Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

List of multiplanetary systems

From Wikipedia, the free encyclopedia
List of systems with multiple planets
Further information:Planetary system
Number of extrasolar planet discoveries per year through 2023. Colors indicate method of detection.

From the total of 4,584 stars known to haveexoplanets (as of 30 October 2025), there are a total of 1,017 known multiplanetary systems,[1] or stars with at least two confirmed planets, beyond theSolar System. This list includes systems with at least three confirmed planets, or two confirmed planets where additional candidates have been proposed. The stars with the most confirmed planets are theSun (the Solar System's star) andKepler-90, with eight confirmed planets each, followed byTRAPPIST-1 with seven planets.

The multiplanetary systems are listed below according to the star's distance from Earth. Proxima Centauri, the closest star to the Solar System, has at least two planets (the confirmedb,d and the disputedc[2]). The nearest system with four or more confirmed planets isBarnard Star, with four known.[3] The farthest confirmed system with two or more planets isOGLE-2012-BLG-0026L, at 13,300 light-years (4,100 pc) away.[4]

The table below contains information about the coordinates, spectral and physical properties, and the number of confirmed (unconfirmed) planets for systems with at least two planets and one not confirmed. The two most importantstellar properties aremass andmetallicity because they determine how theseplanetary systems form. Systems with higher mass and metallicity tend to have more planets and more massive planets. However, although low metallicity stars tend to have fewer massive planets, particularly hot-Jupiters, they also tend to have a larger number of close-in planets, orbiting at less than oneAU.[5]

Multiplanetary systems

[edit]
This is adynamic list and may never be able to satisfy particular standards for completeness. You can help byediting the page to add missing items, with references toreliable sources.
Color indicates number of planets
2 (x)345678
Star
Constellation
Right
ascension

Declination
Apparent
magnitude

Distance (ly)
Spectral
type

Mass
(M)
Temperature (K)
Age
(Gyr)
Confirmed
(unconfirmed)
planets
Notes
SunN/AN/AN/A−26.740.000016G2V157784.5728 (1)Has 8 confirmed major planets, and hypotheticalPlanet Nine. Only known system to have life.
Proxima CentauriCentaurus14h 29m 42.94853s−62° 40′ 46.1631″10.43 to 11.11[6]4.244M5.5Ve[7]0.12230424.852 (1)Closest star to the Sun and closest star to the Sun with a multiplanetary system. Planet b is potentially habitable.[8][9]
Barnard's StarOphiuchus17h 57m 48.4985s+04° 41′ 36.1139″9.5115.96M4.0V[10]0.1623195104Closest single star to the Sun with a confirmed multiplanetary system.[3]
Lalande 21185Ursa Major11h 03m 20.1940s+35° 58′ 11.5682″7.520[11]8.3044±0.0007M2V0.393601±518.0472 (1)Brightestred dwarf star in the northern celestial hemisphere.[12][13]
Gliese 887Piscis Austrinus23h 05m 52.04s−35° 51′ 11.05″7.3410.721M0.5V0.4863688±864.574 (1)Star also known as Lacaille 9352. Planet d is potentially habitable.[14][15]
Luyten's StarCanis Minor07h 27m 24.4991s05° 13′ 32.827″9.87211.20M3.5V0.263150unknown2 (2)Stellar activity level and rotational rate suggest an age higher than 8 billion years.[16] Planet b is potentially habitable.[17]
YZ CetiCetus01h 12m 30.64s−16° 59′ 56.3″12.0711.74M4.5V0.13305643Flare star.[18]
GJ 1061Horologium03h 35m 59.69s−44° 30′ 45.3″13.0312.04M5.5V0.1132953unknown3Planets c and d are potentially habitable.[19]
Teegarden's StarAries02h 53m 00.89s+16° 52′ 53″15.1312.497M7V0.097303483Teegarden's Star b and Teegarden's Star c are likely Earth-mass planets that orbit in the habitable zone.[20]
Wolf 1061Ophiuchus16h 30m 18.0584s−12° 39′ 45.325″10.0714.050 ± 0.002M3.5V0.2943342unknown3Planet c is potentially habitable.[21][22][23]
Gliese 876Aquarius22h 53m 16.73s−14° 15′ 49.3″10.1715.25M4V0.33433484.8934Planet b is a gas giant which orbits in the habitable zone.[24]
82 G. EridaniEridanus03h 19m 55.65s−43° 04′ 11.2″4.25419.71G8V0.754015.763 (3)This star also has a dust disk[25] with a semi-major axis at approximately 19 AU.[26]
Gliese 581Libra15h 19m 26.83s−07° 43′ 20.2″10.5620.56M3V0.31134844.3263 (1)The disputed planet d is potentially habitable.[27]
Gliese 667 CScorpius17h 18m 57.16s−34° 59′ 23.14″10.2021M1.5V0.31370022 (1)Triple star system - all exoplanets orbit around Star C. Planet c is potentially habitable, There were thought to be up to 5 more planets orbiting the star, Gliese 667 Cd, Ce, Cf, Cg, and Ch but most of them were false positives except for planet d which remains uncomfirmed .[28][29][30]
HD 219134Cassiopeia23h 13m 14.74s57° 10′ 03.5″5.5721K3Vvar0.794469912.665 (1)Closest star to the Sun with exactly six[31] exoplanets, and closestK-type main sequence star to the Sun with a multiplanetary system. One of the oldest stars with a multiplanetary system, although it is still more metal-rich than the Sun. None of the known planets is in the habitable zone.[32]
61 VirginisVirgo13h 18m 24.31s−18° 18′ 40.3″4.7428G5V0.95455318.96361 Virginis also has a debris disk.
Gliese 433Hydra11h 35m 26.9485s−25° 10′ 08.9″9.7929.8±0.1M1.5V0.483550±100unknown3Aninfrared excess around this star suggests acircumstellar disk.[33]
Gliese 367Vela09h 44m 29.15s−45° 46′ 44.46″10.15330.719M1.0V0.45435227.953
Gliese 357Hydra09h 36m 01.6373s−21° 39′ 38.878″10.90630.776M2.5V0.3623488unknown3Planet d is a potentially habitable Super-Earth.[34][35][36][37]
AU MicroscopiiMicroscopium20h 45m 09.87s−31° 20′ 32.82″8.62731.683M1Ve0.636650.0192 (2)-
L 98-59Volans08h 18m 07.62s−68° 18′ 46.8″11.6934.6M3V0.3123412unknown5 (1)The unconfirmed planet g orbits in closer than b.[38]
Gliese 806Cygnus20h 45m 04.099s+44° 29′ 56.6″10.7939.3M1.5V0.423358632 (1)-
TRAPPIST-1Aquarius23h 06m 29.283s−05° 02′ 28.59″18.8039.5M8V0.08925507.67 (1)Planets d, e, f and g are potentially habitable. Only star known with exactly seven confirmed planets. All seven confirmed terrestrial planets lie within only 0.07 AU of the star.
55 CancriCancer08h 52m 35.8111s &08h 52m 40.8627s+28° 19′ 50.955″ & +28° 19′ 58.821″5.95+13.1541.05+40.95K0IV-V+M4.5V0.9055172+33208.66 (2)At least 4 planets orbit around the primary, and 2 planets around the secondary star.55 Cancri Ad and 55 Cancri Ag are unconfirmed. Mass of primary star shown. Planet Bc is potentially habitable.[39]
Gliese 180Eridanus04h 53m 49.9798s−17° 46′ 24.294″10.89440.3M2V[40] or M3V[41]0.393562unknown3The habitability of planets b and c is disputed.[42][43]
HD 69830Puppis08h 18m 23.95s−12° 37′ 55.8″5.9541K0V0.85653857.4463A debris disk exterior to the three exoplanets was detected by theSpitzer Space Telescope in 2005.[44]
HD 101581Centaurus11h 41m 01.51s−44° 24′ 14.93″7.76241.7K4.5V0.65346756.882 (1)
HD 40307Pictor05h 54m 04.24s−60° 01′ 24.5″7.1742K2.5V0.75249771.1984 (2)The existence of planets e and g are disputed.[45] If confirmed, planet g is potentially habitable.[46]
Upsilon AndromedaeAndromeda01h 36m 47.84s+41° 24′ 19.7″4.0944F8V1.2761073.7813 (1)NearestF-type main-sequence star with a multiplanetary system. Brightest star in the night sky with at least three planets. All exoplanets orbit around star A in the binary system. The existence of planet e is disputed.
47 Ursae MajorisUrsa Major10h 59m 27.97s+40° 25′ 48.9″5.1046G0V1.02958927.4343Planet Taphao Thong was discovered in 1996 and was one of the first exoplanets to be discovered.[47] The planet was the firstlong-period extrasolar planet discovered. The other planets were discovered later.[48]
Nu2 LupiLupus15h 21m 49.57s−48° 19′ 01.1″5.6547G2V0.906566410.363One of the oldest stars in the solar neighbourhood.[49][50][51]
Gliese 163Dorado04h 09m 16s−53° 22′ 25″11.849M3.5V0.4unknown35Planet c is possibly a potentially habitable Super-Earth but is probably too hot or massive.[52][53]
Mu AraeAra17h 44m 08.70s−51° 50′ 02.6″5.1551G3IV-V1.07757046.4134Planet Quijote orbits in thecircumstellar habitable zone. However, it is agas giant, so it itself is uninhabitable although a large moon orbiting around it may behabitable.
GJ 3929Corona Borealis15h 58m 18.8s35° 24′ 24.3″12.6751.58M3.5V0.3133384unknown2 (1)[54][55]
Gliese 676 AAra17h 30m 11.2042s−51° 38′ 13.116″9.5953M0V0.71unknownunknown4Held the record for widest range of masses in a planetary system in 2012.[56]
HD 48948Lynx06h 49m 57.55s+60° 20′ 14.33″8.5854.91K3V0.686459311.483
HD 7924Cassiopeia01h 21m 59.12s+76° 42′ 37.0″7.1955K0V0.8325177unknown3These planets may be potentially habitable Super-Earths.[57]
Rho Coronae BorealisCorona Borealis16h 01m 02.42s+33° 18′ 00.67″5.3957.11G0V0.95581710.23
HD 153557Hercules16h 57m 52.96s+47° 22′ 04.28″7.8358.52K3V0.794837unknown3
Pi MensaeMensa05h 37m 09.8851s−80° 28′ 08.8313″5.6559.62±0.07G0V1.1160133.43Outer planet is likely abrown dwarf.[58]
GJ 3293Eridanus04h 28m 35.72s−25° 10′ 08.9″11.9659M2.5V0.423466±49unknown4Planets b and d orbit in the habitable zone.[17]
GJ 3998Ophiuchus17h 16m 00.49s+11° 03′ 22.23″10.8359.28M1V0.523726unknown3
LHS 1678Caelum04h 32m 43s−39° 47′ 21″1264.8M2V0.3453490unknown3[59]
HD 104067Corvus11h 59m 10.0s−20° 21′ 13.6″7.9266.3K3V0.8249424.82 (1)The innermost planet, which is unconfirmed, might suffer from significanttidal heating.[60]
TOI-5789Sagitta20h 11m 06.07s+16° 11′ 16.79″7.3066.7K1V0.82151859.44Star also known as HIP 99452. The system has a wide companion M-dwarf.[61]
HD 142Phoenix00h 06m 19.0s−49° 04′ 30″5.7067G1 IV1.161805.933-
HD 215152Aquarius22h 43m 21s−06° 24′ 03″8.1370G8IV1.01956467.324A debris disk candidate as it has an infrared excess.[62]
HD 164922Hercules18h 02m 30.86s+26° 18′ 46.8″7.0172G9V[63]0.874529313.44Oldest star with a multiplanetary system. Despite its age, it is more metal-rich than the Sun.[63]
HD 63433Gemini07h 49m 55.0s+27° 21′ 47.4″6.9273G5V0.9956400.43
GJ 3090Phoenix01h 21m 45.39s−46° 42′ 51.76″11.40373.24M20.51937071.022 (1)-
TOI-270Pictor04h 33m 39.86s−51° 57′ 26.62″12.60373.3M3V0.3863506unknown3
TOI-2267Cepheus4h 20m 12.6s+84° 54′ 6.3″15.473.5M5V+M6V0.273030+2930unknown3One of the few planetary systems to possibly have both stars having planets around them. TOI-2267 b, c orbit one star and the planet d likely orbits the remaining star.[64]
HD 96700Hydra11h 07m 53.82s−30° 10′ 30.50″6.5182.8G0V158456.83-
HIP 57274Ursa Major11h 44m 41s+30° 57′ 33″8.9685K5V0.7346407.873-
HD 39194Mensa05h 44m 32s−70° 08′ 37″8.0886.2K0Vunknown5205unknown3The planets have eccentric orbits.[65]
LP 791-18Crater11h 02m 45.95s−16° 24′ 22.3″16.986.9M6V/M7V0.13929600.53planet d could be volcanically active because its elliptical orbit is periodically stretched and squeezed by the gravitational pull of a larger neighboring planet, LP 791-18 c.
HD 181433Pavo19h 25m 09.57s−66° 28′ 07.7″8.3887K5V0.77749628.9743-
HD 134606Apus15h 15m 15s−70° 31′ 11″6.8587G6IVunknownunknownunknown5The planets have moderately eccentric orbits.[66]
HD 158259Draco17h 25m 24.0s+52° 47′ 26″6.4689G01.08unknownunknown5 (1)A G-type star slightly more massive than the Sun.[67] Planet g remains unconfirmed.[67]
HD 82943Hydra09h 34m 50.74s−12° 07′ 46.4″6.5490F9V Fe+0.5[68]1.17558743.083Planets b and c are in a 2:1 orbital resonance.[69] Planet b orbits in the habitable zone, but it and planet c are massive enough to bebrown dwarfs. HD 82943 has an unusuallithium-6 abundance.[70]
HD 176986Aquila19h 03m 05.872s−11° 02′ 38.131″8.4590.93K2.5V0.78949314.33
GJ 3138Cetus02h 09m 10.90s−16° 20′ 22.53″10.87792.90.6813717±49unknown3
GJ 9827Pisces23h 27m 04.84s−01° 17′ 10.59″10.1096.8±0.2K6V0.5934294±52unknown3Also known as K2-135. Planet d is the first confirmedsteam world.[71]
HD 50554Gemini06h 54m 42.7s+24° 14′ 42.51″6.84101.34F8V1.0459682.163The system also has an outerdebris disk, hinting at a possible additional planet along its inner edge.[72]
K2-239Sextans10h 42m 22.63s+04° 26′ 28.86″14.5101.5M3V0.43420unknown3
TOI-700Dorado06h 28m 22.97s−65° 34′ 43.01″13.10101.61M2V0.41634801.54Planets d and e are potentially habitable.[73][74][75]
HR 858Fornax02h 51m 56.16s−30° 48′ 53.2″6.38105F6V1.1456201unknown3The star forms a binary with a red dwarf.[76]
HD 110067Coma Berenices12h 39m 21.41s+20° 01′ 38.42″8.43105.1K0V0.79852668.16
TOI-431Lepus05h 33m 04.62s−26° 43′ 25.93″9.12106.2K3V0.784850unknown3-
HD 37124Taurus05h 37m 02.49s+20° 43′ 50.8″7.68110G4V0.8356063.3273Planet c orbits at the outer edge of the habitable zone.[77]
HD 73344Cancer08h 38m 45.47s+23° 41′ 06.95″6.876114.9F6V1.262201.153
HD 20781Fornax03h 20m 03s−28° 47′ 02″8.44115G9.5V0.75256±29unknown4Located in binary star system.[78][79] The companion star,HD 20782, also has one planet in a highly eccentric orbit.
LHS 1903Lynx07h 11m 27.94s+48° 19′ 49.40″12.21116.3M0.5V0.53836647.084 (1)The system has an unusual architecture with a rocky planet on the outermost orbit, exterior to two gas dwarfs.[80] An additional planetary signal is suggested from the radial velocity measurements.[81]
Kepler-444Lyra19h 19m 01s41° 38′ 05″9.0117K0V0.758504011.235Nearest multiplanetary system where the planets were discovered by theKepler space telescope.
TOI-1266Draco13h 11m 59.18s+65° 50′ 01.31″12.94117.5M2V0.43735634.63
HD 141399Boötes15h 46m 54.0s+46° 59′ 11″7.2118K0V1.075600unknown4Planet c orbits in the habitable zone.[82]
Kepler-42Cygnus19h 28m 53s+44° 37′ 10″16.12126M5V[83]0.133068unknown3Host 3 sub earths orbiting it.
HD 31527Lepus04h 55m 38s−23° 14′ 31″7.48126G0Vunknownunknownunknown3-
HD 10180Hydrus01h 37m 53.58s−60° 30′ 41.5″7.33127G1V1.05559114.3356 (3)Has 6 confirmed planets orbiting around it, Evidence for 3 more planets in the system exist, If these worlds are confirmed, this system would be the largest planetary system found.[84]
HD 23472Reticulum03h 41m 50.3988s−62° 46′ 01.4772″9.72127.48K3.5V0.674684±99unknown5
HR 8799Pegasus23h 07m 28.72s+21° 08′ 03.3″5.96129A5V1.47274290.0644 (1)OnlyA-type main sequence star with a known multiplanetary system, and hottest and most massive single main sequence star with a multiplanetary system. All four planets are massivesuper-Jupiters.
TOI-2076Boötes14h 29m 34.08s+39° 47′ 25.44″9.139136.7K00.85651920.214-
HD 27894Reticulum04h 20m 47.05s−59° 24′ 39.0″9.42138K2V0.848753.93-
HD 93385Vela10h 46m 15.1160s−41° 27′ 51.7261″7.486141.6G2V1.0758234.133
HD 28471Reticulum04h 25m 09.00s−64° 04′ 43.27″7.89142.4G5V0.9857666.563 (1)
K2-3Leo11h 29m 20.3918s−01° 27′ 17.280″12.168143.9±0.4M0V0.6013835±7013The outermost planet orbits in the habitable zone.[85]
HD 34445Orion05h 17m 41.0s+07° 21′ 12″7.31152G0V1.0758368.51 (5)Some planets were not detected or inferred to be false positives in a later study.[86]
HD 204313Capricornus21h 28m 12.21s–21° 43′ 34.5″7.99154G5V1.04557673.383-
HD 3167Pisces00h 34m 57.5s+04° 22′ 53″8.97154.4K0V0.852530010.24-
TOI-500Puppis07h 06m 14.18s−47° 35′ 16.14″10.54154.6K6V0.74444054-
HIP 34269Puppis07h 06m 13.98s−47° 35′ 13.87″10.59154.810.744440±100unknown4
HD 11506Cetus01h 52m 50.56s−19° 30′ 26.63″7.51167.0G0V1.2460302.33
HD 133131Libra15h 03m 35.80651s−27° 50′ 27.5520″8.4168G2V+G2V[87]0.955799±19632 planets around primary, and 1 planet around secondary star.[87]
K2-136Taurus04h 29m 38.99s+22° 52′ 57.80″11.2173K5V0.714364±700.73
HIP 14810Aries03h 11m 14.23s+21° 05′ 50.5″8.51174G5V0.98954855.2713-
HD 191939Draco20h 08m 05.75s+66° 51′ 2.1″8.971175G9V0.8153488.76[88]
HD 85426Leo Minor09h 52m 38.86s+35° 06′ 39.63″8.25175.3G40.99157467.42 (1)Also known as TOI-1774.
HD 125612Virgo14h 20m 53.51s−17° 28′ 53.5″8.33177G3V1.09958972.153-
TOI-712Dorado06h 11m 44.67s−65° 49′ 33.02″10.84191.2K4.5V0.73246220.833 (1)
TOI-880Canis Major06h 16m 39.47s−13° 59′ 14.41″10.10197.9K0.8750505.23
HD 184010Vulpecula19h 31m 22.0s+26° 37′ 02″5.9200K0III-IV1.3549712.763-
TOI-4342Octans21h 37m 32.864s−77° 58′ 43.51″12.67200.7M0V0.633901unknown2 (1)-
HD 109271Virgo12h 33m 36.0s−11° 37′ 19″8.05202G51.04757837.32 (1)-
HD 38677Orion05h 47m 06.0s−10° 37′ 49″8.0202F8V1.216196.02.014Also known as DMPP-1.
HD 22946Eridanus03h 39m 16.69s−42° 45′ 46″8.27204.8F7/8V1.09861692.53
TOI-178Sculptor00h 29m 12.30s30° 27′ 13.46″11.95205.16K7V[89]0.654316±707.16The planets are in anorbital resonance.[89]
TOI-663Sextans10h 40m 15.80s−08° 30′ 39.90″13.67209.5M1V0.5143681unknown3
HD 108236Centaurus12h 26m 17.89s−51° 21′ 46.21″9.24211G3V0.9757305.85-
TOI-1203Hydra11h 12m 54.42s−34° 24′ 24.97″8.59212.0G3V0.886573712.54-
Kepler-37Lyra18h 58m 23.1s44° 31′ 05″9.77215G8V0.803541763 (2)The existence of Kepler-37e is dubious.[90] A further long-period candidate Kepler-37f was also proposed.[91]
K2-72Aquarius22h 18m 29.2548s−09° 36′ 44.3824″15.04217M2V0.273497unknown42 planets in habitable zone
Kepler-138Lyra19h 21m 32.0s+43° 17′ 35″13.5218.5M1V0.5738712.33 (1)Planet b is one of the smallest exoplanets known, planets c and d are the first confirmed exoplanets that are likely mostly water.
K2-233Libra15h 21m 55.2s−20° 13′ 54″10.0221K30.849500.363
HIP 29442Lepus06h 12m 13.88s−14° 38′ 57.54″9.49222.4K0V0.901528911.23
TOI-1260Ursa Major10h 28m 35.03s+65° 51′ 16.38″11.973239.50.664227±856.73
LP 358-499Taurus04h 40m 35.64s+25° 00′ 36.05″13.996245.30.463655±80unknown4Also known as K2-133
TOI-2104Camelopardalis10h 06m 26.93s+83° 05′ 16.22″13.996250.30.84907unknown0 (5)The highest multiplicity system among unconfirmedTESS candidates.
K2-266Sextans10h 31m 44.5s+00° 56′ 15″252K0.6942858.44 (2)
TOI-2141Hercules17h 15m 02.96s+18° 20′ 25.24″9.46253.4G50.896563593
K2-155Taurus04h 21m 52.5s+21° 21′ 13″12.8267K70.654258unknown3
K2-384Cetus01h 21m 59.86s00° 45′ 04.41″16.12270M?V0.333623±138unknown5
TOI-1136Draco12h 48m 44.38s+64° 51′ 18.99″9.534275.81.0225770±500.76 (1)The planets are in an orbital resonance.[92]
TOI-561Sextans09h 52m 44.44s+06° 12′ 57.97″10.252279G9V0.785545554 (1)-
Kepler-445Cygnus19h 54m 57.0s+46° 29′ 55″182940.183157unknown3-
TOI-763Centaurus12h 57m 52.45s−39° 45′ 27.71″10.1563110.91754446.22 (1)-
TOI-1749Draco18h 50m 56.93s+64° 25′ 10.08″13.86325M0V0.583985unknown3
K2-229Virgo12h 27m 29.5848s−06° 43′ 18.7660″10.985335K2V0.83751855.43
Kepler-102Lyra18h 45m 55.9s+47° 12′ 29″11.492340K3V[93]0.8148091.415
HD 224018Aquarius23h 54m 33.36s−04° 43′ 24.01″9.715344G5V1.013578473 (1)
V1298 TauriTaurus04h 05m 19.5912s+20° 09′ 25.5635″10.31354K0-1.5[94]1.10149700.0234This star is a youngT Tauri variable.[95]
K2-302Aquarius22h 20m 22.7764s−09° 30′ 34.2934″11.98359.3unknown3297±73unknown3
K2-198Virgo13h 15m 22.5s−06° 27′ 54″11.03620.85213unknown3
TOI-125Hydrus01h 34m 22.73s−66° 40′ 32.95″11.023630.8595320unknown3 (2)
HIP 41378Cancer08h 26m 28.0s+10° 04′ 49″8.9378F81.156199unknown6Planet f has an unusually low density, and might have rings or an extended atmosphere.[96][97][98]
Kepler-446Lyra18h 49m 00.0s+44° 55′ 16″16.5391M4V0.223359unknown3-
HD 33142Lepus05h 07m 35.54s−13° 59′ 11.34″7.96394.31.525025+24
−16
unknown3Host star is a giant star with spectral type of K0III.[99]
WASP-132Lupus14h 30m 26.2s−46° 09′ 33″11.938403K4V0.78247147.23
TOI-451Eridanus04h 11m 51.93s−37° 56′ 23.03″10.944040.9555500.123
K2-148Cetus00h 58m 04.28s−00° 11′ 35.36″13.05407K7V0.654079±70unknown3A secondary red dwarf is gravitationally bound to K2-148.[100]
K2-165Virgo12h 19m 36.12s+00° 58′ 05.98″11.33439K0V0.8355185unknown3
Kepler-68Cygnus19h 24m 07.76s+49° 02′ 25.0″8.588440G1V1.07957936.33 (1)Planet d, the outermost confirmed planet, is a Jupiter-sized planet which orbits in the habitable zone.[101] Radial velocity measurements discovered an additional signal, which could be a fourth planet or a stellar companion.[102]
HD 28109Hydrus04h 20m 57.13s−68° 06′ 09.51″9.384571.266120±50unknown3
CoRoT-7Monoceros06h 43m 49.47s−01° 03′ 46.9″11.73489K0V0.9352751.53
XO-2Lynx07h 48m 07.4814s+50° 13′ 03.2578″11.18496±3K0V+K0Vunknownunknown6.34Binary with each star orbited by two planets.[103][104]
Kepler-411Cygnus19h 10m 25.3s+49° 31′ 24″12.5499.4K3V0.834974unknown4
K2-381Sagittarius19h 12m 06.46s−21° 00′ 27.51″13.01505K20.7544473±138unknown3
K2-285Pisces23h 17m 32.2s+01° 18′ 01″12.03508K2V0.834975unknown4
K2-32Ophiuchus16h 49m 42.2602s−19° 32′ 34.151″12.31510G9V0.85652757.94The planets are likely in a 1:2:5:7 orbital resonance.[105]
TOI-1117Pavo18h 14m 24.49s−66° 25′ 11.91″11.016547G5V0.9756354.423
TOI-1246Draco16h 44m 27.96s70° 25′ 46.70″11.65581.125217±50unknown4
Kepler-220Cygnus19h 26m 01.45s+46° 53′ 44.25″13.2558K3V0.6545918.324
K2-352Cancer09h 21m 46.8434s+18° 28′ 10.34710″11.12577G2V0.985791unknown3
Kepler-398Lyra19h 25m 52.5s+40° 20′ 38″578K5V0.724493unknown3
TOI-4010Cassiopeia01h 20m 51.56s+66° 04′ 19.92″12.29579K?V0.8849606.14
Kepler-186Cygnus19h 54m 36.6s+43° 57′ 18″15.29[106]579.23[107]M1V[108]0.4783788unknown5Planet f is the first Earth-size exoplanet discovered that orbits in the habitable zone.[109]
K2-37Scorpius16h 13m 48.2445s−24° 47′ 13.4279″12.52590G3V0.95413unknown3
K2-58Aquarius22h 15m 17.2364s−14° 02′ 59.3151″12.13596K2V0.895038unknown3
K2-138Aquarius23h 15m 47.77s−10° 50′ 58.91″12.21597±55K1V0.935378±602.36
Kepler-10Draco19h 02m 43.03s+50° 14′ 29.34″11.043607G2V0.91570810.63
Kepler-249Cygnus19h 47m 56.47s+43° 39′ 30.98″16.4621M2V0.436323.093-
K2-38Scorpius16h 00m 08.06s−23° 11′ 21.33″11.34630G3V1.035731±66unknown2 (1)Dust disk in system
WASP-47Aquarius22h 04m 49.0s−12° 01′ 08″11.9652G9V1.0845400unknown4One planet is a gas giant which orbits in the habitable zone.[110][111] WASP-47 is the only planetary system known to have both planets near thehot Jupiter and another planet much further out.[112]
K2-80Taurus03h 56m 09.00s+13° 33′ 32.50″12.7655G80.95441unknown3
K2-368Aquarius22h 10m 32.58s−11° 09′ 58.02″13.54674K30.7464663±138unknown3 (1)
HAT-P-13Ursa Major08h 39m 31.81s+47° 21′ 07.3″10.62698G41.22563852 (1)-
Kepler-19Cygnus19h 21m 41s+37° 51′ 06″15.178717G0.93655411.93System consists of a thick-envelope Super-Earth and two Neptune-mass planets.[113]
Kepler-296Lyra19h 06m 09.6s+49° 26′ 14.4″12.6737.113K7V + M1V[114]unknown4249unknown5All planets orbit around the primary star.[115] Planets e and f are potentially habitable.[115]
Kepler-454Lyra19h 09m 55.0s+38° 13′ 44″11.57753G1.02856875.253
Kepler-126Cygnus19h 17m 23.4s+44° 12′ 31″10.505774.3F7IV1.1863113.393-
Kepler-327Cygnus19h 30m 34.2s44° 05′ 16″15.7789M1V0.5739203.283-
Kepler-25Lyra19h 06m 33.0s+39° 29′ 16″11799F[116]1.226190unknown3Two planets were discovered by transit-timing variations,[117] and the third planet was discovered by follow-up radial velocity measurements.[118]
TOI-7510Telescopium18h 14m 54.77s−54° 26′ 02.60″11.989812G31.06357204.43
Kepler-1130Lyra19h 00m 49.78s+45° 23′ 03.60″12.5813K0V0.954031.583 (1)
Kepler-352Cygnus19h 59m 35.19s+46° 03′ 06.85″13.18240.8652793.473 (1)-
Kepler-114Cygnus19h 36m 29.0s+48° 20′ 58″13.7846K0.714450unknown3
Kepler-267Cygnus19h 59m 19.34s+47° 09′ 27.27″16.7864M1V0.5639733.313-
Kepler-381Lyra19h 00m 43.89s+43° 49′ 51.70″10.5872F51.4463372.573-
Kepler-54Cygnus19h 39m 06.0s+43° 03′ 23″16.3886M0.523705unknown3
Kepler-968Draco19h 02m 24.62s+50° 06′ 43.34″14.69470.68144132.143
Kepler-20Lyra19h 10m 47.524s42° 20′ 19.30″12.51950G8V0.91254668.85 (1)Planets e and f were the first Earth-sized planets to be discovered.[119]
K2-157Virgo12h 15m 00.36s−05° 46′ 55.26″12.82973G9V0.8953348.83
K2-19Virgo11h 39m 50.4804s+00° 36′ 12.8773″13.002976K0V[120] or G9V[121]0.9185250±7083-
PSR B1257+12Virgo13h 00m 03.58s+12° 40′ 56.5″24.31980pulsar1.444288560.7973The only known pulsar with a multiplanetary system, and the first exoplanets and multiplanetary system to be confirmed.[122][123] Star with dimmest apparent magnitude to have a multiplanetary system.
Kepler-62Lyra18h 52m 51.060s+45° 20′ 59.507″13.75[124]990K2V[124]0.69492575Planets e and f orbit in the habitable zone.[124][125]
Kepler-48Cygnus19h 56m 33.41s+40° 56′ 56.47″13.041000K0.885190unknown5
Kepler-100Lyra19h 25m 32.6s+41° 59′ 24″1011G1IV1.10958256.54
Kepler-49Cygnus19h 29m 11.0s+40° 35′ 30″15.51015K0.553974unknown4
Kepler-65Lyra19h 14m 45.3s+41° 09′ 04.2″11.0181019F6IV1.1996211unknown4-
Kepler-158Lyra18h 56m 07.77s+39° 46′ 53.53″14.71028K0.7547203.983-
Kepler-130Lyra19h 13m 48.2s+40° 14′ 43″11.571033G1V1.0260125.893-
Kepler-52Draco19h 06m 57.0s+49° 58′ 33″15.51049K0.584075unknown3
Kepler-32Cygnus19h 51m 22.2s+46° 34′ 27″16.41056M1V0.5739002.695Planet f is smaller than Earth.
K2-314Libra15h 13m 00.0s−16° 43′ 29″11.41059G8IV/V1.05543093
K2-219Pisces00h 51m 22.9s+08° 52′ 04″12.091071G21.025753±50unknown3
Kepler-197Cygnus19h 40m 54.3s+50° 33′ 32″11.81078F51.0161805.374
K2-268Cancer08h 54m 50.2862s+11° 50′ 53.7745″13.851079unknownunknownunknown5
K2-183Cancer08h 20m 01.7184s14° 01′ 10.0711″12.851083unknown5482±50unknown3
K2-187Cancer08h 50m 05.6682s23° 11′ 33.3712″12.8641090G?V0.9675438±63unknown4
K2-16Virgo11h 40m 23.33s+04° 33′ 26.75″14.71093K3V0.684742unknown3-
Kepler-1542Lyra19h 02m 54.8s+42° 39′ 16″1096G5V0.945564unknown4 (1)-
Kepler-26Lyra18h 59m 46s+46° 34′ 00″161100M0V0.654500unknown4Transiting exoplanets[126] which are low-density planets below the size ofNeptune.[127][128]
TOI-4504Carina07h 37m 52.15s−62° 04′ 41.80″13.361117K1V0.895315103The farthest multiplanetary system where exoplanets were not discovered by theKepler space telescope.
Kepler-167Cygnus19h 30m 38.0s+38° 20′ 43″1119 ± 60.764796unknown4Planet e is the first transiting Jupiter analog discovered.[129][130]
Kepler-332Lyra19h 06m 39.1s+47° 24′ 49″14.211230.850082.823-
Kepler-81Cygnus19h 34m 32.9s+42° 49′ 30″15.561136K?V0.6484391unknown3
Kepler-132Lyra18h 52m 56.6s+41° 20′ 35″1140F90.986003unknown4
Kepler-127Lyra19h 00m 45.6s+46° 01′ 41″11.751151G01.2562252.633-
Kepler-80Cygnus19h 44m 27.0s+39° 58′ 44″14.8041218M0V[131]0.734250unknown6Red dwarf star with six confirmed planets.[132][133] Five of them are in anorbital resonance.[134][133]
Kepler-159Cygnus19h 48m 16.8s+40° 52′ 08″1219K0.634625unknown2 (1)-
K2-299Aquarius22h 05m 06.5342s−14° 07′ 18.0135″13.121220unknown5724±72unknown3
Kepler-88Lyra19h 24m 35.5431s+40° 40′ 09.8098″13.51243G8IV1.0225513±672.453
Kepler-221Cygnus19h 46m 37.14s+46° 50′ 06.81″14.01256G50.8752964.574
Kepler-174Lyra19h 09m 45.4s+43° 49′ 56″1269Kunknown4880unknown3Planet d may orbit in the habitable zone.
Kepler-139Lyra18h 49m 34.07s+43° 53′ 21.90″12.7751275G8IV-V1.0556805.625
Kepler-83Lyra18h 48m 55.8s+43° 39′ 56″16.511306K7V0.6644164unknown3-
Kepler-104Lyra19h 10m 25.1s+42° 10′ 00″12.731307G0V1.0160323.723The system has a wide companion K-type star.
Kepler-271Lyra18h 52m 00.7s+44° 17′ 03″1319G7V0.95524unknown3 (2)-
Kepler-16919h 03m 60.0s+40° 55′ 10″12.1861326K2V0.864997unknown5
Kepler-129Draco19h 01m 14.68s+47° 50′ 54.52″11.81333G4V1.0755338.913
Kepler-451Cygnus19h 38m 32.61s46° 03′ 59.1″1340sdB
M
0.62956463Three circumbinary planets orbit around the Kepler-451 binary pair.[135]
Kepler-124Draco19h 07m 00.7s+49° 03′ 54″14.3313700.7351331.823-
Kepler-334Lyra19h 08m 33.8s+47° 06′ 55″12.81391G01.0759584.073-
Kepler-235Lyra19h 04m 18.98s+39° 16′ 41.65″16.61396M0V0.5440673.84
Kepler-304Cygnus19h 37m 46.0s+40° 33′ 27″1418K0.84731unknown4
Kepler-18Cygnus19h 52m 19.06s+44° 44′ 46.76″13.5491430G7V0.975345103
Kepler-106Cygnus20h 03m 27.4s+44° 20′ 15″12.8821449G1V158584.834
Kepler-92Lyra19h 16m 21.0s+41° 33′ 47″11.61463G1IV1.20958715.523
Kepler-196Lyra18h 59m 52.44s+42° 04′ 44.84″14.31472K30.8551633.983
Kepler-450Cygnus19h 41m 56.8s+51° 00′ 49″11.6841487F1.196152unknown3
Kepler-89Cygnus19h 49m 20.0s+41° 53′ 28″12.41580F8V1.2561163.94FarthestF-type main sequence star from the Sun with a multiplanetary system. One study found hints of additional planets orbiting Kepler-89.[136]
Kepler-215Cygnus19h 39m 53.65s+45° 12′ 49.27″13.71585G30.9456791.624
Kepler-431Lyra18h 44m 26.9s+43° 13′ 40″12.11587F6IV1.1560874.273
Kepler-326Cygnus19h 37m 18.1s+46° 00′ 08″13.81591K1V0.8551484.683-
Kepler-1530Cygnus19h 12m 38.99s+48° 09′ 54.55″14.21598G70.9254774.273
Kepler-1388Lyra18h 53m 20.6s+47° 10′ 28″16040.634098unknown4 (1)-
Kepler-198Lyra19h 22m 41.55s+38° 41′ 27.62″13.71616F90.9756363.723-
Kepler-324Draco19h 05m 53.15s+49° 38′ 56.74″14.216360.8752555.374-
K2-282Pisces00h 53m 43.6833s07° 59′ 43.1397″14.041638G?V0.945499±109unknown3
Kepler-319Lyra19h 15m 14.87s+39° 46′ 14.32″13.91642G4V0.9656133.553-
Kepler-298Draco18h 52m 09.56s+48° 49′ 31.19″15.616900.6946122.43-
Kepler-107Cygnus19h 48m 06.8s+48° 12′ 31″12.71714G2V[137]1.23858514.294-
Kepler-176Cygnus19h 38m 40.3s+43° 51′ 12″1746[138]unknown5232unknown4
Kepler-1669Cygnus19h 49m 43.29s+39° 50′ 52.37″16.51772M0Vunknownunknownunknown3-
Kepler-142Cygnus19h 40m 28.5s+48° 28′ 53″13.317901.0658725.53-
Kepler-338Lyra18h 51m 54.9s+40° 47′ 04″12.21803G01.259994.794
Kepler-354Lyra19h 03m 00.4s+41° 20′ 08″15.81807K50.7346345.253-
Kepler-1047Cygnus19h 14m 35.1s+50° 47′ 20″1846G2V1.085754unknown3-
Kepler-149Lyra19h 03m 24.9s+38° 23′ 03″14.11862K0V0.9253776.313-
Kepler-55Lyra19h 00m 40.0s+44° 01′ 35″16.31888K0.624362unknown5Planet c may orbit in the inner habitable zone.
Kepler-331Lyra19h 27m 20.2s+39° 18′ 26″16.218920.7446313.243-
Kepler-206Lyra19h 26m 32.3s+41° 50′ 02″13.51939G31.0558535.253-
Kepler-191Cygnus19h 24m 44.0s+45° 19′ 23″15.01939G90.8452154.93
Kepler-336Lyra19h 20m 57.0s+41° 19′ 53″13.71939G31.0959114.93-
Kepler-1987Cygnus19h 43m 18.11s+42° 56′ 36.14″15.519430.734601unknown4
Kepler-310Cygnus19h 15m 21.43s+46° 59′ 12.29″14.319640.9155514.473-
Kepler-166Cygnus19h 32m 38.4s+48° 52′ 52″1968G0.885413unknown3-
Kepler-184Lyra19h 27m 48.5s+43° 04′ 29″14.419910.9756994.473-
Kepler-339Cygnus19h 33m 24.41s+48° 26′ 40.53″14.72011G70.9355714.373-
Kepler-402Lyra19h 13m 28.9s+43° 21′ 17″13.32040F21.1561993.314 (1)-
Kepler-549Lyra18h 52m 05.48s+47° 15′ 40.12″14.820720.8853604.573-
Kepler-192Lyra19h 11m 40.3s+45° 35′ 34″14.22125G70.9454876.763
Kepler-218Cygnus19h 41m 39.1s+46° 15′ 59″14.12141G8IV1.0155425.623
Kepler-11Cygnus19h 48m 27.62s+41° 54′ 32.9″13.692150±20G6V[139]0.95456817.8346Farthest star from the Sun with exactly six exoplanets. First system discovered with six transiting planets.[139] The planets have low densities.[140]
Kepler-247Lyra19h 14m 34.2s+43° 02′ 21″15.4621650.8451304.273
Kepler-1254Draco19h 34m 59.3s+45° 06′ 26″22050.784985unknown3-
Kepler-357Cygnus19h 24m 58.3s+44° 00′ 31″15.722460.7750294.473-
Kepler-416Lyra19h 26m 13.67s+39° 13′ 38.25″14.222531.0157584.93 (1)-
Kepler-297Draco18h 52m 50.20s+48° 46′ 39.42″14.322570.9858013.473-
Kepler-290Lyra19h 05m 38.41s+42° 40′ 53.45″15.822660.7949584.473-
Kepler-289Cygnus19h 49m 51.7s+42° 52′ 58″12.92283G0V1.0859900.653 (1)-
Kepler-203Cygnus19h 01m 23.3s+41° 45′ 43″14.12294G1157945.53-
Kepler-178Lyra19h 08m 24.3s+46° 53′ 47″14.823350.9455354.683-
Kepler-301Draco18h 55m 55.90s+49° 13′ 58.62″14.52346F90.9857174.173-
Kepler-222Lyra19h 11m 37.46s+46° 56′ 15.89″15.424750.8852954.793-
Kepler-250Cygnus19h 18m 22.74s+44° 08′ 30.52″15.824810.8350975.133-
Kepler-363Lyra18h 52m 46.1s+41° 18′ 19″13.472487G5V1.156815.253-
Kepler-85Cygnus19h 23m 54.0s+45° 17′ 25″15.02495G0.925666unknown4
Kepler-1321Cygnus19h 38m 06.86s+46° 38′ 27.15″17.52509M1V0.5440944.173
Kepler-157Lyra19h 24m 23.3s+38° 52′ 32″2523G2V1.025774unknown3
Kepler-208Cygnus19h 35m 33.65s+42° 31′ 40.59″13.682529G01.1659514.374
Kepler-306Lyra19h 14m 09.29s+40° 36′ 57.80″15.625300.8150112.634
Kepler-311Lyra18h 48m 14.71s+47° 05′ 07.79″13.92540G0.5V1.0860094.173-
Kepler-257Cygnus19h 49m 15.84s+46° 01′ 23.75″15.725450.8552094.793-
Kepler-342Cygnus19h 24m 23.3s+38° 52′ 32″2549F1.136175unknown4
Kepler-224Cygnus19h 23m 44.22s+47° 21′ 27.15″15.925510.7850932.294
Kepler-219Cygnus19h 14m 57.35s+46° 45′ 45.33″13.82567G2V1.1659104.573-
Kepler-148Cygnus19h 19m 08.7s+46° 51′ 32″2580K?V0.835019.0±122.0unknown3
Kepler-529Draco19h 03m 33.22s+47° 52′ 49.31″13.826061.0760873.983-
Kepler-51Cygnus19h 45m 55.0s+49° 56′ 16″15.02610G?V15803unknown4Super-puff planets with some of the lowest densities known.[141]
Kepler-1073Cygnus19h 36m 36.65s+38° 13′ 59.12″14.72642G3V157923.723 (1)
Kepler-325Cygnus19h 19m 20.5s+49° 49′ 32″15.22685G50.9155354.173-
Kepler-229Draco19h 07m 59.87s+48° 22′ 32.83″16.226950.850144.93-
Kepler-172Lyra19h 47m 05.3s+41° 45′ 20″14.72703G8155996.464-
Kepler-253Cygnus19h 27m 22.06s+44° 51′ 29.25″15.827350.8552164.573-
Kepler-403Cygnus19h 19m 41.1s+46° 44′ 40″2741F9IV-V1.256090unknown3 (1)-
Kepler-9Lyra19h 02m 17.76s+38° 24′ 03.2″13.912754G2V0.99857223.0083First multiplanetary system to be discovered by theKepler Space Telescope.[142][143]
Kepler-23Cygnus19h 36m 52.0s+49° 28′ 45″142790G5V1.115760unknown3-
Kepler-46Cygnus19h 17m 05.0s+42° 36′ 15″15.32795K?V0.90251559.93-
Kepler-245Cygnus19h 26m 33.4s+42° 26′ 11″15.528100.8651743.634
Kepler-171Cygnus19h 47m 05.3s+41° 45′ 20″15.128181.0759493.473-
Kepler-1311Cygnus19h 18m 36.30s+43° 49′ 28.00″13.52826G0IV-V1.0557487.593
Kepler-305Cygnus19h 56m 53.83s+40° 20′ 35.46″15.8122833K0.854918unknown4
Kepler-90Draco18h 57m 44.0s+49° 18′ 19″14.02840 ± 40F9 IV/V1.13593028All eight exoplanets are larger than Earth and are within 1.1 AU of the parent star. Only star apart from the Sun with at least eight planets.[144] AHill stability test shows that the system is stable.[145] Planet h orbits in the habitable zone.
Kepler-487Cygnus19h 41m 08.94s+41° 13′ 19.21″14.928450.9154445.623 (1)-
Kepler-207Lyra19h 20m 07.32s+42° 09′ 57.80″13.22856G31.259894.173-
Kepler-272Cygnus19h 56m 30.61s+47° 35′ 37.79″14.82902G60.9756054.93-
Kepler-164Lyra19h 11m 07.4s+47° 37′ 48″14.429051.0960483.474-
Kepler-150Lyra19h 12m 56.2s+40° 31′ 15″15.22906G?V0.9455604.5575Planet f orbits in the habitable zone.
Kepler-619Cygnus19h 23m 23.78s+48° 24′ 57.52″14.82938G31.0959803.473-
Kepler-399Cygnus19h 58m 00.4s+40° 40′ 15″14.729480.9456823.983-
Kepler-82Cygnus19h 31m 29.61s+42° 57′ 58.09″15.1582949G?V0.915512unknown5
Kepler-154Cygnus19h 19m 07.3s+49° 53′ 48″2985G3V0.985690unknown5
Kepler-251Cygnus19h 46m 15.89s+44° 06′ 20.91″15.330160.9556223.634
Kepler-770Lyra19h 05m 57.71s+38° 22′ 29.54″14.930350.9455984.573-
Kepler-56Cygnus19h 35m 02.0s+41° 52′ 19″133060K?III1.3248403.53
Kepler-616Cygnus19h 39m 57.39s+46° 50′ 17.90″15.030850.9857533.893 (1)-
Kepler-350Lyra19h 01m 41.0s+39° 42′ 22″13.83121F1.036215unknown3
Kepler-603Cygnus19h 37m 07.4s+42° 17′ 27″3134G2V1.015808unknown3-
Kepler-763Cygnus19h 28m 34.69s+47° 09′ 26.50″16.031390.8451664.793 (1)-
Kepler-160Lyra19h 11m 05.65s+42° 52′ 09.5″13.1013140G2Vunknown5470unknown3 (1)The unconfirmed planet Kepler-160e (or KOI-456.04) is a potentially habitable planet.[146]
Kepler-401Cygnus19h 20m 19.9s+50° 51′ 49″3149F8V1.176117unknown3
Kepler-58Cygnus19h 45m 26.0s+39° 06′ 55″15.33161G1V1.045843unknown4
Kepler-226Cygnus19h 29m 30.26s+47° 52′ 51.45″15.531970.8954274.373-
Kepler-79Cygnus20h 02m 04.11s+44° 22′ 53.69″13.9143329F1.176187unknown4
Kepler-60Cygnus19h 15m 50.70s+42° 15′ 54.04″13.9593343G1.045915unknown3 (1)-
Kepler-256Cygnus19h 30m 19.30s+46° 05′ 50.49″15.233480.9756079.554
Kepler-12219h 24m 26.9s+39° 56′ 57″3351F1.086050unknown5
Kepler-244Lyra19h 08m 58.23s+42° 18′ 05.11″15.733810.8252734.793-
Kepler-279Lyra19h 09m 34.0s+42° 11′ 42″13.73383F1.16562unknown3 (1)
Kepler-341Lyra19h 19m 26.77s+43° 28′ 21.87″14.73415G3157554.684
Kepler-299Draco18h 52m 49.68s+48° 34′ 49.88″15.234320.9556506.034
Kepler-255Cygnus19h 44m 15.4s+45° 58′ 37″3433G6V0.95573unknown3
Kepler-47Cygnus19h 41m 11.5s+46° 55′ 13.69″15.1783442G
M
1.0435636(A)
(B is unknown)
4.53Circumbinary planets, with one of the planets orbiting in the habitable zone.[147][148][149]
Kepler-29219h 43m 03.84s+43° 25′ 27.4″13.973446K0V0.855299unknown5
Kepler-394Cygnus19h 45m 12.48s+50° 40′ 20.32″14.93453G21.1361223.243-
Kepler-457Lyra18h 49m 30.61s+44° 41′ 40.45″14.434971.046474unknown3
Kepler-27Cygnus19h 28m 56.82s+41° 05′ 9.15″15.8553500G5V0.655400unknown3 (2)
Kepler-351Lyra19h 05m 48.6s+42° 39′ 28″3535G?V0.895643unknown3
Kepler-194Cygnus19h 27m 53.1s+47° 51′ 51″15.03581G31.0959653.553-
Kepler-217Cygnus19h 32m 09.1s+46° 16′ 39″13.23603F3V1.3763412.633
Kepler-276Cygnus19h 34m 16s+39° 02′ 11″15.3683734G?V1.15812unknown3
Kepler-288Lyra19h 15m 39.94s+39° 35′ 41.11″15.33895G1V1.0358373.723-
Kepler-24Lyra19h 21m 39.18s+38° 20′ 37.51″14.9253910G1V1.035800unknown4-
Kepler-286Cygnus19h 22m 42.28s+48° 17′ 39.25″15.940010.9657422.754
Kepler-87Cygnus19h 51m 40.0s+46° 57′ 54″154021G4IV1.156007.52 (2)
Kepler-33Lyra19h 16m 18.61s+46° 00′ 18.8″13.9884090G1IV1.16458494.275
Kepler-374Cygnus19h 36m 33.1s+42° 22′ 14″14.74128G31.0458983.893 (2)-
Kepler-265Lyra19h 22m 02.51s+41° 14′ 41.07″15.54176G30.9858835.254
Kepler-347Cygnus19h 16m 47.90s+49° 18′ 20.31″14.642361.0558923.893-
Kepler-282Lyra18h 58m 43.0s+44° 47′ 51″15.24363G?V0.975876unknown4
Kepler-758Cygnus19h 32m 20.3s+41° 08′ 08″44131.166228unknown4
Kepler-53Lyra19h 21m 51.0s+40° 33′ 45″164455G?V0.985858unknown3
Kepler-254Lyra19h 12m 39.52s+45° 48′ 59.13″16.045320.9356113.983-
Kepler-30Lyra19h 01m 08.07s+38° 56′ 50.21″15.4034560G6V0.995498unknown3
Kepler-84Cygnus19h 53m 00.49s+40° 29′ 45.87″14.7644700G3IV15755unknown5
Kepler-359Cygnus19h 33m 10.5s+42° 11′ 47″15.847071.1460903.023-
Kepler-372Cygnus19h 25m 01.5s+49° 15′ 32″14.948731.1261463.093-
Kepler-385Cygnus19h 37m 21.23s+50° 20′ 11.55″15.764900F8V0.995835unknown3 (4)
Kepler-228Cygnus19h 45m 08.66s+48° 13′ 28.68″15.953640.9556304.073-
Kepler-31Cygnus19h 36m 06.0s+45° 51′ 11″15.55429F1.216340unknown3 (1)The three planets are in an orbital resonance.[150]
Kepler-295Lyra19h 01m 23.00s+45° 22′ 03.99″14.655420.8954114.793-
Kepler-281Cygnus19h 36m 25.96s+44° 46′ 14.35″15.956930.9556234.683-
Kepler-238Lyra19h 11m 35s+40° 38′ 16″15.0845867G5IV1.065614unknown5-
Kepler-223Cygnus19h 53m 16.41s+47° 16′ 46.14″15.660660.9857464.274-
Kepler-1468Cygnus19h 34m 04.76s+41° 16′ 38.52″15.161941.0458933.553-
Kepler-275Cygnus19h 29m 55.13s+38° 30′ 53.65″15.366351.1661933.313 (1)Likely the farthest known system from the Sun with a multiplanetary system.

Stars orbited by both planets and brown dwarfs

[edit]

These are stars orbited by objects on both sides of the ~13Jupiter mass dividing line.

See also

[edit]

For links to specific lists of exoplanets see:

Online archives:


Notes

[edit]

References

[edit]
  1. ^Schneider, Jean (6 December 2016)."Interactive Extra-solar Planets Catalog".Extrasolar Planets Encyclopaedia.Archived from the original on 2016-12-09. Retrieved2016-12-06.
  2. ^Artigau, Étienne; Cadieux, Charles; Cook, Neil J.; Doyon, René; Vandal, Thomas; et al. (June 23, 2022)."Line-by-line velocity measurements, an outlier-resistant method for precision velocimetry".The Astronomical Journal. 164:84 (3) (published August 8, 2022): 18pp.arXiv:2207.13524.Bibcode:2022AJ....164...84A.doi:10.3847/1538-3881/ac7ce6.
  3. ^abBasant, Ritvik; Luque, Rafael; et al. (March 2025)."Four Sub-Earth Planets Orbiting Barnard's Star from MAROON-X and ESPRESSO".The Astrophysical Journal Letters.982 (1): L1.arXiv:2503.08095.Bibcode:2025ApJ...982L...1B.doi:10.3847/2041-8213/adb8d5.
  4. ^Beaulieu, Jean-Philippe; Bennett, D. P.; Batista, Virginie; Fukui, A. (January 2016)."Revisiting the microlensing event OGLE 2012-BLG-0026: A solar mass star with two cold giant planets".researchgate.net.
  5. ^Brewer, John M.; Wang, Songhu; Fischer, Debra A.; Foreman-Mackey, Daniel (2018-10-24)."Compact multi-planet systems are more common around metal poor hosts".The Astrophysical Journal.867 (1). L3.arXiv:1810.10009.Bibcode:2018ApJ...867L...3B.doi:10.3847/2041-8213/aae710.S2CID 67832557.
  6. ^Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR online data catalog: General catalogue of variable stars (Samus+ 2007–2013)".VizieR On-line Data Catalog: B/GCVS. Originally Published in: 2009yCat....102025S.1.Bibcode:2009yCat....102025S.
  7. ^Bessell, M. S. (1991)."The late-M dwarfs".The Astronomical Journal.101: 662.Bibcode:1991AJ....101..662B.doi:10.1086/115714.
  8. ^Mascareño, A. Suárez; Faria, J. P.; Figueira, P.; Lovis, C.; Damasso, M.; Hernández, J. I. González; Rebolo, R.; Cristiani, S.; Pepe, F.; Santos, N. C.; Osorio, M. R. Zapatero; Adibekyan, V.; Hojjatpanah, S.; Sozzetti, A.; Murgas, F.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allart, R.; Prieto, C. Allende; Alves, D.; Amate, M.; Avila, G.; Baldini, V.; Bandi, T.; Barros, S. C. C.; Bianco, A.; Benz, W.; Bouchy, F.; Broeng, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; D’Odorico, V.; Deiries, S.; Delabre, B.; Marcantonio, P. Di; Dumusque, X.; Ehrenreich, D.; Fragoso, A.; Genolet, L.; Genoni, M.; Santos, R. Génova; Hughes, I.; Iwert, O.; Kerber, F.; Knusdstrup, J.; Landoni, M.; Lavie, B.; Lillo-Box, J.; Lizon, J.; Curto, G. Lo; Maire, C.; Manescau, A.; Martins, C. J. a. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Molaro, P.; Monteiro, M. A.; Monteiro, M. J. P. F. G.; Moschetti, M.; Mueller, E.; Nunes, N. J.; Oggioni, L.; Oliveira, A.; Pallé, E.; Pariani, G.; Pasquini, L.; Poretti, E.; Rasilla, J. L.; Redaelli, E.; Riva, M.; Tschudi, S. Santana; Santin, P.; Santos, P.; Segovia, A.; Sosnowska, D.; Sousa, S.; Spanò, P.; Tenegi, F.; Udry, S.; Zanutta, A.; Zerbi, F. (1 July 2020)."Revisiting Proxima with ESPRESSO".Astronomy & Astrophysics.639: A77.arXiv:2005.12114.Bibcode:2020A&A...639A..77S.doi:10.1051/0004-6361/202037745.ISSN 0004-6361.S2CID 218869742.Archived from the original on 27 June 2022. Retrieved9 May 2022.
  9. ^Del Genio, Anthony D.; Way, Michael J.; Amundsen, David S.; Aleinov, Igor; Kelley, Maxwell; Kiang, Nancy Y.; Clune, Thomas L. (January 2019)."Habitable Climate Scenarios for Proxima Centauri b with a Dynamic Ocean".Astrobiology.19 (1):99–125.arXiv:1709.02051.Bibcode:2019AsBio..19...99D.doi:10.1089/ast.2017.1760.ISSN 1531-1074.PMID 30183335.S2CID 52165056.
  10. ^Gizis, John E. (February 1997). "M-Subdwarfs: Spectroscopic Classification and the Metallicity Scale".The Astronomical Journal.113 (2):806–822.arXiv:astro-ph/9611222.Bibcode:1997AJ....113..806G.doi:10.1086/118302.S2CID 16863021.
  11. ^Oja, T. (August 1985), "Photoelectric photometry of stars near the north Galactic pole. II",Astronomy and Astrophysics Supplement Series,61:331–339,Bibcode:1985A&AS...61..331O
  12. ^Dickinson, David (2015-12-23)."14 Red Dwarf Stars to View with Backyard Telescopes". Universe Today.Archived from the original on 2021-02-11. Retrieved2016-12-04.
  13. ^Croswell, Ken (July 2002)."The Brightest Red Dwarf".KenCroswell.com.Archived from the original on 2018-10-20. Retrieved2016-12-04.
  14. ^Jeffers, S. V.; Dreizler, S.; Barnes, J. R.; Haswell, C. A.; Nelson, R. P.; Rodríguez, E.; López-González, M. J.; Morales, N.; Luque, R.; et al. (2020), "A multiple planet system of super-Earths orbiting the brightest red dwarf star GJ887",Science,368 (6498):1477–1481,arXiv:2006.16372,Bibcode:2020Sci...368.1477J,doi:10.1126/science.aaz0795,PMID 32587019,S2CID 220075207
  15. ^Hartogh, C.; Jeffers, S. V.; et al. (January 2026)."RedDots: Multiplanet system around M dwarf GJ 887 in the solar neighborhood".Astronomy & Astrophysics. forthcoming.arXiv:2602.08929.doi:10.1051/0004-6361/202554984.
  16. ^Pozuelos, Francisco J.; Suárez, Juan C.; de Elía, Gonzalo C.; Berdiñas, Zaira M.; Bonfanti, Andrea; Dugaro, Agustín; et al. (2020). "GJ 273: On the formation, dynamical evolution, and habitability of a planetary system hosted by an M dwarf at 3.75 parsec".Astronomy & Astrophysics.641: A23.arXiv:2006.09403.Bibcode:2020A&A...641A..23P.doi:10.1051/0004-6361/202038047.S2CID 219721292.GJ 273 is a planetary system orbiting an M dwarf only 3.75 pc away, composed of two confirmed planets, GJ 273b and GJ 273c, and two promising candidates, GJ 273d and GJ 273e ... the system remained stable only for values of inclinations ranging from 90◦ to ~72◦
  17. ^abAstudillo-Defru, Nicola; Forveille, Thierry; Bonfils, Xavier; Ségransan, Damien; Bouchy, François; Delfosse, Xavier; et al. (2017)."The HARPS search for southern extra-solar planets. XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293".Astronomy and Astrophysics.602. A88.arXiv:1703.05386.Bibcode:2017A&A...602A..88A.doi:10.1051/0004-6361/201630153.S2CID 119418595.Archived from the original on 2022-09-28. Retrieved2022-02-25.
  18. ^Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007-2013)".VizieR On-line Data Catalog: B/GCVS. Originally Published in: 2009yCat....102025S.1.Bibcode:2009yCat....102025S.
  19. ^Dreizler, S.; Jeffers, S. V.; Rodríguez, E.; Zechmeister, M.; Barnes, J.R.; Haswell, C.A.; Coleman, G. A. L.; Lalitha, S.; Hidalgo Soto, D.; Strachan, J.B.P.; Hambsch, F-J.; López-González, M. J.; Morales, N.; Rodríguez López, C.; Berdiñas, Z. M.; Ribas, I.; Pallé, E.; Reiners, Ansgar; Anglada-Escudé, G. (2019-08-13)."Red Dots: A temperate 1.5 Earth-mass planet in a compact multi-terrestrial planet system around GJ1061".Monthly Notices of the Royal Astronomical Society.493 (1):536–550.arXiv:1908.04717.doi:10.1093/mnras/staa248.S2CID 199551874.
  20. ^Caballero, J. A.; Reiners, Ansgar; Ribas, I.; Dreizler, S.; Zechmeister, M.; et al. (12 June 2019)."The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden's Star".Astronomy & Astrophysics.627: A49.arXiv:1906.07196.Bibcode:2019A&A...627A..49Z.doi:10.1051/0004-6361/201935460.ISSN 0004-6361.S2CID 189999121.
  21. ^Davison, Cassy L.; White, Russel J.; Henry, Todd J.; Riedel, Adric R.; Jao, Wei-Chun; Bailey III, John I.; Quinn, Samuel N.; Justin R., Cantrell; John P., Subasavage; Jen G., Winters (2015). "A 3D Search for Companions to 12 Nearby M-Dwarfs".The Astronomical Journal.149 (3): 106.arXiv:1501.05012.Bibcode:2015AJ....149..106D.doi:10.1088/0004-6256/149/3/106.S2CID 9719725.
  22. ^Stuart Gary (17 December 2015)."Potentially habitable super-Earth discovered orbiting star 14 light years from Earth". ABC News (Australia).Archived from the original on 2017-06-09. Retrieved2022-05-10.
  23. ^Kane, Stephen R.; et al. (February 2017), "Characterization of the Wolf 1061 Planetary System",The Astrophysical Journal,835 (2): 9,arXiv:1612.09324,Bibcode:2017ApJ...835..200K,doi:10.3847/1538-4357/835/2/200,S2CID 30738573, 200.
  24. ^Jones, Barrie W.; et al. (2005)."Prospects for Habitable "Earths" in Known Exoplanetary Systems".The Astrophysical Journal.622 (2):1091–1101.arXiv:astro-ph/0503178.Bibcode:2005ApJ...622.1091J.doi:10.1086/428108.
  25. ^Wyatt, M. C.; et al. (2012)."Herschel imaging of 61 Vir: implications for the prevalence of debris in low-mass planetary systems".Monthly Notices of the Royal Astronomical Society.424 (2): 1206.arXiv:1206.2370.Bibcode:2012MNRAS.424.1206W.doi:10.1111/j.1365-2966.2012.21298.x.S2CID 54056835.
  26. ^Kennedy, G. M.; Matra, L.; Marmier, M.; Greaves, J. S.; Wyatt, M. C.; Bryden, G.; Holland, W.; Lovis, C.; Matthews, B. C.; Pepe, F.; Sibthorpe, B.; Udry, S. (2015)."Kuiper belt structure around nearby super-Earth host stars".Monthly Notices of the Royal Astronomical Society.449 (3): 3121.arXiv:1503.02073.Bibcode:2015MNRAS.449.3121K.doi:10.1093/mnras/stv511.S2CID 53638901.
  27. ^"Reanalysis of data suggests 'habitable' planet GJ 581d really could exist".Astronomy Now. 9 March 2015.Archived from the original on 20 May 2015. Retrieved27 May 2015.
  28. ^Anglada-Escudé, Guillem; Arriagada, Pamela; Vogt, Steven S.; Rivera, Eugenio J.; Butler, R. Paul; Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian B.; Minniti, Dante; Haghighipour, Nader; Carter, Brad D.; Tinney, C. G.; Wittenmyer, Robert A.; Bailey, Jeremy A.; O'Toole, Simon J.; Jones, Hugh R. A.; Jenkins, James S. (2012). "A Planetary System around the nearby M Dwarf GJ 667C with At Least One Super-Earth in Its Habitable Zone".The Astrophysical Journal Letters.751 (1). L16.arXiv:1202.0446.Bibcode:2012ApJ...751L..16A.doi:10.1088/2041-8205/751/1/L16.S2CID 16531923.
  29. ^Anglada-Escudé, Guillem; et al. (2013-06-07)."A dynamically-packed planetary system around GJ 667C with three super-Earths in its habitable zone"(PDF).Astronomy & Astrophysics.556: A126.arXiv:1306.6074.Bibcode:2013A&A...556A.126A.doi:10.1051/0004-6361/201321331.S2CID 14559800. Archived fromthe original(PDF) on 2013-06-30. Retrieved2013-06-25.
  30. ^Makarov, Valeri V.; Berghea, Ciprian (2013). "Dynamical Evolution and Spin-Orbit Resonances of Potentially Habitable Exoplanets. The Case of Gj 667C".The Astrophysical Journal.780 (2): 124.arXiv:1311.4831.doi:10.1088/0004-637X/780/2/124.S2CID 118700510.
  31. ^Vogt, Steven S.; et al. (November 2015). "Six Planets Orbiting HD 219134".The Astrophysical Journal.814 (1): 12.arXiv:1509.07912.Bibcode:2015ApJ...814...12V.doi:10.1088/0004-637X/814/1/12.S2CID 45438051.
  32. ^Dietrich, Jeremy; Apai, Dániel; Malhotra, Renu (2022)."An Integrative Analysis of the HD 219134 Planetary System and the Inner solar system: Extending DYNAMITE with Enhanced Orbital Dynamical Stability Criteria".The Astronomical Journal.163 (2): 88.arXiv:2112.05337.Bibcode:2022AJ....163...88D.doi:10.3847/1538-3881/ac4166.S2CID 245117944.
  33. ^Kennedy, G. M.; et al. (June 2018)."Kuiper belt analogues in nearby M-type planet-host systems".Monthly Notices of the Royal Astronomical Society.476 (4):4584–4591.arXiv:1803.02832.Bibcode:2018MNRAS.476.4584K.doi:10.1093/mnras/sty492.
  34. ^Falconer, Rebecca,Newly uncovered super-Earth 31 light-years away may be habitableArchived 2019-12-18 at theWayback Machine, Axios, August 1, 2019
  35. ^Reddy, Francis; Center, NASA’s Goddard Space Flight (2019-07-31)."TESS Discovers Habitable Zone Planet in GJ 357 System".SciTechDaily.Archived from the original on 2019-08-01. Retrieved2019-08-01.
  36. ^"Potentially habitable 'super-Earth' discovered just 31 light-years away".NBC News. 31 July 2019.Archived from the original on 2019-07-31. Retrieved2019-08-01.
  37. ^Garner, Rob (2019-07-30)."NASA's TESS Helps Find Intriguing New World".NASA.Archived from the original on 2019-08-01. Retrieved2019-08-01.
  38. ^Demangeon, Oliver D. S.; Zapatero Osorio, M. R.; Alibert, Y.; Barros, S. C. C.; Adibekyan, V.; Tabernero, H. M.; et al. (July 2021)."A warm terrestrial planet with half the mass of Venus transiting a nearby star"(PDF).Astronomy & Astrophysics.653: 38.arXiv:2108.03323.Bibcode:2021A&A...653A..41D.doi:10.1051/0004-6361/202140728.S2CID 236957385.Archived(PDF) from the original on 2021-11-13. Retrieved2022-03-03.
  39. ^Moutou, C.; Petit, P.; Charpentier, P.; Cristofari, P.; Baruteau, C.; Thébault, P.; Arnold, L.; Artigau, E.; Carmona, A. (2025-10-13). "Characterizing planetary systems with SPIRou: questions about the magnetic cycle of 55 Cnc A and two new planets around B".arXiv:2510.11523 [astro-ph.EP].
  40. ^Schweitzer, A.; et al. (May 2019). "The CARMENES search for exoplanets around M dwarfs. Different roads to radii and masses of the target stars".Astronomy & Astrophysics.625: 16.arXiv:1904.03231.Bibcode:2019A&A...625A..68S.doi:10.1051/0004-6361/201834965.S2CID 102351979. A68.
  41. ^Stephenson, C. B. (July 1986), "Dwarf K and M stars of high proper motion found in a hemispheric survey",The Astronomical Journal,92:139–165,Bibcode:1986AJ.....92..139S,doi:10.1086/114146.
  42. ^Sutherland, Paul (March 5, 2014)."Habitable planets common around red dwarf stars".Sen. Sen Corporation Ltd.Archived from the original on November 12, 2020. RetrievedJuly 28, 2022.
  43. ^Tuomi, Mikko; et al. (2014), "Bayesian search for low-mass planets around nearby M dwarfs – estimates for occurrence rate based on global detectability statistics",Monthly Notices of the Royal Astronomical Society,441 (2):1545–1569,arXiv:1403.0430,Bibcode:2014MNRAS.441.1545T,doi:10.1093/mnras/stu358,S2CID 32965505.
  44. ^Lovis, Christophe; et al. (2006)."An extrasolar planetary system with three Neptune-mass planets"(PDF).Nature.441 (7091):305–309.arXiv:astro-ph/0703024.Bibcode:2006Natur.441..305L.doi:10.1038/nature04828.PMID 16710412.S2CID 4343578. Archived fromthe original(PDF) on 2016-03-03. Retrieved2022-02-24.
  45. ^Díaz, R. F.; et al. (2016)."The HARPS search for southern extra-solar planets. XXXVIII. Bayesian re-analysis of three systems. New super-Earths, unconfirmed signals, and magnetic cycles".Astronomy and Astrophysics.585. A134.arXiv:1510.06446.Bibcode:2016A&A...585A.134D.doi:10.1051/0004-6361/201526729.S2CID 118531921.Archived from the original on 2021-02-24. Retrieved2022-02-24.
  46. ^Tuomi, Mikko; Anglada-Escudé, Guillem; Gerlach, Enrico; Jones, Hugh R. A.; Reiners, Ansgar; Rivera, Eugenio J.; Vogt, Steven S.; Butler, R. Paul (17 December 2012). "Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307".Astronomy & Astrophysics.549: A48.arXiv:1211.1617.Bibcode:2013A&A...549A..48T.doi:10.1051/0004-6361/201220268.S2CID 7424216.
  47. ^R. P. Butler; Marcy, Geoffrey W. (1996)."A Planet Orbiting 47 Ursae Majoris".Astrophysical Journal Letters.464 (2):L153–L156.Bibcode:1996ApJ...464L.153B.doi:10.1086/310102.
  48. ^P. C. Gregory; D. A. Fischer (2010)."A Bayesian periodogram finds evidence for three planets in 47 Ursae Majoris".Monthly Notices of the Royal Astronomical Society.403 (2):731–747.arXiv:1003.5549.Bibcode:2010MNRAS.403..731G.doi:10.1111/j.1365-2966.2009.16233.x.S2CID 16722873.
  49. ^Takeda, Genya; et al. (2007). "Structure and Evolution of Nearby Stars with Planets. II. Physical Properties of ~1000 Cool Stars from the SPOCS Catalog".The Astrophysical Journal Supplement Series.168 (2):297–318.arXiv:astro-ph/0607235.Bibcode:2007ApJS..168..297T.doi:10.1086/509763.S2CID 18775378.
  50. ^Sousa, S. G.; et al. (August 2008). "Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes".Astronomy and Astrophysics.487 (1):373–381.arXiv:0805.4826.Bibcode:2008A&A...487..373S.doi:10.1051/0004-6361:200809698.S2CID 18173201.
  51. ^Lovis, C.; et al. (2011). "The HARPS search for southern extra-solar planets. XXXI. Magnetic activity cycles in solar-type stars: statistics and impact on precise radial velocities".arXiv:1107.5325 [astro-ph.SR].
  52. ^Méndez, Abel (August 29, 2012)."A Hot Potential Habitable Exoplanet around Gliese 163".University of Puerto Rico at Arecibo (Planetary Habitability Laboratory). Archived fromthe original on October 21, 2019. RetrievedSeptember 20, 2012.
  53. ^Redd, Nola Taylor (September 20, 2012)."Newfound Alien Planet a Top Contender to Host Life".Space.com.Archived from the original on December 26, 2019. RetrievedSeptember 20, 2012.
  54. ^"Simbad - Object view".simbad.cds.unistra.fr. Retrieved2024-01-04.
  55. ^Beard, Corey; Robertson, Paul; Kanodia, Shubham; Lubin, Jack; Cañas, Caleb I.; Gupta, Arvind F.; Holcomb, Rae; Jones, Sinclaire; Libby-Roberts, Jessica E.; Lin, Andrea S. J.; Mahadevan, Suvrath; Stefánsson, Guđmundur; Bender, Chad F.; Blake, Cullen H.; Cochran, William D. (2022-08-30)."GJ 3929: High-precision Photometric and Doppler Characterization of an Exo-Venus and Its Hot, Mini-Neptune-mass Companion".The Astrophysical Journal.936 (1): 55.arXiv:2207.10672.Bibcode:2022ApJ...936...55B.doi:10.3847/1538-4357/ac8480.ISSN 0004-637X.
  56. ^Anglada-Escudé, Guillem; Tuomi, Mikko (2012)."A planetary system with gas giants and super-Earths around the nearby M dwarf GJ 676A. Optimizing data analysis techniques for the detection of multi-planetary systems"(PDF).Astronomy.548: A58.arXiv:1206.7118.Bibcode:2012A&A...548A..58A.doi:10.1051/0004-6361/201219910.S2CID 17115882.[permanent dead link]
  57. ^Fulton, Benjamin J.; et al. (2015). "Three Super-Earths Orbiting HD 7924".The Astrophysical Journal.805 (2): 175.arXiv:1504.06629.Bibcode:2015ApJ...805..175F.doi:10.1088/0004-637X/805/2/175.S2CID 7969255.
  58. ^Damasso, M.; et al. (2020), "A precise architecture characterization of the π Mensae planetary system",Astronomy & Astrophysics,642: A31,arXiv:2007.06410,Bibcode:2020A&A...642A..31D,doi:10.1051/0004-6361/202038416,S2CID 220496034
  59. ^"Planet LHS 1678 D". 2024.
  60. ^Kane, Stephen R.; Fetherolf, Tara; et al. (March 2024)."A Perfect Tidal Storm: HD 104067 Planetary Architecture Creating an Incandescent World".The Astronomical Journal.167 (5): 239.arXiv:2403.17062.Bibcode:2024AJ....167..239K.doi:10.3847/1538-3881/ad3820.
  61. ^Bonomo, A. S.; et al. (2025). "The GAPS programme at TNG LXXI. A sub-Neptune suitable for atmospheric characterization in a multiplanet and mutually inclined system orbiting the bright K dwarf TOI-5789 (HIP 99452)".arXiv:2510.11490 [astro-ph.EP].
  62. ^Koerner, D. W.; et al. (February 2010),"New Debris Disk Candidates Around 49 Nearby Stars"(PDF),The Astrophysical Journal Letters,710 (1):L26–L29,Bibcode:2010ApJ...710L..26K,doi:10.1088/2041-8205/710/1/L26,S2CID 122844702,archived(PDF) from the original on 2020-09-15, retrieved2022-02-25.
  63. ^abFulton, Benjamin J.; Howard, Andrew W.; Weiss, Lauren M.; Sinukoff, Evan; Petigura, Erik A.; Isaacson, Howard; Hirsch, Lea; Marcy, Geoffrey W.; Henry, Gregory W.; Grunblatt, Samuel K.; Huber, Daniel; Kaspar von Braun; Boyajian, Tabetha S.; Kane, Stephen R.; Wittrock, Justin; Horch, Elliott P.; Ciardi, David R.; Howell, Steve B.; Wright, Jason T.; Ford, Eric B. (2016)."Three Temperate Neptunes Orbiting Nearby Stars".The Astrophysical Journal.830 (1): 46.arXiv:1607.00007.Bibcode:2016ApJ...830...46F.doi:10.3847/0004-637X/830/1/46.S2CID 36666883.
  64. ^Greklek-McKeon, Michael; Gomez Barrientos, Jonathan; et al. (December 2025). "Validation of a Third Earth-sized Planet in the TOI-2267 Binary System".The Astronomical Journal.arXiv:2512.10007.
  65. ^Unger, N.; et al. (October 2021)."The HARPS search for southern extra-solar planets".Astronomy & Astrophysics.654: A104.arXiv:2108.10198.Bibcode:2021A&A...654A.104U.doi:10.1051/0004-6361/202141351.eISSN 1432-0746.ISSN 0004-6361.
  66. ^Mayor, M.; Marmier, M.; Lovis, C.; Udry, S.; Ségransan, D.; Pepe, F.; Benz, W.; Bertaux, J.-L.; Bouchy, F.; Dumusque, X.; Lo Curto, G.; Mordasini, C.; Queloz, D.; Santos, N. C. (September 13, 2011),The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets,arXiv:1109.2497
  67. ^abHara, N. C.; Bouchy, F.; Stalport, M.; Boisse, I.; Rodrigues, J.; Delisle, J. B.; Santerne, A.; Henry, G. W.; Arnold, L.; Astudillo-Defru, N.; Borgniet, S.; Bonfils, X.; Bourrier, V.; Brugger, B.; Courcol, B.; Dalal, S.; Deleuil, M.; Delfosse, X.; Demangeon, O.; Díaz, R. F.; Dumusque, X.; Forveille, T.; Hébrard, G.; Hobson, M. J.; Kiefer, F.; Lopez, T.; Mignon, L.; Mousis, O.; Moutou, C.; Pepe, F.; Rey, J.; Santos, N. C.; Ségransan, D.; Udry, S.; Wilson, P. A. (March 10, 2020). "The SOPHIE search for northern extrasolar planets XVI. HD 158259: A compact planetary system in a near-3:2 mean motion resonance chain".Astronomy & Astrophysics.636 (1): L6.arXiv:1911.13296.Bibcode:2020A&A...636L...6H.doi:10.1051/0004-6361/201937254.S2CID 208512859.
  68. ^Gray, R. O.; et al. (July 2006), "Contributions to the Nearby Stars (NStars) Project: spectroscopy of stars earlier than M0 within 40 pc-The Southern Sample",The Astronomical Journal,132 (1):161–170,arXiv:astro-ph/0603770,Bibcode:2006AJ....132..161G,doi:10.1086/504637,S2CID 119476992
  69. ^Lee, Man Hoi; et al. (2006). "On the 2:1 Orbital Resonance in the HD 82943 Planetary System".The Astrophysical Journal.641 (2):1178–1187.arXiv:astro-ph/0512551.Bibcode:2006ApJ...641.1178L.doi:10.1086/500566.S2CID 119432579.
  70. ^"The Harsh Destiny of a Planet?" (Press release). Garching, Germany:European Southern Observatory. May 9, 2001.Archived from the original on September 21, 2020. RetrievedDecember 30, 2012.
  71. ^Piaulet-Ghorayeb, Caroline; et al. (2024)."JWST/NIRISS Reveals the Water-rich "Steam World" Atmosphere of GJ 9827 D".The Astrophysical Journal.974 (1): L10.arXiv:2410.03527.Bibcode:2024ApJ...974L..10P.doi:10.3847/2041-8213/ad6f00.
  72. ^Dodson-Robinson, Sarah E.; et al. (December 2016)."Herschel Observations and Updated Spectral Energy Distributions of Five Sunlike Stars with Debris Disks".The Astrophysical Journal.833 (2): 11.arXiv:1610.01173.Bibcode:2016ApJ...833..183D.doi:10.3847/1538-4357/833/2/183.S2CID 118685442. 183.
  73. ^Andreolo, Claire; Cofield, Calla; Kazmierczak, Jeanette (6 January 2020)."NASA Planet Hunter Finds Earth-Size Habitable-Zone World".NASA.Archived from the original on 14 April 2020. Retrieved6 January 2020.
  74. ^Garner, Rob (6 January 2020)."NASA Planet Hunter Finds Earth-Size Habitable-Zone World".NASA.Archived from the original on 5 April 2020. Retrieved6 January 2020.
  75. ^Wall, Mike (6 January 2020)."NASA's TESS Planet Hunter Finds Its 1st Earth-Size World in 'Habitable Zone'".Space.com.Archived from the original on 8 April 2020. Retrieved6 January 2020.
  76. ^Vanderburg, Andrew; et al. (2019)."TESS Spots a Compact System of Super-Earths around the Naked-Eye Star HR 858".The Astrophysical Journal.881 (1): L19.arXiv:1905.05193.Bibcode:2019ApJ...881L..19V.doi:10.3847/2041-8213/ab322d.S2CID 153311715.
  77. ^Vogt, Steven S.; et al. (2005)."Five New Multicomponent Planetary Systems"(PDF).The Astrophysical Journal.632 (1):638–658.Bibcode:2005ApJ...632..638V.doi:10.1086/432901.S2CID 16509245.Archived(PDF) from the original on 2018-07-22. Retrieved2020-12-11.
  78. ^Udry, S.; Dumusque, X.; Lovis, C.; Segransan, D.; Diaz, R. F.; Benz, W.; Bouchy, F.; Coffinet, A.; Lo Curto, G.; Mayor, M.; Mordasini, C.; Motalebi, F.; Pepe, F.; Queloz, D.; Santos, N. C.; Wyttenbach, A.; Alonso, R.; Collier Cameron, A.; Deleuil, M.; Figueira, P.; Gillon, M.; Moutou, C.; Pollacco, D.; Pompei, E. (2019), "The HARPS search for southern extra-solar planets. XLII. Eight HARPS multi-planet systems hosting 20 super-Earth and Neptune-mass companions",Astronomy & Astrophysics,A37: 622,arXiv:1705.05153,Bibcode:2019A&A...622A..37U,doi:10.1051/0004-6361/201731173,S2CID 119095511
  79. ^Mayor, M.; Marmier, M.; Lovis, C.; Udry, S.; Ségransan, D.; Pepe, F.; Benz, W.; Bertaux, J.-L.; Bouchy, F.; Dumusque, G.; Curto, Lo; Mordasini, C.; Queloz, D.; Santos, N. C.; et al. (2011). "The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets".arXiv:1109.2497 [astro-ph].
  80. ^Wilson, Thomas G.; et al. (2026). "Gas-depleted planet formation occurred in the four-planet system around the red dwarf LHS 1903".Science (First Release) eadl2348.arXiv:2602.11271.doi:10.1126/science.adl2348.PMID 41678587.
  81. ^Wilson, Thomas G.; et al. (2026). "Supplementary Materials for Gas-depleted planet formation occurred in the four-planet system around the red dwarf LHS 1903".Science (Supplementary Materials).arXiv:2602.11271.doi:10.1126/science.adl2348.
  82. ^Hébrard, Guillaume; Arnold, Luc; Forveille, Thierry; Correia, Alexandre C. M.; Laskar, Jacques; Bonfils, Xavier; Boisse, Isabelle; Díaz, Rodrigo F.; Hagelberg, Janis; Sahlmann, Johannes; Santos, Nuno C.; et al. (2016-04-01)."The SOPHIE search for northern extrasolar planets. X. Detection and characterization of giant planets by the dozen".Astronomy and Astrophysics.588: A145.arXiv:1602.04622.Bibcode:2016A&A...588A.145H.doi:10.1051/0004-6361/201527585.ISSN 0004-6361.S2CID 55138055.Archived from the original on 2019-04-10. Retrieved2022-02-26.
  83. ^Philip S. Muirhead; John Asher Johnson; Kevin Apps; Joshua A. Carter; Timothy D. Morton; Daniel C. Fabrycky; J. Sebastian Pineda; Michael Bottom; Barbara Rojas-Ayala; Everett Schlawin; Katherine Hamren; Kevin R. Covey; Justin R. Crepp; Keivan G. Stassun; Joshua Pepper; Leslie Hebb; Evan N. Kirby; Andrew W. Howard; Howard T. Isaacson; Geoffrey W. Marcy; David Levitan; Tanio Diaz-Santos; Lee Armus; James P. Lloyd (2012). "Characterizing the Cool KOIs III. KOI-961: A Small Star with Large Proper Motion and Three Small Planets".The Astrophysical Journal.747 (2): 144.arXiv:1201.2189.Bibcode:2012ApJ...747..144M.doi:10.1088/0004-637X/747/2/144.S2CID 14889361.
  84. ^Tuomi, Mikko (6 April 2012). "Evidence for 9 planets in the 10180 system".Astronomy & Astrophysics.543: A52.arXiv:1204.1254v1.Bibcode:2012A&A...543A..52T.doi:10.1051/0004-6361/201118518.S2CID 15876919.
  85. ^"Three Super-Earths Found Circling Nearby Red Dwarf".Archived from the original on 2019-01-02. Retrieved2022-02-27.
  86. ^Rosenthal, Lee J.; Fulton, Benjamin J.; Hirsch, Lea A.; Isaacson, Howard T.; Howard, Andrew W.; Dedrick, Cayla M.; Sherstyuk, Ilya A.; Blunt, Sarah C.; Petigura, Erik A.; Knutson, Heather A.; Behmard, Aida; Chontos, Ashley; Crepp, Justin R.; Crossfield, Ian J. M.; Dalba, Paul A.; Fischer, Debra A.; Henry, Gregory W.; Kane, Stephen R.; Kosiarek, Molly; Marcy, Geoffrey W.; Rubenzahl, Ryan A.; Weiss, Lauren M.; Wright, Jason T. (2021)."The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades".The Astrophysical Journal Supplement Series.255 (1): 8.arXiv:2105.11583.Bibcode:2021ApJS..255....8R.doi:10.3847/1538-4365/abe23c.S2CID 235186973.
  87. ^abTeske, Johanna K; Shectman, Stephen A; Vogt, Steve S; Díaz, Matías; Butler, R. Paul; Crane, Jeffrey D; Thompson, Ian B; Arriagada, Pamela (2016)."The Magellan PFS Planet Search Program: Radial Velocity and Stellar Abundance Analyses of the 360 AU, Metal-Poor Binary "Twins" HD 133131A & B".The Astronomical Journal.152 (6): 167.arXiv:1608.06216.Bibcode:2016AJ....152..167T.doi:10.3847/0004-6256/152/6/167.S2CID 118852162.
  88. ^Orell-Miquel, J.; Nowak, G.; Murgas, F.; Palle, E.; Morello, G.; Luque, R.; Badenas-Agusti, M.; Ribas, I.; Lafarga, M.; Espinoza, N.; Morales, J. C.; Zechmeister, M.; Alqasim, A.; Cochran, W. D.; Gandolfi, D.; Goffo, E.; Kabáth, P.; Korth, J.; Livingston, J.; Lam, K. W. F.; Muresan, A.; Persson, C. M.; Van Eylen, V. (2023). "HD 191939 revisited: New and refined planet mass determinations, and a new planet in the habitable zone".Astronomy & Astrophysics.669: A40.arXiv:2211.00667.Bibcode:2023A&A...669A..40O.doi:10.1051/0004-6361/202244120.S2CID 253197272.
  89. ^abLeleu, A.; Alibert, Y.; Hara, N. C.; Hooton, M. J.; Wilson, T. G.; Robutel, P.; Delisle, J.-B.; Laskar, J.; Hoyer, S.; Lovis, C.; Bryant, E. M.; Ducrot, E.; Cabrera, J.; Delrez, L.; Acton, J. S.; Adibekyan, V.; Allart, R.; Prieto, Allende; Alonso, R.; Alves, D.; et al. (2021-01-20). "Six transiting planets and a chain of Laplace resonances in TOI-178".Astronomy & Astrophysics.649: A26.arXiv:2101.09260.Bibcode:2021A&A...649A..26L.doi:10.1051/0004-6361/202039767.ISSN 0004-6361.S2CID 231693292.
  90. ^Rajpaul, V. M.; Buchhave, L. A.; Lacedelli, G.; Rice, K.; Mortier, A.; Malavolta, L.; Aigrain, S.; Borsato, L.; Mayo, A. W.; Charbonneau, D.; Damasso, M.; Dumusque, X.; Ghedina, A.; Latham, D. W.; López-Morales, M.; Magazzù, A.; Micela, G.; Molinari, E.; Pepe, F.; Piotto, G.; Poretti, E.; Rowther, S.; Sozzetti, A.; Udry, S.; Watson, C. A. (2021), "A HARPS-N mass for the elusive Kepler-37d: A case study in disentangling stellar activity and planetary signals",Monthly Notices of the Royal Astronomical Society,507 (2):1847–1868,arXiv:2107.13900,Bibcode:2021MNRAS.507.1847R,doi:10.1093/mnras/stab2192 Kepler-37e is discussed in sections 2.2.2 & 6.4.
  91. ^Weiss, Lauren M.; et al. (2024-01-01)."The Kepler Giant Planet Search. I. A Decade of Kepler Planet-host Radial Velocities from W. M. Keck Observatory".The Astrophysical Journal Supplement Series.270 (1) 8.arXiv:2304.00071.Bibcode:2024ApJS..270....8W.doi:10.3847/1538-4365/ad0cab.
  92. ^Dai, Fei; Masuda, Kento; et al. (February 2023)."TOI-1136 is a Young, Coplanar, Aligned Planetary System in a Pristine Resonant Chain".The Astronomical Journal.165 (2): 33.arXiv:2210.09283.Bibcode:2023AJ....165...33D.doi:10.3847/1538-3881/aca327.
  93. ^"KOI-82".SIMBAD.Centre de données astronomiques de Strasbourg. Retrieved20 March 2022.
  94. ^David, Trevor J.; Cody, Ann Marie; Hedges, Christina L.; Mamajek, Eric E.; Hillenbrand, Lynne A.; Ciardi, David R.; Beichman, Charles A.; Petigura, Erik A.; Fulton, Benjamin J.; Isaacson, Howard T.; Howard, Andrew W. (August 2019)."A Warm Jupiter-sized Planet Transiting the Pre-main-sequence Star V1298 Tau".The Astronomical Journal.158 (2): 79.arXiv:1902.09670.Bibcode:2019AJ....158...79D.doi:10.3847/1538-3881/ab290f.ISSN 0004-6256.S2CID 119003936.
  95. ^David, Trevor J.; Petigura, Erik A.; Luger, Rodrigo; Foreman-Mackey, Daniel; Livingston, John H.; Mamajek, Eric E.; Hillenbrand, Lynne A. (2019-10-29)."Four Newborn Planets Transiting the Young Solar Analog V1298 Tau".The Astrophysical Journal.885 (1): L12.arXiv:1910.04563.Bibcode:2019ApJ...885L..12D.doi:10.3847/2041-8213/ab4c99.ISSN 2041-8213.S2CID 204008446.
  96. ^Akinsanmi, B.; Santos, N. C.; Faria, J. P.; Oshagh, M.; Barros, S. C. C.; Santerne, A.; Charnoz, S. (2020-03-01)."Can planetary rings explain the extremely low density of HIP 41378 𝑓?".Astronomy & Astrophysics.635: L8.arXiv:2002.11422.doi:10.1051/0004-6361/202037618.ISSN 0004-6361.Archived from the original on 2021-10-28. Retrieved2022-03-19.
  97. ^Santerne, A.; Malavolta, L.; Kosiarek, M. R.; Dai, F.; Dressing, C. D.; Dumusque, X.; Hara, N. C.; Lopez, T. A.; Mortier, A.; Vanderburg, A.; Adibekyan, V.; Armstrong, D. J.; Barrado, D.; Barros, S. C. C.; Bayliss, D.; Berardo, D.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Buchhave, L. A.; Butler, R. P.; Collier Cameron, A.; Cosentino, R.; Crane, J. D.; Crossfield, I. J. M.; Damasso, M.; Deleuil, M. R.; Delgado Mena, E.; et al. (2019). "An extremely low-density and temperate giant exoplanet".arXiv:1911.07355 [astro-ph.EP].
  98. ^Andrew Vanderburg; et al. (2016)."Five Planets Transiting a Ninth Magnitude Star".The Astrophysical Journal.827 (1): L10.arXiv:1606.08441.Bibcode:2016ApJ...827L..10V.doi:10.3847/2041-8205/827/1/L10.S2CID 8794583.
  99. ^Martin, Pierre-Yves (2022)."Planet HD 33142 c".exoplanet.eu.Archived from the original on 2024-02-03. Retrieved2024-02-03.
  100. ^Hirano, Teruyuki; Dai, Fei; Gandolfi, Davide; Fukui, Akihiko; Livingston, John H.; Miyakawa, Kohei; Endl, Michael; Cochran, William D.; Alonso-Floriano, Francisco J.; Kuzuhara, Masayuki; Montes, David; Ryu, Tsuguru; Albrecht, Simon; Barragan, Oscar; Cabrera, Juan; Csizmadia, Szilard; Deeg, Hans; Eigmüller, Philipp; Erikson, Anders; Fridlund, Malcolm; Grziwa, Sascha; Guenther, Eike W.; Hatzes, Artie P.; Korth, Judith; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Narita, Norio; Nespral, David; Nowak, Grzegorz; et al. (2018)."Exoplanets around Low-mass Stars Unveiled by K2".The Astronomical Journal.155 (3): 127.arXiv:1710.03239.Bibcode:2018AJ....155..127H.doi:10.3847/1538-3881/aaa9c1.S2CID 54590874.
  101. ^Gilliland, Ronald L.; et al. (2013)."Kepler-68: Three Planets, One with a Density Between That of Earth and Ice Giants".The Astrophysical Journal.766 (1). 40.arXiv:1302.2596.Bibcode:2013ApJ...766...40G.doi:10.1088/0004-637X/766/1/40.
  102. ^Mills, Sean M.; et al. (2019)."Long-period Giant Companions to Three Compact, Multiplanet Systems".The Astronomical Journal.157 (4). 145.arXiv:1903.07186.Bibcode:2019AJ....157..145M.doi:10.3847/1538-3881/ab0899.S2CID 119197547.
  103. ^Desidera, S.; et al. (2014)."The GAPS programme with HARPS-N at TNG. IV. A planetary system around XO-2S".Astronomy and Astrophysics.567 (6). L6.arXiv:1407.0251.Bibcode:2014A&A...567L...6D.doi:10.1051/0004-6361/201424339.S2CID 118567085.Archived from the original on 2021-05-11. Retrieved2022-06-25.
  104. ^Damasso, M.; et al. (2015)."A comprehensive analysis of the XO-2 stellar and planetary systems".Astronomy & Astrophysics.575. A111.arXiv:1501.01424.doi:10.1051/0004-6361/201425332.
  105. ^Heller, René; Rodenbeck, Kai; Hippke, Michael (2019)."Transit least-squares survey. I. Discovery and validation of an Earth-sized planet in the four-planet system K2-32 near the 1:2:5:7 resonance".Astronomy and Astrophysics.625. A31.arXiv:1904.00651.Bibcode:2019A&A...625A..31H.doi:10.1051/0004-6361/201935276.Archived from the original on 2022-01-25. Retrieved2022-03-04.
  106. ^Souto, Diogo; et al. (2017)."Chemical Abundances of M-dwarfs from the APOGEE Survey. I. The Exoplanet Hosting Stars Kepler-138 and Kepler-186".The Astrophysical Journal.835 (2): 239.arXiv:1612.01598.Bibcode:2017ApJ...835..239S.doi:10.3847/1538-4357/835/2/239.S2CID 73634716.
  107. ^Bailer-Jones, C. A. L.; et al. (August 2018)."Estimating distances from parallaxes IV: Distances to 1.33 billion stars in Gaia Data Release 2".The Astronomical Journal.156 (2): 58.arXiv:1804.10121.Bibcode:2018AJ....156...58B.doi:10.3847/1538-3881/aacb21.S2CID 119289017. Distance to Kepler 186, after taking into account light extinctionArchived 2022-05-11 at theWayback Machine
  108. ^"Kepler-186 f".NASA Exoplanet Archive.Archived from the original on 18 March 2022. Retrieved19 July 2016.
  109. ^Quintana, E. V.; Barclay, T.; Raymond, S. N.; Rowe, J. F.; Bolmont, E.; Caldwell, D. A.; Howell, S. B.; Kane, S. R.; Huber, D.; Crepp, J. R.;Lissauer, J. J.; Ciardi, D. R.; Coughlin, J. L.; Everett, M. E.; Henze, C. E.; Horch, E.; Isaacson, H.; Ford, E. B.; Adams, F. C.; Still, M.; Hunter, R. C.; Quarles, B.; Selsis, F. (2014-04-18). "An Earth-Sized Planet in the Habitable Zone of a Cool Star".Science.344 (6181):277–280.arXiv:1404.5667.Bibcode:2014Sci...344..277Q.doi:10.1126/science.1249403.PMID 24744370.S2CID 1892595. free version =http://www.nasa.gov/sites/default/files/files/kepler186_main_final.pdfArchived 2014-04-18 at theWayback Machine
  110. ^Becker, Juliette C.; Vanderburg, Andrew; Adams, Fred C.; Rappaport, Saul A.; Schwengeler, Hans Martin (2015-10-12). "Wasp-47: A Hot Jupiter System with Two Additional Planets Discovered by K2".The Astrophysical Journal.812 (2): L18.arXiv:1508.02411.Bibcode:2015ApJ...812L..18B.doi:10.1088/2041-8205/812/2/L18.ISSN 2041-8213.S2CID 14681933.
  111. ^Neveu-VanMalle, M.; et al. (2016)."Hot Jupiters with relatives: Discovery of additional planets in orbit around WASP-41 and WASP-47".Astronomy and Astrophysics.586. A93.arXiv:1509.07750.Bibcode:2016A&A...586A..93N.doi:10.1051/0004-6361/201526965.S2CID 53354547.Archived from the original on 2022-02-28. Retrieved2022-05-08.
  112. ^"WASP-47".exoplanetarchive.ipac.caltech.edu.Archived from the original on 2022-05-08. Retrieved2022-05-08.
  113. ^Malavolta, Luca; et al. (2017)."The Kepler-19 System: A Thick-envelope Super-Earth with Two Neptune-mass Companions Characterized Using Radial Velocities and Transit Timing Variations".The Astronomical Journal.153 (5). 224.arXiv:1703.06885.Bibcode:2017AJ....153..224M.doi:10.3847/1538-3881/aa6897.
  114. ^Lissauer, Jack J; Marcy, Geoffrey W; Bryson, Stephen T; Rowe, Jason F; Jontof-Hutter, Daniel; Agol, Eric; Borucki, William J; Carter, Joshua A; Ford, Eric B; Gilliland, Ronald L; Kolbl, Rea; Star, Kimberly M; Steffen, Jason H; Torres, Guillermo (2014). "Validation Of Kepler's Multiple Planet Candidates. Ii. Refined Statistical Framework and Descriptions of Systems of Special Interest".The Astrophysical Journal.784 (1): 44.arXiv:1402.6352.Bibcode:2014ApJ...784...44L.doi:10.1088/0004-637X/784/1/44.S2CID 119108651.
  115. ^abBarclay, Thomas; Quintana, Elisa V; Adams, Fred C; Ciardi, David R; Huber, Daniel; Foreman-Mackey, Daniel; Montet, Benjamin T; Caldwell, Douglas (2015). "The Five Planets in the Kepler-296 Binary System All Orbit the Primary: A Statistical and Analytical Analysis".The Astrophysical Journal.809 (1): 7.arXiv:1505.01845.Bibcode:2015ApJ...809....7B.doi:10.1088/0004-637X/809/1/7.S2CID 37742564.
  116. ^Schneider, Jean,"Star: Kepler-25",Extrasolar Planets Encyclopaedia, archived fromthe original on 2012-06-16, retrieved2013-12-18
  117. ^Steffen, Jason H.; et al. (2012)."Transit timing observations from Kepler - III. Confirmation of four multiple planet systems by a Fourier-domain study of anticorrelated transit timing variations".Monthly Notices of the Royal Astronomical Society.421 (3):2342–2354.arXiv:1201.5412.Bibcode:2012MNRAS.421.2342S.doi:10.1111/j.1365-2966.2012.20467.x.
  118. ^Marcy, Geoffrey W.; et al. (2014)."Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets".The Astrophysical Journal Supplement Series.210 (2). 20.arXiv:1401.4195.Bibcode:2014ApJS..210...20M.doi:10.1088/0067-0049/210/2/20.
  119. ^Hand, Eric (20 December 2011). "Kepler discovers first Earth-sized exoplanets".Nature.doi:10.1038/nature.2011.9688.S2CID 122575277.
  120. ^Nespral, D.; et al. (2017)."Mass determination of K2-19b and K2-19c from radial velocities and transit timing variations".Astronomy and Astrophysics.601. A128.arXiv:1604.01265.Bibcode:2017A&A...601A.128N.doi:10.1051/0004-6361/201628639.S2CID 55978628.Archived from the original on 2022-05-04. Retrieved2022-03-18.
  121. ^Sinukoff, Evan; et al. (2016)."Eleven Multiplanet Systems From K2 Campaigns 1 and 2 and the Masses of Two Hot Super-Earths".The Astrophysical Journal.827 (1). 78.arXiv:1511.09213.Bibcode:2016ApJ...827...78S.doi:10.3847/0004-637X/827/1/78.
  122. ^"Pulsar Planets". Archived fromthe original on 30 December 2005.
  123. ^Wolszczan, A.; Frail, D. (1992). "A planetary system around the millisecond pulsar PSR1257 + 12".Nature.355 (6356):145–147.Bibcode:1992Natur.355..145W.doi:10.1038/355145a0.S2CID 4260368.
  124. ^abcBorucki, William J.; et al. (18 April 2013)."Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone".Science Express.340 (6132):587–90.arXiv:1304.7387.Bibcode:2013Sci...340..587B.doi:10.1126/science.1234702.hdl:1721.1/89668.PMID 23599262.S2CID 21029755.Archived from the original on 2 May 2022. Retrieved18 March 2022.
  125. ^Johnson, Michele; Harrington, J.D. (18 April 2013)."NASA's Kepler Discovers Its Smallest 'Habitable Zone' Planets to Date".NASA. Archived fromthe original on 8 May 2020. Retrieved18 March 2022.
  126. ^Steffen, Jason H.; Fabrycky, Daniel C.; Ford, Eric B.; Carter, Joshua A.; Desert, Jean-Michel; Fressin, Francois; Holman, Matthew J.; Lissauer, Jack J.; Moorhead, Althea V.; Rowe, Jason F.; Ragozzine, Darin; Welsh, William F.; Batalha, Natalie M.; Borucki, William J.; Buchhave, Lars A.; Bryson, Steve; Caldwell, Douglas A.; Charbonneau, David; Ciardi, David R.; Cochran, William D.; Endl, Michael; Everett, Mark E.; Gautier III, Thomas N.; Gilliland, Ron L.; Girouard, Forrest R.; Jenkins, Jon M.; Horch, Elliott; Howell, Steve B.; Isaacson, Howard; et al. (2012), "Transit Timing Observations from Kepler: III. Confirmation of 4 Multiple Planet Systems by a Fourier-Domain Study of Anti-correlated Transit Timing Variations",Monthly Notices of the Royal Astronomical Society,421 (3),arXiv:1201.5412,Bibcode:2012MNRAS.421.2342S,doi:10.1111/j.1365-2966.2012.20467.x,S2CID 11898578
  127. ^Cubillos, Patricio; Erkaev, Nikolai V.; Juvan, Ines; Fossati, Luca; Johnstone, Colin P.; Lammer, Helmut; Lendl, Monika; Odert, Petra; Kislyakova, Kristina G. (2016), "An overabundance of low-density Neptune-like planets",Monthly Notices of the Royal Astronomical Society,466 (2):1868–1879,arXiv:1611.09236,doi:10.1093/mnras/stw3103,S2CID 119408956
  128. ^Jontof-Hutter, Daniel; Ford, Eric B.; Rowe, Jason F.; Lissauer, Jack J.; Fabrycky, Daniel C.; Christa Van Laerhoven; Agol, Eric; Deck, Katherine M.; Holczer, Tomer; Mazeh, Tsevi (2015), "Secure TTV Mass Measurements: Ten Kepler Exoplanets between 3 and 8 M🜨 with Diverse Densities and Incident Fluxes",The Astrophysical Journal,820 (1): 39,arXiv:1512.02003,doi:10.3847/0004-637X/820/1/39,S2CID 11322397
  129. ^Kipping, David M.; Torres, Guillermo; et al. (April 2016)."A Transiting Jupiter Analog".The Astrophysical Journal.820 (2): 112.arXiv:1603.00042.Bibcode:2016ApJ...820..112K.doi:10.3847/0004-637X/820/2/112.S2CID 1892262.
  130. ^Chachan, Yayaati; Dalba, Paul A.; et al. (February 2022)."Kepler-167e as a Probe of the Formation Histories of Cold Giants with Inner Super-Earths".The Astrophysical Journal.926 (1): 62.arXiv:2112.00747.Bibcode:2022ApJ...926...62C.doi:10.3847/1538-4357/ac3ed6.S2CID 244799213.
  131. ^"Kepler-80".SIMBAD.Centre de données astronomiques de Strasbourg. Retrieved10 January 2017.
  132. ^Xie, J.-W. (2013). "Transit timing variation of near-resonance planetary pairs: confirmation of 12 multiple-planet systems".Astrophysical Journal Supplement Series.208 (2): 22.arXiv:1208.3312.Bibcode:2013ApJS..208...22X.doi:10.1088/0067-0049/208/2/22.S2CID 17160267.
  133. ^abShallue, C. J.; Vanderburg, A. (2017)."Identifying Exoplanets With Deep Learning: A Five Planet Resonant Chain Around Kepler-80 And An Eighth Planet Around Kepler-90"(PDF).The Astrophysical Journal.155 (2): 94.arXiv:1712.05044.Bibcode:2018AJ....155...94S.doi:10.3847/1538-3881/aa9e09.S2CID 4535051.Archived(PDF) from the original on 2017-12-24. Retrieved2017-12-15.
  134. ^MacDonald, Mariah G.; Ragozzine, Darin; Fabrycky, Daniel C.; Ford, Eric B.; Holman, Matthew J.; Isaacson, Howard T.; Lissauer, Jack J.; Lopez, Eric D.; Mazeh, Tsevi (2016-01-01)."A Dynamical Analysis of the Kepler-80 System of Five Transiting Planets".The Astronomical Journal.152 (4): 105.arXiv:1607.07540.Bibcode:2016AJ....152..105M.doi:10.3847/0004-6256/152/4/105.S2CID 119265122.
  135. ^Ekrem Murat Esmer; Baştürk, Özgür; Selim Osman Selam; Aliş, Sinan (2022), "Detection of two additional circumbinary planets around Kepler-451",Monthly Notices of the Royal Astronomical Society,511 (4):5207–5216,arXiv:2202.02118,Bibcode:2022MNRAS.511.5207E,doi:10.1093/mnras/stac357
  136. ^Masuda, Kento; Hirano, Teruyuki; Taruya, Atsushi; Nagasawa, Makiko; Suto, Yasushi (2013). "Characterization of the KOI-94 System with Transit Timing Variation Analysis: Implication for the Planet-Planet Eclipse".The Astrophysical Journal.778 (2):185–200.arXiv:1310.5771.Bibcode:2013ApJ...778..185M.doi:10.1088/0004-637X/778/2/185.S2CID 119264400.
  137. ^Bonomo, Aldo S.; Zeng, Li; Damasso, Mario; Leinhardt, Zoë M.; Justesen, Anders B.; Lopez, Eric; Lund, Mikkel N.; Malavolta, Luca; Silva Aguirre, Victor; Buchhave, Lars A.; Corsaro, Enrico; Denman, Thomas; Lopez-Morales, Mercedes; Mills, Sean M.; Mortier, Annelies; Rice, Ken; Sozzetti, Alessandro; Vanderburg, Andrew; Affer, Laura; Arentoft, Torben; Benbakoura, Mansour; Bouchy, François; Christensen-Dalsgaard, Jørgen; Collier Cameron, Andrew; Cosentino, Rosario; Dressing, Courtney D.; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F. M.; García, Rafael A.; Handberg, Rasmus; Harutyunyan, Avet; Johnson, John A.; Kjeldsen, Hans; Latham, David W.; Lovis, Christophe; Lundkvist, Mia S.; Mathur, Savita; Mayor, Michel; Micela, Giusi; Molinari, Emilio; Motalebi, Fatemeh; Nascimbeni, Valerio; Nava, Chantanelle; Pepe, Francesco; Phillips, David F.; Piotto, Giampaolo; Poretti, Ennio; Sasselov, Dimitar; Ségransan, Damien; Udry, Stéphane; Watson, Chris (May 2019). "A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system".Nature Astronomy.3 (5):416–423.arXiv:1902.01316.Bibcode:2019NatAs...3..416B.doi:10.1038/s41550-018-0684-9.S2CID 89604609.
  138. ^"The Extrasolar Planet Encyclopaedia — Kepler-176 b.".Extrasolar Planets Encyclopaedia. 2025.
  139. ^abLissauer, Jack J.; et al. (2011). "A closely packed system of low-mass, low-density planets transiting Kepler-11".Nature.470 (7332):53–58.arXiv:1102.0291.Bibcode:2011Natur.470...53L.doi:10.1038/nature09760.PMID 21293371.S2CID 4388001.
  140. ^Lissauer, Jack J.; et al. (2013)."All Six Planets Known to Orbit Kepler-11 Have Low Densities".The Astrophysical Journal.770 (2). 131.arXiv:1303.0227.Bibcode:2013ApJ...770..131L.doi:10.1088/0004-637X/770/2/131.
  141. ^Libby-Roberts, Jessica E.; et al. (2020)."The Featureless Transmission Spectra of Two Super-puff Planets".The Astronomical Journal.159 (2): 57.arXiv:1910.12988.Bibcode:2020AJ....159...57L.doi:10.3847/1538-3881/ab5d36.S2CID 204950000.
  142. ^Nancy Atkinson (26 August 2010)."Kepler Discovers Multi-Planet System". Universe Today.Archived from the original on 24 February 2012. Retrieved13 January 2011.
  143. ^Holman, M. J.; et al. (2010)."Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations"(PDF).Science.330 (6000):51–54.Bibcode:2010Sci...330...51H.doi:10.1126/science.1195778.PMID 20798283.S2CID 8141085.Archived(PDF) from the original on 2022-12-07. Retrieved2022-06-17.
  144. ^Chou, Felicia; Hawkes, Alison; Landau, Elizabeth (14 December 2017)."Artificial Intelligence, NASA Data Used to Discover Eighth Planet Circling Distant Star".NASA.Archived from the original on 5 May 2020. Retrieved15 December 2017.
  145. ^Schmitt, J. R.; Wang, J.; Fischer, D. A.; Jek, K. J.; Moriarty, J. C.; Boyajian, T. S.; Schwamb, M. E.; Lintott, C.; Lynn, S.; Smith, A. M.; Parrish, M.; Schawinski, K.; Simpson, R.; LaCourse, D.; Omohundro, M. R.; Winarski, T.; Goodman, S. J.; Jebson, T.; Schwengeler, H. M.; Paterson, D. A.; Sejpka, J.; Terentev, I.; Jacobs, T.; Alsaadi, N.; Bailey, R. C.; Ginman, T.; Granado, P.; Guttormsen, K. V.; Mallia, F.; Papillon, A. L.; Rossi, F.; Socolovsky, M.; Stiak, L. (2014-06-26). "Planet Hunters. VI. An Independent Characterization of KOI-351 and Several Long Period Planet Candidates From the Kepler Archival Data".The Astronomical Journal.148 (28): 28.arXiv:1310.5912.Bibcode:2014AJ....148...28S.doi:10.1088/0004-6256/148/2/28.S2CID 119238163.
  146. ^Patel, Neel V. (2020-06-05)."Astronomers have found a planet like Earth orbiting a star like the sun".MIT Technology Review.Archived from the original on 2023-05-25. Retrieved2020-06-07.
  147. ^Orosz, Jerome A.; Welsh, William F.; Carter, Joshua A.; Fabrycky, Daniel C.; Cochran, William D.; Endl, Michael; Ford, Eric B.; Haghighipour, Nader; MacQueen, Phillip J.; Mazeh, Tsevi; Sanchis-Ojeda, Roberto; Short, Donald R.; Torres, Guillermo; Agol, Eric; Buchhave, Lars A.; Doyle, Laurance R.; Isaacson, Howard; Lissauer, Jack J.; Marcy, Geoffrey W.; Shporer, Avi; Windmiller, Gur; Barclay, Thomas; Boss, Alan P.; Clarke, Bruce D.; Fortney, Jonathan; Geary, John C.; Holman, Matthew J.; Huber, Daniel; Jenkins, Jon M.; et al. (2012). "Kepler-47: A Transiting Circumbinary Multi-Planet System".Science.337 (6101):1511–4.arXiv:1208.5489.Bibcode:2012Sci...337.1511O.doi:10.1126/science.1228380.PMID 22933522.S2CID 44970411.
  148. ^"NASA's Kepler Discovers Multiple Planets Orbiting a Pair of Stars".exoplanets.nasa.gov.NASA. 28 August 2012. Archived fromthe original on 31 October 2012. Retrieved2 September 2012.Kepler mission has discovered multiple transiting planets orbiting two suns for the first time
  149. ^Orosz, Jerome A.; Welsh, William F.; Carter, Joshua A.; Fabrycky, Daniel C.; Cochran, William D.; Endl, Michael; Ford, Eric B.; Haghighipour, Nader; MacQueen, Phillip J.; Mazeh, Tsevi; Sanchis-Ojeda, Roberto; Short, Donald R.; Torres, Guillermo; Agol, Eric; Buchhave, Lars A.; Doyle, Laurance R.; Isaacson, Howard; Lissauer, Jack J.; Marcy, Geoffrey W.; Shporer, Avi; Windmiller, Gur; Barclay, Thomas; Boss, Alan P.; Clarke, Bruce D.; Fortney, Jonathan; Geary, John C.; Holman, Matthew J.; Huber, Daniel; Jenkins, Jon M.; et al. (28 August 2012)."NASA's Kepler discovers multiple planets orbiting a pair of stars".Science.337 (6101).Sciencedaily.com:1511–4.arXiv:1208.5489.Bibcode:2012Sci...337.1511O.doi:10.1126/science.1228380.hdl:1721.1/89172.PMID 22933522.S2CID 44970411.Archived from the original on 21 September 2022. Retrieved4 November 2012.
  150. ^Pichierri, Gabriele; Batygin, Konstantin; Morbidelli, Alessandro (2019), "The role of dissipative evolution for three-planet, near-resonant extrasolar systems",Astronomy & Astrophysics,625: A7,arXiv:1903.09474,Bibcode:2019A&A...625A...7P,doi:10.1051/0004-6361/201935259,S2CID 85459759
  151. ^Mugrauer, M.; et al. (2006)."HD 3651 B: the first directly imaged brown dwarf companion of an exoplanet host star".Monthly Notices of the Royal Astronomical Society: Letters (abstract).373 (1):L31–L35.arXiv:astro-ph/0608484.Bibcode:2006MNRAS.373L..31M.doi:10.1111/j.1745-3933.2006.00237.x.S2CID 15608344.
  152. ^Marcy, Geoffrey W.; et al. (1999). "Two New Planets in Eccentric Orbits".The Astrophysical Journal.520 (1):239–247.arXiv:astro-ph/9904275.Bibcode:1999ApJ...520..239M.doi:10.1086/307451.S2CID 16827678.
  153. ^Marcy, Geoffrey W.; et al. (2001)."Two Substellar Companions Orbiting HD 168443".The Astrophysical Journal.555 (1):418–425.Bibcode:2001ApJ...555..418M.doi:10.1086/321445.
  154. ^Cheetham, A.; et al. (June 2018). "Direct imaging of an ultracool substellar companion to the exoplanet host star HD 4113 A".Astronomy & Astrophysics.614: 19.arXiv:1712.05217.Bibcode:2018A&A...614A..16C.doi:10.1051/0004-6361/201630136.S2CID 119084543. A16.
  155. ^Feng, Fabo; Anglada-Escudé, Guillem; Tuomi, Mikko; Jones, Hugh R. A.; Chanamé, Julio; Butler, Paul R.; Janson, Markus (14 October 2019), "Detection of the nearest Jupiter analog in radial velocity and astrometry data",Monthly Notices of the Royal Astronomical Society,490 (4):5002–5016,arXiv:1910.06804,Bibcode:2019MNRAS.490.5002F,doi:10.1093/mnras/stz2912,S2CID 204575783
  156. ^Scholz, Ralf-Dieter; McCaughrean, Mark (2003-01-13)."Discovery of Nearest Known Brown Dwarf: Bright Southern Star Epsilon Indi Has Cool, Substellar Companion". European Southern Observatory. Archived fromthe original on October 14, 2007. Retrieved2006-05-24.
  157. ^Scholz, R.-D.; McCaughrean, M. J.; Lodieu, N.; Kuhlbrodt, B. (February 2003). "ε Indi B: A new benchmark T dwarf".Astronomy and Astrophysics.398 (3):L29–L33.arXiv:astro-ph/0212487.Bibcode:2003A&A...398L..29S.doi:10.1051/0004-6361:20021847.S2CID 119474823.
  158. ^Butler, R. P.; et al. (2006). "Catalog of Nearby Exoplanets".The Astrophysical Journal.646 (1):505–522.arXiv:astro-ph/0607493.Bibcode:2006ApJ...646..505B.doi:10.1086/504701.S2CID 119067572.
  159. ^Feng, Fabo; Butler, R. Paul; et al. (August 2022)."3D Selection of 167 Substellar Companions to Nearby Stars".The Astrophysical Journal Supplement Series.262 (21): 21.arXiv:2208.12720.Bibcode:2022ApJS..262...21F.doi:10.3847/1538-4365/ac7e57.S2CID 251864022.
  160. ^Hatzes, Artie P.; et al. (2022)."A Radial Velocity Study of the Planetary System of π Mensae: Improved Planet Parameters for π Mensae c and a Third Planet on a 125 Day Orbit".The Astronomical Journal.163 (5): 223.arXiv:2203.01018.Bibcode:2022AJ....163..223H.doi:10.3847/1538-3881/ac5dcb.S2CID 247218413.
  161. ^Fischer, Debra A.; et al. (2003)."A Planetary Companion to HD 40979 and Additional Planets Orbiting HD 12661 and HD 38529".The Astrophysical Journal.586 (2):1394–1408.Bibcode:2003ApJ...586.1394F.doi:10.1086/367889.
  162. ^Khandelwal, Akanksha; Sharma, Rishikesh; Chakraborty, Abhijit; Chaturvedi, Priyanka; Ulmer-Moll, Solène; Ciardi, David R.; Boyle, Andrew W.; Baliwal, Sanjay; Bieryla, Allyson; Latham, David W.; Prasad, Neelam J. S. S. V.; Nayak, Ashirbad; Lendl, Monika; Mordasini, Christoph (2023-04-01)."Discovery of a massive giant planet with extreme density around the sub-giant star TOI-4603".Astronomy & Astrophysics.672: L7.arXiv:2303.11841.Bibcode:2023A&A...672L...7K.doi:10.1051/0004-6361/202245608.ISSN 0004-6361.Archived from the original on 2024-02-28. Retrieved2023-12-15.
  163. ^Zhang, Keming; Zang, Weicheng; El-Badry, Kareem; Lu, Jessica R.; et al. (September 2024). "An Earth-mass planet and a brown dwarf in orbit around a white dwarf".Nature Astronomy.8 (12):1575–1582.arXiv:2409.02157.Bibcode:2024NatAs...8.1575Z.doi:10.1038/s41550-024-02375-9.
  164. ^Han, Cheongho; Udalski, Andrzej; Lee, Chung-Uk; Ryu, Yoon-Hyun; Albrow, Michael D.; Chung, Sun-Ju; Gould, Andrew; Hwang, Kyu-Ha; Jung, Youn Kil (2025-07-09). "KMT-2024-BLG-0404L: A triple microlensing system consisting of a star, a brown dwarf, and a planet".Astronomy and Astrophysics.700: A181.arXiv:2507.07326.Bibcode:2025A&A...700A.181H.doi:10.1051/0004-6361/202452760.
Exoplanets
Main topics
Sizes
and
types
Terrestrial
Gaseous
Other types
Formation
and
evolution
Systems
Host stars
Detection
Habitability
Catalogues
Lists
Other
Portals:
Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_multiplanetary_systems&oldid=1338816881"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp