.; Huber, D.; Horne, K.; Hill, M. L.; Gorrini, P.; Giacalone, S.; Fulton, Benjamin J.; Forveille, Thierry; Figueira, Pedro; Fetherolf, T.; Dressing, Courtney D.; Díaz, Rodrigo F.; Delfosse, Xavier; Dalba, P. A.; Dai, F.; Cortes, C. C.; Crossfield, Ian J. M.; Crane, Jeffrey D.; Conti, D. M.; Collins, K. I.; Chontos, A.; Butler, R. Paul; Brown, P.; Brady, M.; Bouchy, François; Behmard, A.; Beard, C.; Batalha, Natalie M.; Almenara, José M. (2022)."A Second Planet Transiting LTT 1445A and a Determination of the Masses of Both Worlds".The Astronomical Journal.163 (4): 168.arXiv:2107.14737.Bibcode:2022AJ....163..168W.doi:10.3847/1538-3881/ac50a9.S2CID236635391.
^Damasso, M.; Perger, M.; Almenara, J. M.; Nardiello, D.; Pérez-Torres, M.; Sozzetti, A.; Hara, N. C.; Quirrenbach, A.; Bonfils, X.; Osorio, M. R. Zapatero; Astudillo-Defru, N.; Hernández, J. I. González; Mascareño, A. Suárez; Amado, P. J.; Forveille, T.; Lillo-Box, J.; Alibert, Y.; Caballero, J. A.; Cifuentes, C.; Delfosse, X.; Figueira, P.; Galadí-Enríquez, D.; Hatzes, A. P.; Henning, Th; Kaminski, A.; Mayor, M.; Murgas, F.; Montes, D.; Pinamonti, M.; Reiners, A.; Ribas, I.; Béjar, V. J. S.; Schweitzer, A.; Zechmeister, M. (13 April 2022). "A quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514".Astronomy & Astrophysics.666: A187.arXiv:2204.06376.doi:10.1051/0004-6361/202243522.S2CID248157318.
^Vedantham, H. K.; Callingham, J. R.; Shimwell, T. W.; Tasse, C.; Pope, B. J. S.; Bedell, M.; Snellen, I.; Best, P.; Hardcastle, M. J.; Haverkorn, M.; Mechev, A.; O’Sullivan, S. P.; Röttgering, H. J. A.; White, G. J. (June 2020). "Coherent radio emission from a quiescent red dwarf indicative of star–planet interaction".Nature Astronomy.4 (6):577–583.arXiv:2002.08727.Bibcode:2020NatAs...4..577V.doi:10.1038/s41550-020-1011-9.S2CID211204712.
^Perger, M.; Ribas, I.; Anglada-Escudé, G.; Morales, J. C.; Amado, P. J.; Caballero, J. A.; Quirrenbach, A.; Reiners, A.; Béjar, V. J. S.; Dreizler, S.; Galadí-Enríquez, D.; Hatzes, A. P.; Henning, Th.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Montes, D.; Pallé, E.; Rodríguez-López, C.; Schweitzer, A.; Zapatero Osorio, M. R.; Zechmeister, M. (2021), "The CARMENES search for exoplanets around M dwarfs, No evidence for a super-Earth in a 2-day orbit around GJ 1151",Astronomy & Astrophysics,649: L12,arXiv:2103.10216,Bibcode:2021A&A...649L..12P,doi:10.1051/0004-6361/202140786,S2CID126038821
^Trifonov, T.; Caballero, J. A.; Morales, J. C.; Seifahrt, A.; Ribas, I.; Reiners, Ansgar; Bean, J. L.; Luque, R.; Parviainen, H.; Pallé, E.; Stock, S.; Zechmeister, M.; Amado, P. J.; Anglada-Escudé, G.; Azzaro, M.; Barclay, T.; Béjar, V. J. S.; Bluhm, P.; Casasayas-Barris, N.; Cifuentes, C.; Collins, K. A.; Collins, K. I.; Cortés-Contreras, M.; de Leon, J.; Dreizler, S.; Dressing, C. D.; Esparza-Borges, E.; Espinoza, N.; Fausnaugh, M.; Fukui, A.; Hatzes, A. P.; Hellier, C.; Henning, Th.; Henze, C. E.; Herrero, E.; Jeffers, S. V.; Jenkins, J. M.; Jensen, E. L. N.; Kaminski, A.; Kasper, D.; Kossakowski, D.; Kürster, M.; Lafarga, M.; Latham, D. W.; Mann, A. W.; Molaverdikhani, K.; Montes, D.; Montet, B. T.; Murgas, F.; Narita, N.; Oshagh, M.; Passegger, V. M.; Pollacco, D.; Quinn, S. N.; Quirrenbach, A.; Ricker, G. R.; Rodríguez López, C.; Sanz-Forcada, J.; Schwarz, R. P.; Schweitzer, A.; Seager, S.; Shporer, A.; Stangret, M.; Stürmer, J.; Tan, T. G.; Tenenbaum, P.; Twicken, J. D.; Vanderspek, R.; Winn, J. N. (5 March 2021). "A nearby transiting rocky exoplanet that is suitable for atmospheric investigation".Science.371 (6533):1038–1041.arXiv:2103.04950.Bibcode:2021Sci...371.1038T.doi:10.1126/science.abd7645.PMID33674491.S2CID232124642.
^Affer, L.; Damasso, M.; Micela, G.; Poretti, E.; Scandariato, G.; Maldonado, J.; Lanza, A. F.; Covino, E.; Rubio, A. Garrido; Hernandez, J. I. Gonzalez; Gratton, R.; Leto, G.; Maggio, A.; Perger, M.; Sozzetti, A.; Mascareno, A. Suarez; Bonomo, A. S.; Borsa, F.; Claudi, R.; Cosentino, R.; Desidera, S.; Molinari, E.; Pedani, M.; Pinamonti, M.; Rebolo, R.; Ribas, I.; Toledo-Padron, B. (16 January 2019). "HADES RV programme with HARPS-N at TNG. X. A super-Earth around the M dwarf Gl686".Astronomy & Astrophysics.A193: 622.arXiv:1901.05338.Bibcode:2019A&A...622A.193A.doi:10.1051/0004-6361/201834868.S2CID118863481.
^abMoutou, C.; Ould-Elhkim, M.; Donati, J.-F.; Charpentier, P.; Cadieux, C.; Delfosse, X.; Artigau, E.; Arnold, L.; Baruteau, C. (2024-06-14), "Characterising planetary systems with SPIRou: Temperate sub-Neptune exoplanet orbiting the nearby fully convective star GJ 1289 and a candidate around GJ 3378",Astronomy & Astrophysics,688: A196,arXiv:2406.10384,Bibcode:2024A&A...688A.196M,doi:10.1051/0004-6361/202450466
^Bauer, F. F.; Zechmeister, M.; Kaminski, A.; López, C. Rodríguez; Caballero, J. A.; Azzaro, M.; Stahl, O.; Kossakowski, D.; Quirrenbach, A.; Jarque, S. Becerril; Rodríguez, E.; Amado, P. J.; Seifert, W.; Reiners, Ansgar; Schäfer, S.; Ribas, I.; Béjar, V. J. S.; Cortés-Contreras, M.; Dreizler, S.; Hatzes, A.; Henning, T.; Jeffers, S. V.; Kürster, M.; Lafarga, M.; Montes, D.; Morales, J. C.; Schmitt, J. H. M. M.; Schweitzer, A.; Solano, E. (2 June 2020). "The CARMENES search for exoplanets around M dwarfs. Measuring precise radial velocities in the near infrared: the example of the super-Earth CD Cet b".Astronomy and Astrophysics.640: A50.arXiv:2006.01684.Bibcode:2020A&A...640A..50B.doi:10.1051/0004-6361/202038031.S2CID219179889.
^"HD 192310".NASA Exoplanet Science Institute. California Institute of Technology. Retrieved2018-03-22.
^"GJ 849".NASA Exoplanet Science Institute. California Institute of Technology. Retrieved2018-03-22.
^"GJ 433".NASA Exoplanet Science Institute. California Institute of Technology. Retrieved2018-03-22.
^Wohler, B.; Winn, J. W.; Wang, S. X.; Twicken, J. D.; Teske, J.; Tamura, M.; Shectman, S. A.; Rowden, P.; Ricker, G. R.; Ribas, I.; Pedraz, S.; Nagel, E.; Murgas, F.; Morales, J. C.; Montañés-Rodríguez, P.; McDermott, S.; Latham, D. W.; Lafarga, M.; Kotani, T.; Klahr, H.; Kaminski, A.; Jenkins, J. M.; Feng, F.; Dynes, S.; Dressing, C. D.; Crane, J. D.; Collins, K. I.; Collins, K. A.; Chen, G.; Caldwell, D. A.; Butler, R. P.; Burt, J.; Burke, C. J.; Bluhm, P.; Bauer, F. F.; Batalha, N. E.; Anderson, D. R.; Amado, P. J.; Zechmeister, M.; Osorio, M. R. Zapatero; Trifonov, T.; Stock, S.; Schlecker, M.; Rodríguez-López, C.; Reiners, Ansgar; Reffert, S.; Quirrenbach, A.; Parviainen, H.; Oshagh, M.; Ofir, A.; Nowak, G.; Narita, N.; Montes, D.; Molaverdikhani, K.; Kürster, M.; Kaltenegger, L.; Jeffers, S. V.; Henning, T.; Hellier, C.; Hatzes, A.; Díez-Alonso, E.; Cortés-Contreras, M.; Caballero, J. A.; Béjar, V. J. S.; Anglada-Escudé, G.; Espinoza, N.; Kemmer, J.; Dreizler, S.; Kossakowski, D.; Pallé, E.; Luque, R. (29 April 2019). "A planetary system around the nearby M dwarf Gl 357 including a transiting hot Earth-sized planet optimal for atmospheric characterisation".Astronomy & Astrophysics.A39: 628.arXiv:1904.12818.Bibcode:2019A&A...628A..39L.doi:10.1051/0004-6361/201935801.S2CID139102184.
^"HD 285968".NASA Exoplanet Science Institute. California Institute of Technology. Retrieved2018-03-22.
^Giovinazzi, Mark R.; Blake, Cullen H.; Robertson, Paul; Lin, Andrea S. J.; Gupta, Arvind F.; Mahadevan, Suvrath; Fernandes, Rachel B.; Wright, Jason T.; Gagliuffi, Daniella Bardalez (2025-05-18), "The NEID Earth Twin Survey. II. Dynamical Masses in Seven High-acceleration Star Systems",The Astronomical Journal,170 (1): 52,arXiv:2505.12563,Bibcode:2025AJ....170...52G,doi:10.3847/1538-3881/add922.