Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

List of most massive stars

From Wikipedia, the free encyclopedia

This article is about mass. For radius, seeList of largest stars.

This is alist of the most massive stars that have been discovered, insolar mass units (M).

Uncertainties and caveats

[edit]

Most of the masses listed below are contested and, being the subject of current research, remain under review and subject to constant revision of their masses and other characteristics. Indeed, many of the masses listed in the table below are inferred from theory, using difficult measurements of thestars'temperatures,composition, andabsolute brightnesses. All the masses listed below are uncertain: Both the theory and the measurements are pushing the limits of current knowledge and technology. Both theories and measurements could be incorrect.

Artist's impression of disc of obscuring material around a massive star.

Complications with distance and obscuring clouds

[edit]

Since massive stars are rare,astronomers must look very far fromEarth to find them. All the listed stars are many thousands of light years away making their light especially faint, which makes measurements difficult. In addition to being far away, many stars of such extreme mass are surrounded by clouds of outflowing gas created by extremely powerfulstellar winds; the surrounding gas interferes with the already difficult-to-obtain measurements of stellar temperatures and brightnesses, which greatly complicates the issue of estimating internal chemical compositions and structures.[a]This obscuration leads to difficulties in determining the parameters needed to calculate the star's mass.

Eta Carinae is the bright spot hidden in thedouble-lobed dust cloud. It is the most massive star that has aBayer designation. It was only discovered to be (at least) two stars in the past few decades.

Both the obscuring clouds and the great distances also make it difficult to judge whether the star is just a single supermassive object or, instead, amultiple star system. A number of the "stars" listed below may actually be two or more companions orbiting too closely for our telescopes to distinguish, each star possibly being massive in itself but not necessarily "supermassive" to either be on this list, or near the top of it.And certainly other combinations are possible – for example a supermassive star with one or more smaller companions or more than one giant star – but without being able to clearly see inside the surrounding cloud, it is difficult to know what kind of object is actually generating the bright point of light seen from the Earth.

More globally, statistics on stellar populations seem to indicate that the upper mass limit is in the 120-solar-mass range,[1] so any mass estimate above this range is suspect.

Rare reliable estimates

[edit]

Eclipsing binary stars are the only stars whose masses are estimated with some confidence. However, note that almost all of the masses listed in the table below were inferred by indirect methods; only a few of the masses in the table were determined using eclipsing systems.

Amongst the most reliable listed masses are those for the eclipsing binariesNGC 3603-A1,WR 21a, andWR 20a. Masses for all three were obtained from orbital measurements.[b] This involves measuring theirradial velocities and also their light curves. The radial velocities only yield minimum values for the masses, depending on inclination, but light curves of eclipsing binaries provide the missing information: inclination of the orbit to our line of sight.

Relevance of stellar evolution

[edit]

Some stars may once have been more massive than they are today. Many large stars have likely suffered significant mass loss – perhaps as much as several tens of solar masses. The lost mass is expected to have been expelled bysuperwinds: high velocity winds that are driven by the hotphotosphere into interstellar space. The process forms an enlarged extended envelope around the star that interacts with the nearby interstellar medium and infuses the adjacent volume of space with elements heavier than hydrogen or helium.[c]

There are also – or ratherwere – stars that might have appeared on the list but no longer exist as stars, or aresupernova impostors; today we see only their debris.[d] The masses of the precursor stars that fueled these destructive events can be estimated from the type of explosion and the energy released, but those masses arenot listed here.

This listonly concerns "living" stars – those which are still seen by Earth-based observers existing as active stars: Still engaged in interiornuclear fusion that generates heat and light. That is, the light now arriving at the Earth as images of the stars listed still shows them to internally generatenew energy as of the time (in the distant past) that light now being received was emitted. The list specifically excludes bothwhite dwarfs – former stars that are now seen to be "dead" but radiating residual heat – andblack holes – fragmentary remains of exploded stars which havegravitationally collapsed, even though accretion disks surrounding those black holes might generate heat or lightexterior to the star's remains (now inside the black hole), radiated by infalling matter (see§ Black holes below).

Mass limits

[edit]

There are two related theoretical limits on how massive a star can possibly be: Theaccretion mass limit and theEddington mass limit.

  • Theaccretion limit is related to star formation: After about120M have accreted in aprotostar, the combined mass should have become hot enough for its heat to drive away any further incoming matter. In effect, the protostar reaches a temperature where it evaporates away material already collected as fast as it collects new material.
  • TheEddington limit is based on light pressure from the core of an already-formed star: As mass increases past~150M, the intensity of light radiated from aPopulation I star's core will become sufficient for the light-pressure pushing outward to exceed the gravitational force pulling inward, and the surface material of the star will be free to float away into space. Since their different compositions make them more transparent,Population II andPopulation III stars have higher and much higher mass limits, respectively.

Accretion limits

[edit]

Astronomers have long hypothesized that as aprotostar grows to a size beyond120M, something drastic must happen.[2] Although the limit can be stretched for very earlyPopulation III stars, and although the exact value is uncertain, if any stars still exist above150~200M they would challenge current theories ofstellar evolution.

Studying theArches Cluster, which is currently the densest known cluster of stars inour galaxy, astronomers have confirmed that no stars in that cluster exceed about150M.

TheR136 cluster is an unusually dense collection of young, hot, blue stars.

Rare ultramassive stars that exceed this limit – for example in theR136 star cluster – might be explained by an exceptional event hypothesized to have occurred: some of the pairs of massivestars in close orbit in young, unstablemultiple-star systems must, on rare occasions, collide and merge when certain unusual circumstances hold that make a collision possible.[3]

Eddington mass limit

[edit]
Main article:Eddington luminosity

Eddington's limit on stellar mass arises because of light-pressure: For a sufficiently massive star the outward pressure ofradiant energy generated bynuclear fusion in the star's core exceeds the inward pull of its own gravity. The lowest mass for which this effect is active is theEddington limit.

Stars of greater mass have a higher rate of core energy generation, and heavier stars' luminosities increase far out of proportion to the increase in their masses. TheEddington limit is the point beyond which a star ought to push itself apart, or at least shed enough mass to reduce its internal energy generation to a lower, sustainable rate. The actual limit-point mass depends on how opaque the gas in the star is, and metal-richPopulation I stars have lower mass limits than metal-poorPopulation II stars. Before their demise, the hypothetical metal-freePopulation III stars would have had the highest allowed mass, somewhere around300M.

In theory, a more massive star could not hold itself together because of the mass loss resulting from the outflow of stellar material. In practice the theoreticalEddington Limit must be modified for high luminosity stars and the empiricalHumphreys–Davidson limit is used instead.[4]

List of the most massive known stars

[edit]
Legend
Wolf–Rayet star
Slash star
O-type star
B-type star orLBV

The following two lists show a few of the known stars, including the stars inopen clusters,OB associations, andH II regions. Despite their high luminosity, many of them are nevertheless too distant to be observed with the naked eye. Stars that are at least sometimes visible to the unaided eye have theirapparent magnitude (6.5 or brighter) highlighted with a sky blue background.

The first list gives stars that are estimated to be60M or larger; the majority of which are shown. The second list includes some notable stars which are below60M for the purpose of comparison. The method used to determine each star's mass is included to give an idea of the data's uncertainty; note that the mass of binary stars can be determined far more accurately. The masses listed below are the stars' current (evolved) mass, not their initial (formation) mass.

This list isincomplete; you can help byadding missing items.(January 2016)
Stars with60M or greater
NameLocationM (M)L (L)Teff (K)Spectral typeDist. (ly)mVMass estimated byLinkRefs
R136a1R136291±467,244,000+699,000
−1,078,000
46,000+1,250
−2,375
WN5h163,00012.28±0.01evolutionSIMBAD[5][6][7][8]
BAT99-98NGC 20702265,012,00045,000WN6165,00013.5mass-luminosity relationSIMBAD[9][10]
R136a2R136195±355,129,000+367,000
−342,000
47,000+1,000
−625
WN5h163,00012.80±0.01evolutionSIMBAD[5][6][7][8]
Melnick 42R1361893,631,00047,300O2If*163,00012.86mass-luminosity relationSIMBAD[11][10]
R136a3R136184±405,012,000+236,000
−226,000
50,000+2,500
−8,000
WN5h163,00012.97±0.01evolutionSIMBAD[5][6][7][8]
W51-57W511601,820,000–4,786,00042,700O4V20,000evolution[12]
HD 15558 AIC 1805≥152±51661,000O5.5III(f)24,4007.87
combined
binarySIMBAD[13][14]
W51-3W51148+105
−82
1,348,000+626,000
−437,000
3,890,000+4,238,000
−2,028,000
39,800O3V–O8V20,000evolutionSIMBAD[12]
Melnick 34 AR136147±222,692,000+544,000
−453,000
53,000±1,200WN5h163,00013.10
combined
mass-luminosity relationSIMBAD[15][10]
VFTS 1022R136142.8+25.6
−25.2
3,020,000+782,000
−621,000
42,200O3.5If*/WN7164,00013.44evolutionSIMBAD[16]
R136cR136142.0+32.7
−24.7
3,802,000+1,568,000
−1,110,000
42,170±1,890WN5h163,00012.86evolutionSIMBAD[16][10][e]
LH 10-3209 ANGC 17631402,312,00050,900O3III(f*)160,00011.859±0.1751
combined
evolutionSIMBAD[17][18][19][e]
VFTS 682Runaway fromR136137.8+27.5
−15.9
3,236,000+838,000
−666,000
54,450±1,960WN5h164,00016.08evolutionSIMBAD[16]
VFTS 506NGC 2070136.8±24.22,692,00055,000ON2V((n))((f*))164,00013.31evolutionSIMBAD[20]
Melnick 34 BR136136±202,344,000+474,000
−394,000
53,000±1,200WN5h163,00013.10
combined
mass-luminosity relationSIMBAD[15][10]
W51dW511351,288,000–2,884,00042,700O3V–O4V20,000evolution[12]
NGC 3603-BHD 97950132±132,884,000+504,000
−429,000
42,000±2,000WN6h24,80011.33evolutionSIMBAD[21][22]
HD 269810NGC 20291302,188,00052,500O2III(f*)163,00012.22spectroscopySIMBAD[23][24]
R136a7R136127+15
−16
2,291,000+280,000
−341,000
54,000+2,000
−3,000
O3III(f*)163,00013.97±0.01evolutionSIMBAD[7][10][8]
WR 42eRunaway fromHD 979501233,200,00043,700O3If*/WN625,00014.529ejectionSIMBAD[25][f]
Sk -69° 249 ANGC 20741194,130,00038,900O7If160,00012.02±0.21
combined
evolutionSIMBAD[26][27]
Sk -69° 212NGC 20441192,377,00045,400O5III(f)160,00012.416±0.0600evolutionSIMBAD[26][18]
ST5-31NGC 20741192,168,00050,700O3If*160,00012.273±0.084evolutionSIMBAD[26][28]
R136a5R136116+6
−5
2,089,000+149,000
−139,000
48,000±750O2I(n)f*157,00013.71±0.01evolutionSIMBAD[7][10][8]
MSP 183Wd2115724,00049,000±3,000O3V((f))20,00013.878±0.017spectroscopySIMBAD[29][30]
WR 24Collinder 2281142,951,00050,100WN6ha-w14,0006.48evolutionSIMBAD[31][32]
NGC 3603-C1HD 97950113+11
−8
2,239,000+392,000
−333,000
44,000±2,000WN6h24,80011.89
combined
evolutionSIMBAD[21][22][e]
Arches-F9Arches Cluster111.32,239,00036,800WN8-925,000spectroscopySIMBAD[33][34]
VFTS 545R136110.4+18.9
−16.6
1,995,000+516,000
−410,000
47,320±1,700O2If*/WN5164,00013.40evolutionSIMBAD[16][10]
HSH95-36R136110±51,862,000+133,000
−124,000
49,500+750
−1,000
O2If*163,00014.41±0.01evolutionSIMBAD[7][10][8]
Cygnus OB2 #12 ACygnus OB21101,660,00013,700B3–4Ia+5,20011.702
combined
spectroscopySIMBAD[35][36][e]
Melnick 39 AR136109±71,585,000+654,000
−463,000
44,000±2,500O3If*/WN6-A160,00013.0
combined
binarySIMBAD[37]
R136a4R136108+6
−7
1,905,000+90,000
−207,000
50,000+500
−2,000
O3V((f*))(n)157,00013.96±0.01evolutionSIMBAD[7][10][8]
VFTS 621NGC 20701071,380,00050,100O2V((f*))z164,00015.39mass-luminosity relationSIMBAD[11][10]
R136a6R136105+8
−10
1,738,000+124,000
−116,000
48,000±750O2I(n)f*p157,00013.35±0.01evolutionSIMBAD[7][10][8]
W49-3W49105±201,514,000+528,000
−392,000
40,700+5,000
−4,400
O3–O7V36,200evolutionSIMBAD[38][39]
R99N441033,162,00028,000Ofpe/WN9164,00011.520±0.049mass-luminosity relationSIMBAD[9][14]
Arches-F6Arches Cluster101.02,239,00034,700WN8-925,000spectroscopySIMBAD[33][34]
Arches-F1Arches Cluster100.91,995,00033,700WN8-925,000spectroscopySIMBAD[33][34]
Peony StarPeony Nebula1002,951,000+1,217,000
−862,000
25,100WN1026,000evolutionSIMBAD[40][39]
HD 93129 AaTrumpler 14100+25
−60
1,413,000+172,000
−154,000
52,000±3,000O2If*7,5007.310±0.011
combined
spectroscopySIMBAD[41][14]
Mc30-1 AMercer 30993,236,00032,200O6–7.5If+40,000evolutionSIMBAD[42][g][e]
VFTS 1028R136991,230,00047,300O3III(f*) or O4–5V164,00013.82mass-luminosity relationSIMBAD[11]
WR 25 ATrumpler 16982,399,00050,100WN6h-w6,5008.80
combined
evolutionSIMBAD[31][14][e]
BI 253Runaway fromR13697.6+22.2
−23.1
1,175,000+410,000
−304,000
54,000±1,500O2V-III(n)((f*))164,00013.669±0.062evolutionSIMBAD[16][43]
R136a8R13696±61,479,000+106,000
−99,000
49,500±1,250O2–3V157,00014.42±0.01evolutionSIMBAD[7][8]
HM 1-6HM 1951,500,00044,800O5If11,00011.64evolutionSIMBAD[44][45]
NGC 3603-42HD 9795095946,00046,500O3III(f*)25,00012.86evolutionSIMBAD[17][22]
ST2-22NGC 2044941,247,00051,300O3V((f))160,00014.3evolutionSIMBAD[26][46]
VFTS 562NGC 2070941,122,00042,200O4V164,00013.66mass-luminosity relationSIMBAD[11][10]
NGC 3603-A1aHD 9795093.3±11.01,000,00037,000O3If*/WN624,80011.18
combined
eclipsing binarySIMBAD[47][21][22]
WR 21a ARunaway fromWd293.2+2.2
−1.9
1,514,000+224,000
−195,000
42,000O2.5If*/WN6ha26,10012.661±0.03combinedeclipsing binarySIMBAD[48][24]
HD 303308Trumpler 16931,138,00051,300O3V9,2008.17evolutionSIMBAD[44][24]
VFTS 512NGC 2070931,096,00047,300O2V-III((f*))164,00014.28mass-luminosity relationSIMBAD[11][10]
R136bR13692±52,239,000+160,000
−149,000
35,500±750O4If163,00013.24±0.01evolutionSIMBAD[7][10][8]
VFTS 16Runaway fromR13691.6+11.5
−10.5
1,318,000+341,000
−271,000
50,600+500
−590
O2III-If*164,00013.546±0.010evolutionSIMBAD[16][10]
NGC 346-W1NGC 346911,500,00043,400O5.5If200,00012.57evolutionSIMBAD[26][49]
NGC 3603-A3HD 9795091863,00046,400O3III(f*)24,80012.95evolutionSIMBAD[17][22]
W49-2W4990–240,250±1204,365,000+3,397,000
−1,910,000
35,500+1,700
−1,600
O4If–O5.5If36,200spectroscopySIMBAD[38][39]
η Carinae ATrumpler 16904,000,0009,470 (near the top of the wind)LBV7,5006.48±0.01
combined
spectroscopySIMBAD[50][51]
R146Runaway fromR13688.4+16.9
−15.8
1,950,000+505,000
−401,000
53,090±1,910WN5ha164,00013.116±0.0201evolutionSIMBAD[16][10]
WR 89HM 1872,138,00039,800WN8h11,00011.02±0.01evolutionSIMBAD[31][24]
VFTS 599NGC 207087977,00044,700O3III(f*)164,00013.80mass-luminosity relationSIMBAD[11][10]
Arches-F7Arches Cluster86.31,995,00033,700WN8-925,000spectroscopySIMBAD[33][34]
R147Runaway fromR13685.6+15.2
−16.6
2,291,000+593,000
−471,000
47,320±1,700WN5h164,00012.993±0.042evolutionSIMBAD[16][52]
Sk 80NGC 346851,500,00038,900O7If200,00012.31evolutionSIMBAD[26][53]
BAT99-92 BTarantula Nebula851,175,00023,000B1Ia165,00011.39±0.02combinedspectroscopySIMBAD[54]
Sk -70° 91BSDL 183084.09851,00048,849ON2III165,00012.78evolutionSIMBAD[55][18][h]
Sk -66° 172N6484.09851,00048,849O2III(f*)160,00013.1evolutionSIMBAD[55][18][i]
Sk -68° 137Runaway fromR13684.09851,00048,849O2III(f*)160,00013.346±0.0101evolutionSIMBAD[55][18]
LH 64-16NGC 200184.09851,00048849ON2III(f*)160,00013.666±0.010evolutionSIMBAD[55][28]
Melnick 33Na AR13683±191,413,000+725,000
−479,000
50,000±2,500OC2.5If*163,00013.79
combined
evolutionSIMBAD[56][57]
Melnick 39 BR13683±51,000,000+413,000
−292,000
48,000±2,500O3If*/WN6-A160,00013.0
combined
binarySIMBAD[37]
WR 20a AWd282.7±5.51,150,000±150,00043,000±2,000WN6ha20,00013.5
combined
eclipsing binarySIMBAD[58]
Arches-F2 AArches Cluster82±121,862,000+227,000
−203,000
34,100+2,000
−1,000
WN8–9h25,000eclipsing binarySIMBAD[59]
WR 20a BWd281.9±5.51,150,000±150,00043,000±2,000WN6ha20,00013.5
combined
eclipsing binarySIMBAD[58]
R139 ANGC 207081.6+7.5
−7.2
1,585,000+235,000
−205,000
34,000±1,100O6.5I163,00011.94
combined
evolutionSIMBAD[60]
Tr27-27Trumpler 27811,247,00037,200O8III((f))3,90013.31evolutionSIMBAD[44][24]
HSH95-46R13680+5
−6
1,259,000+59,000
−162,000
47,500+500
−2,500
O2-3III(f*)163,00014.56±0.01evolutionSIMBAD[7][10]
Arches-F15Arches Cluster79.71,414,00035,800O4–6If25,000spectroscopySIMBAD[33][34]
BI 237BSDL 252779.66661,00051,269O2V((f*))165,00013.830±0.0431spectroscopySIMBAD[55][18][j]
VFTS 1017R13679.0+17.8
−15.9
1,622,000+420,000
−334,000
50,120±1,800O2If*/WN5164,00014.50evolutionSIMBAD[16][10]
VFTS 151Tarantula Nebula791,047,00042,200O6.5II(f)p164,000mass-luminosity relationSIMBAD[11][10]
VFTS 94Tarantula Nebula79955,00042,200O3.5Inf*p164,00014.161±0.0271mass-luminosity relationSIMBAD[11][18]
VFTS 1018R13679832,00042,200O3III(f*)163,00014.34mass-luminosity relationSIMBAD[11]
LH 41-32NGC 191078946,00048,200O4III160,00013.086±0.0101evolutionSIMBAD[26][18]
Pismis 24-17Pismis 2478851,000O3.5III5,90011.84spectroscopySIMBAD[61][45]
LSS 4067HM 1771,000,00040,000O4If11,00011.26±0.07evolutionSIMBAD[62][63]
W51-2W5177+26
−22
724000+167000
−136000
1288000+617000
−417000
42,700+2,000
−1,900
O3V–O5V20,000evolutionSIMBAD[12]
R139 BNGC 207076.4+7.1
−6.7
1,445,000+214,000
−187,000
34,700±1,100O7I163,00011.94
combined
evolutionSIMBAD[60]
NGC 346-W3NGC 346761,038,00051,300O3V200,00012.80±0.04evolutionSIMBAD[26][49]
BAT99-68NGC 2044761,000,00045,000O3If*/WN7165,00014.13mass-luminosity relationSIMBAD[9][18]
HD 93632Collinder 22876946,00045,400O5III(f)10,0009.10evolutionSIMBAD[44][14]
AB1DEM S10751,175,00079,000WN3ha197,00015.24±0.02spectroscopySIMBAD[64][49][k]
VFTS 457NGC 207074.6+20.1
−9.2
1,585,000+410,000
−326,000
39,810±1,430O3.5If*/WN7164,00013.74evolutionSIMBAD[16][10]
HD 38282 ARunaway fromR13674±42,754,000+336,000
−300,000
50,000±2,000WN5/6h163,00011.11±0.03
combined
binarySIMBAD[65][24]
BAT99-6 ANGC 174774794,00045,000O3If*/WN7165,00011.95combinedspectroscopySIMBAD[54]
Pismis 24-1NEPismis 2474776,000O3.5If*6,500evolutionSIMBAD[61][66]
VFTS 608NGC 207074724,00042,200O4III(f)164,00014.22mass-luminosity relationSIMBAD[11][10]
HSH95-31R13673±3955,000+68,000
−64,000
47,500+1,000
−750
O2V((f*))163,00014.35evolutionSIMBAD[7][10]
Mc30-11Mercer 3073741,00036,800O5.5-6I-II40,000spectroscopySIMBAD[42][g]
VFTS 566NGC 207073708,00044,700O3III(f*)164,00014.05mass-luminosity relationSIMBAD[11][10]
Mc30-3Mercer 3073676,00039,300O6If40,000spectroscopySIMBAD[42][g]
NGC 2044-W35NGC 204472863,00048,200O4III160,00014.10evolutionSIMBAD[26][18]
VFTS 216Tarantula Nebula72692,00044,700O4V((fc))164,00014.389±0.0641mass-luminosity relationSIMBAD[11][18]
VFTS 542R13671.4+16.3
−11.3
1,445,000+374,000
−297,000
44,670±2,010O2If*/WN5164,00013.47evolutionSIMBAD[16][10]
VFTS 1021R13671.4+12.7
−9.2
1,259,000+326,000
−259,000
35,500±1,500O4If+164,00013.31evolutionSIMBAD[16]
VFTS 3Tarantula Nebula711,072,00021,000B1Ia+164,000spectroscopySIMBAD[67][10]
ST2-1NGC 204471946,00044,100O5.5III160,00014.3evolutionSIMBAD[26][46]
NGC 3603-A1bHD 9795070.4±9.31,000,00042,000O3If*/WN524,80011.18
combined
eclipsing binarySIMBAD[47][21][22]
Arches-F12Arches Cluster70.01,585,00037,300WN7–825,000spectroscopySIMBAD[33][34]
HD 37974N135701,400,00022,500B0.5Ia+163,00010.99±0.03spectroscopySIMBAD[68][24][l]
M33 X-7 BTriangulum Galaxy70.0±6.9525,000+92,000
−78,000
34,000–36,000O7III–O8III2,700,00018.70binarySIMBAD[69][70]
VFTS 125Tarantula Nebula69.6+22.3
−17.2
794,000+496,000
−281,000
55,150±5,520Ope164,00016.6evolutionSIMBAD[16][46]
HD 38282 BRunaway fromR13669±42,455,000+300,000
−267,000
45,000±2,000WN6/7h163,00011.11±0.03
combined
binarySIMBAD[65][24]
HD 229059Berkeley 87691,038,00026,300B1Ia3,0008.70evolutionSIMBAD[44][14]
ST2-32NGC 204469863,00045,400O5III160,00013.903±0.0921evolutionSIMBAD[26][18]
ST2-3NGC 204469863,00044,100O5.5V160,00014.264±0.1241evolutionSIMBAD[26][18]
W28-23NGC 203369655,00051,300O3V160,00013.702±0.050evolutionSIMBAD[26][28]
HD 46150NGC 22446941,100O5V((f))z5,2006.73evolutionSIMBAD[17][71]
HD 93403 ATrumpler 1668.5+12.3
−14.6
1,047,000+49,000
−47,000
39,300±1,100O5.5I10,4008.27±0.74
combined
evolutionSIMBAD[72][24]
HSH95-47R13668±4955,000+117,000
−64,000
43,500+1,750
−1,000
O2V((f*))163,00014.72±0.01evolutionSIMBAD[7][10][8]
HSH95-48R13668±4912,000+65,000
−80,000
46,500+1,000
−1,500
O2–3III(f*)163,00014.75±0.01evolutionSIMBAD[7][8]
HD 93130Collinder 22868863,00039,900O7II(f)10,0008.04evolutionSIMBAD[44][14]
W51-61W5168398,000–1,259,00038,000O7.5V20,000evolutionSIMBAD[12][39]
Sk -69° 200NGC 2033671,038,00026,300B1I160,00011.18evolutionSIMBAD[26][18]
BAT99-93LH 9967794,00045,000O3If*165,00013.446±0.0201mass-luminosity relationSIMBAD[9][18]
Arches-F18Arches Cluster66.91,122,00037,300O4-6I25,000spectroscopySIMBAD[33][34]
Arches-F4Arches Cluster66.41,995,00037,300WN7-825,000spectroscopySIMBAD[33][34]
Z15Messier 8166.11,445,000+139,000
−127,000
25,000±1,000B0.511,986,00020.495spectroscopySIMBAD[73]
HD 5980 BNGC 34666±101,778,000+734,000
−519,000
45,000+10,000
−7,000
WN6−7200,00011.31±0.08
combined
binarySIMBAD[74][75]
BAT99-104R136661,148,00063,000O2If*/WN5165,00012.5mass-luminosity relationSIMBAD[9][18]
Sk -67° 108LMC66±2933,000+67,000
−82,000
43,500+750
−1,000
O5III(f)164,00012.525evolutionSIMBAD[76]
HD 190429 AnearBarnard 14666.0+17.4
−13.4
912,00039,000O4If7,8007.09±0.01spectroscopySIMBAD[77][14]
LH 31-1003NGC 185866863,00041,900O6Ib(f)160,00013.186±0.0101evolutionSIMBAD[26][18]
VFTS 169Tarantula Nebula66.0±9.8813,000+284,000
−210,000
47,000±1,500O2.5V(n)((f*))164,00014.437±0.0251evolutionSIMBAD[16][18]
Pismis 24-1SWPismis 2466646,000O4III6,500evolutionSIMBAD[61][66]
HSH95-89R13665+10
−9
977,000+198,000
−145,000
44,000±2,500O4V163,00014.76±0.01spectroscopySIMBAD[8]
HSH95-40R13665+6
−7
851,000+104,000
−159,000
47,500+2,000
−3,250
O3V163,00014.49evolutionSIMBAD[7][10]
HSH95-58R13665+6
−7
741,000+150,000
−96,000
47,500+3,000
−2,250
O2–3V163,00014.80±0.01evolutionSIMBAD[7][10][8]
VFTS 63Tarantula Nebula65575,00042,200O5III(n)(fc)164,00014.4mass-luminosity relationSIMBAD[11][46]
VFTS 145Tarantula Nebula65741,00039,800O8fp164,00014.30mass-luminosity relationSIMBAD[11][10]
VFTS 518NGC 207065562,00044,700O3.5III(f*)164,00015.11mass-luminosity relationSIMBAD[11][10]
W49-8W4965±13676,000+279,000
−197,000
40,700+5,000
−4,400
O3–O7V36,200evolutionSIMBAD[38][39]
BD+43° 3654Runaway fromCygnus OB264.62,030,000±210,00046,800±900O6If+5,40010.06±0.04evolutionSIMBAD[78][79]
Sk -70° 115LMC64+3
−2
1,047,000+101,000
−92,000
34,750±1,000O6.5Ifc164,00012.166±0.0900evolutionSIMBAD[76]
Sk -69° 25NGC 174864787,00043,600O6V((f))160,00011.886±0.0101evolutionSIMBAD[26][18]
HSH95-50R13664+5
−4
708,000+86,000
−62,000
47,000+2,000
−1,250
O3–4V((f*))163,00014.65±0.01evolutionSIMBAD[7][10][8]
W49-5W4964±8661,000+171,000
−136,000
42,700+2,000
−1,900
O3–O5V36,200evolutionSIMBAD[38][39]
ST5-71NGC 207463718,00045,400O5III160,00013.266±0.0201evolutionSIMBAD[26][18]
VFTS 259Tarantula Nebula62.6+7.8
−8.6
1,000,000+259,000
−206,000
36,800+500
−520
O6Iaf164,00013.65evolutionSIMBAD[16][10]
Mc30-6a AMercer 30621,349,00029,900Ofpe/WN940,000evolutionSIMBAD[42][g][e]
AB9DEM S80621,122,000100,000WN3ha197,00015.26±0.13spectroscopySIMBAD[64][49][m]
LH 41-1017NGC 191062787,00042,700B1160,00012.266±0.0101evolutionSIMBAD[26][18]
Brey 32 BNGC 196662718,00043,600O6.5V165,00012.317±0.02
combined
evolutionSIMBAD[26][24]
HD 93160Trumpler 1462718,00042,700O6III8,0007.60evolutionSIMBAD[44][14]
HSH95-35R13662+4
−3
661,000+64,000
−44,000
47,500+1,500
−1,000
O3V163,00014.32±0.01evolutionSIMBAD[7][10][8]
VFTS 664NGC 207062525,00039,800O7II(f)164,00013.937±0.0591mass-luminosity relationSIMBAD[11][18]
HD 229196Cygnus OB961.640,862O55,0008.59evolutionSIMBAD[78][45]
HD 5980 ANGC 34661±102,239,000+580,000
−460,000
45,000±5,000WN6h200,00011.31±0.08
combined
binarySIMBAD[74][75]
WR 102hbQuintuplet cluster612,630,00025,100WN9h26,000evolutionSIMBAD[80][81]
VFTS 267Tarantula Nebula61+3
−2
813,000+78,000
−72,000
42,500±1,250O3.5III(f*)164,00013.49evolutionSIMBAD[76]
LH 41-18NGC 191061787,00038,500O8.5V((f))160,00012.586±0.0101evolutionSIMBAD[26][18]
AB8 BNGC 60261+14
−25
708,000+183,000
−146,000
45,000±5,000O4V197,00012.90
combined
binarySIMBAD[74][82]
Mc30-9 AMercer 3061676,00034,500O6-7I-III40,000evolutionSIMBAD[42][g][e]
ST5-25NGC 207461545,00048,600O4V160,00013.551±0.109spectroscopySIMBAD[26][28]
VFTS 422NGC 207061501,00039,800O4III(f)164,00015.14mass-luminosity relationSIMBAD[11][10]
Sk -67° 166GKK-A14460.68832,00041,809O4If+160,00012.22±0.03spectroscopySIMBAD[55][18][n]
Sk -65° 47NGC 192360.68832,00041,809O4If160,00012.466±0.1521spectroscopySIMBAD[55][18]
Mc30-7 AMercer 30601,738,00041,400WN640,000evolutionSIMBAD[42][g][e]
R134NGC 2070601,585,00039,800WN6(h)164,00012.75mass-luminosity relationSIMBAD[11][10]
BAT99-96NGC 207060.0+9.2
−7.7
1,349,000+349,000
−277,000
41,690±1,500WN8(h)164,00013.76evolutionSIMBAD[16]
Arches-F2 BArches Cluster60±81,349,000+165,000
−147,000
33,800+2,000
−1,000
O5–6Ia+25,000eclipsing binarySIMBAD[59]
HSH95-55R13660+6
−5
589,000+119,000
−52,000
47,500+3,000
−1,500
O2V((f*))z163,00014.74±0.01evolutionSIMBAD[7][10][8]

A few notable large stars with masses less than 60 M are shown in the table below for the purpose of comparison, ending with theSun, which isvery close, but would otherwise be too small to be included in the list. At present, all the listed stars are naked-eye visible and relatively nearby.

Star nameLocationMass
(M,Sun = 1)
Eff. temp.
(K)
Approx. dist.
(ly)
Appt. vis. mag.Mass est.methodLinkRef.
λ CepheiRunaway star fromCepheus OB351.436,0003,1005.05spectroscopySIMBAD[77][14]
τ Canis Majoris AaNGC 23625032,0005,1204.89evolutionSIMBAD[83][14]
θ Muscae AbCentaurus OB14433,0007,4005.53
combined
evolutionSIMBAD[84][14]
θ2 Orionis AOrion OB1 ofOrion complex3934,9001,5005.02evolutionSIMBAD[85][86]
α CamelopardalisRunaway star fromNGC 150237.629,0006,0004.29evolutionSIMBAD[87][14]
P CygniIC 4996 ofCygnus OB13718,7005,1004.82spectroscopySIMBAD[88][14][o]
ζ1 ScorpiiNGC 6231 ofScorpius OB136 - 5317,2008,2104.705spectroscopySIMBAD[89][90]
ζ Orionis AaAlnitak inOrion OB1 ofOrion complex3329,5001,2602.08evolutionSIMBAD[91]
θ1 Orionis C1Trapezium Cluster ofOrion complex3339,0001,3405.13
combined
evolutionSIMBAD[92][14]
κ CassiopeiaeCassiopeia OB143323,5004,0004.16evolutionSIMBAD[93][14]
μ NormaeNGC 61693328,0003,2604.91spectroscopySIMBAD[94][14]
η Carinae BTrumpler 16 ofCarina Nebula3037,2007,5004.3
combined
binarySIMBAD[95][96]
γ2 Velorum BVela OB228.535,0001,2301.83
combined
evolutionSIMBAD[97][14]
Alnilamε Orionis inOrion OB1 ofOrion complex28.4±2.025,0001,2501.69spectroscopy + interferometrySIMBAD[98][14]
Meissa AInCollinder 69 ofOrion complex27.937,7001,3003.54spectroscopySIMBAD[94][99]
ξ PerseiMenkib inCalifornia Nebula ofPerseus OB226.135,0001,2004.04evolutionSIMBAD[87][14]
ζ Puppis Naos inVela R2 ofVela Molecular Ridge25.3±5.340,0001,0802.25empiricalSIMBAD[100][14][p]
WR 79aNGC 6231 ofScorpius OB124.435,0005,6005.77spectroscopySIMBAD[94][14]
Mintaka Aa1InOrion OB1 ofOrion complex2429,5001,2002.5
combined
evolutionSIMBAD[101][102]
ι Orionis Aa1 Hatysa inNGC 1980 ofOrion complex23.132,5001,3402.77
combined
evolutionSIMBAD[103][104]
κ CrucisJewel Box Cluster ofCentaurus OB12316,3007,5005.98evolutionSIMBAD[105][75]
WR 78NGC 6231 ofScorpius OB12250,1004,1006.48spectroscopySIMBAD[31][32]
ο2 Canis MajorisField star21.415,5002,8003.043evolutionSIMBAD[94][14]
Rigel AInOrion OB1 ofOrion complex2112,1008600.13evolutionSIMBAD[106][14]
ζ OphiuchiUpper Scorpius subgroup ofScorpius OB220.234,0003702.569evolutionSIMBAD[87][14]
υ OrionisOrion OB1 ofOrion complex2033,4002,9004.618evolutionSIMBAD[107][108]
σ Orionis AaOrion OB1 ofOrion complex1835,0001,2604.07
combined
spectroscopySIMBAD[109][110]
μ ColumbaeRunaway star fromTrapezium Cluster1633,0001,3005.18spectroscopySIMBAD[111][14]
SaiphInOrion OB1 ofOrion complex15.526,5006502.09evolutionSIMBAD[112][14]
σ CygniCygnus OB41510,8003,2604.233evolutionSIMBAD[113][114]
θ Carinae AIC 2602 ofScorpius OB214.931,0004602.76
combined
evolutionSIMBAD[94][115]
θ2 Orionis BOrion OB1 ofOrion complex14.829,3001,5006.38spectroscopySIMBAD[116]
ζ PerseiPerseus OB214.520,8007502.86evolutionSIMBAD[112][14]
σ Orionis BOrion OB1 ofOrion complex1431,0001,2604.07
combined
spectroscopySIMBAD[109][110]
β Canis MajorisMirzam inLocal Bubble ofScorpius OB213.523,2004901.985evolutionSIMBAD[117][118]
ε Persei Aα Persei Cluster13.526,5006402.88
combined
evolutionSIMBAD[119][120]
ι Orionis Aa2NGC 1980 ofOrion complex13.127,0001,3402.77
combined
evolutionSIMBAD[103][104]
δ Scorpii A Dschubba inUpper Scorpius subgroup ofScorpius OB21327,4004402.307
combined
evolutionSIMBAD[121][122]
σ Orionis AbOrion OB1 ofOrion complex1329,0001,2604.07
combined
spectroscopySIMBAD[109][110]
θ Muscae Aa WR 48 inCentaurus OB111.583,0007,4005.53
combined
spectroscopySIMBAD[123][14]
γ2 Velorum AWR 11 inVela OB2957,0001,2301.83
combined
spectroscopySIMBAD[97][14]
ρ Ophiuchi Aρ Ophiuchi cloud complex ofScorpius OB28.722,0003604.63
combined
evolutionSIMBAD[94][14]
BellatrixIn Bellatrix Cluster ofOrion complex7.721,8002501.64evolutionSIMBAD[124][14]
Antares BLoop I Bubble ofScorpius OB27.218,5005505.5evolutionSIMBAD[125][99]
λ Tauri APisces-Eridanus stellar stream7.1818,7004803.47
combined
evolutionSIMBAD[126][127]
δ Perseiα Persei Cluster714,9005203.01evolutionSIMBAD[94][115]
ψ Perseiα Persei Cluster6.216,0005804.31evolutionSIMBAD[94][14]
α Pavonis Aa Peacock inTucana-Horologium association5.9117,7001801.94evolutionSIMBAD[128][104]
AlcyoneInPleiades5.912,3004402.87
combined
evolutionSIMBAD[129][14]
γ Canis MajorisMuliphein inCollinder 1215.613,6004404.1evolutionSIMBAD[94][130]
η Canis MajorisAludra inCollinder 1215.5 or 9.515,0002,0002.45SED modelling / spectroscopySIMBAD[131][14]
ο VelorumIC 2391 ofScorpius OB25.516,2004903.6evolutionSIMBAD[132][115]
ο AquariiPisces-Eridanus stellar stream4.213,5004404.71evolutionSIMBAD[133][134]
ν FornacisPisces-Eridanus stellar stream3.6513,4003704.69evolutionSIMBAD[135][14]
φ EridaniTucana-Horologium association3.5513,7001503.55evolutionSIMBAD[128][136]
η Chamaeleontisη Chamaeleontis moving group ofScorpius OB23.212,5003105.453evolutionSIMBAD[137][75]
ε Chamaeleontisε Chamaeleontis moving group ofScorpius OB22.8710,9003604.91evolutionSIMBAD[138][115]
τ1 AquariiPisces-Eridanus stellar stream2.6810,6003205.66evolutionSIMBAD[139][140]
ε HydriTucana-Horologium association2.6411,0001504.12evolutionSIMBAD[139][141]
β1 TucanaeTucana-Horologium association2.510,6001404.37evolutionSIMBAD[94][99]
SunSolar System15,7720.0000158−26.744standardIAU[142][143][144]
  1. ^For some methods, for any one temperature or brightness, different chemical composition indicates a different estimate for stellar mass.
  2. ^For a binary star, it is possible to measure the individual masses of the two stars by studying their orbital motions, usingKepler's laws of planetary motion.
  3. ^Thesuperwinds from massive stars are similar to thesuperwinds generated byasymptotic giant branch (AGB) stars –red giants – that formplanetary nebulae. These stars' later remnants become the (technically non-stellar)white dwarf cores of planetary nebulae.
  4. ^For examples of stellar debris seehypernovae andsupernova remnant.
  5. ^abcdefghiThis is a binary system but the secondary is much less massive than the primary.
  6. ^This unusual measurement was made by assuming the star was ejected from a three-body encounter in NGC 3603. This assumption also means that the current star is the result of a merger between two original close binary components. The mass is consistent with evolutionary mass for a star with the observed parameters.
  7. ^abcdefMercer 30 is an open cluster in Dragonfish Nebula.
  8. ^BSDL 1830 is a star cluster in Large Magellanic Cloud.
  9. ^N64 is an emission nebula in Large Magellanic Cloud.
  10. ^BSDL 2527 is a star cluster in Large Magellanic Cloud.
  11. ^DEM S10 is a H II region in Small Magellanic Cloud.
  12. ^N135 is an emission nebula in Large Magellanic Cloud.
  13. ^DEM S80 is a H II region in Small Magellanic Cloud.
  14. ^GKK-A144 is a stellar association in Large Magellanic Cloud.
  15. ^IC 4996 is an open cluster in Cygnus OB1.
  16. ^Vela R2 is a OB association in Vela Molecular Ridge.

Black holes

[edit]
Main articles:Black hole,List of black holes, andList of most massive black holes

Black holes are the end point ofthe evolution of massive stars.[A] Technically they are not stars, as they no longer generate heat and light via nuclear fusion in their cores. Someblack holes may have cosmological origins, and would then never have been stars. This is thought to be especially likely in the cases of themost massive black holes.

See also

[edit]

Footnotes

[edit]
  1. ^A very few low / no metallicity stars (populations II andIII) between 140–250 M end their lives by atype II-P supernova explosion, which is powerful enough to blow (almost) all matter away from the vicinity of the star, so that not enough material remains to create either a black hole, or a neutron star, or a white dwarf: There is no central remnant; all that remains is an expanding shell of shocked gas from the SN explosion colliding with previously quiescent material ejected before thecore collapse explosion.

References

[edit]
  1. ^van Marle, A.J.; Owocki, S.P.; Shaviv, N.J. (March 2008).Continuum-driven winds from super-Eddington stars: A tale of two limits. First Stars III.AIP Conference Proceedings. Vol. 990. Santa Fe, NM. pp. 250–253.arXiv:0708.4207.Bibcode:2008AIPC..990..250V.doi:10.1063/1.2905555.ISSN 0094-243X.S2CID 118364586.
  2. ^Maeder, A.; Georgy, C.; Meynet, G.; Ekström, S. (March 2012)."On the Eddington limit and Wolf-Rayet stars".Astronomy & Astrophysics.539: A110.arXiv:1201.5013.Bibcode:2012A&A...539A.110M.doi:10.1051/0004-6361/201118328.ISSN 0004-6361.S2CID 119230088.
  3. ^Banerjee, Sambaran; Kroupa, Pavel; Oh, Seungkyung (21 October 2012)."The emergence of super-canonical stars in R136-type starburst clusters: Super-canonical stars in R136".Monthly Notices of the Royal Astronomical Society.426 (2):1416–1426.arXiv:1208.0826.Bibcode:2012MNRAS.426.1416B.doi:10.1111/j.1365-2966.2012.21672.x.ISSN 0035-8711.S2CID 119202197.
  4. ^Ulmer, Andrew; Fitzpatrick, Edward L. (September 1998). "Revisiting the modified Eddington limit for massive stars".The Astrophysical Journal.504 (1):200–206.arXiv:astro-ph/9708264.Bibcode:1998ApJ...504..200U.doi:10.1086/306048.ISSN 0004-637X.S2CID 14916494.
  5. ^abcKeszthelyi, Z.; Brands, S. A.; de Koter, A.; Langer, N.; Puls, J. (2025-06-18). "Evolutionary models for the Very Massive Stars in the R136 cluster of 30 Doradus in the Large Magellanic Cloud".Astronomy and Astrophysics.700: A186.arXiv:2506.15230.Bibcode:2025A&A...700A.186K.doi:10.1051/0004-6361/202554758.
  6. ^abcBestenlehner, Joachim M.; Crowther, Paul A.; Caballero-Nieves, Saida M.; Schneider, Fabian R.N.; Simón-Díaz, Sergio; Brands, Sarah A.; de Koter, Alex; Gräfener, Götz; Herrero, Artemio; Langer, Norbert; Lennon, Daniel J. (2020-12-01)."The R136 star cluster dissected with Hubble Space Telescope / STIS - II. Physical properties of the most massive stars in R136".Monthly Notices of the Royal Astronomical Society.499 (2):1918–1936.arXiv:2009.05136.Bibcode:2020MNRAS.499.1918B.doi:10.1093/mnras/staa2801.ISSN 0035-8711.
  7. ^abcdefghijklmnopqrsBrands, S.; de Koter, A.; Bestenlehner, J.; Crowther, P.; Sundqvist, J.; Puls, J.; et al. (7 April 2022)."The R136 star cluster dissected with Hubble Space Telescope/STIS. III. The most massive stars and their clumped winds".Astronomy & Astrophysics.663: A36.arXiv:2202.11080.Bibcode:2022A&A...663A..36B.doi:10.1051/0004-6361/202142742.ISSN 0004-6361.S2CID 247025548.
  8. ^abcdefghijklmnopqCrowther, P.A.; Caballero-Nieves, S.M.; Bostroem, K.A.; Maíz Apellániz, J.; Schneider, F.R.N.; Walborn, N.R.; et al. (2016)."The R136 star cluster dissected with Hubble Space Telescope / STIS. I. Far-ultraviolet spectroscopic census and the origin of He II λ 1640 in young star clusters".Monthly Notices of the Royal Astronomical Society.458 (1):624–659.arXiv:1603.04994.Bibcode:2016MNRAS.458..624C.doi:10.1093/mnras/stw273.
  9. ^abcdeHainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; et al. (May 2014). "The Wolf-Rayet stars in the Large Magellanic Cloud. A comprehensive analysis of the WN class".Astronomy & Astrophysics.565: A27.arXiv:1401.5474.Bibcode:2014A&A...565A..27H.doi:10.1051/0004-6361/201322696.ISSN 0004-6361.S2CID 55123954.
  10. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiajakalDoran, E.I.; Crowther, P.A.; de Koter, A.; Evans, C.J.; McEvoy, C.;Walborn, N.R.; et al. (October 2013). "The VLT-FLAMES Tarantula Survey: XI. A census of the hot luminous stars and their feedback in 30 Doradus".Astronomy & Astrophysics.558: A134.arXiv:1308.3412.Bibcode:2013A&A...558A.134D.doi:10.1051/0004-6361/201321824.ISSN 0004-6361.S2CID 118510909.
  11. ^abcdefghijklmnopqrBestenlehner, J.M.; Gräfener, G.; Vink, J.S.; Najarro, F.; de Koter, A.; Sana, H.; et al. (October 2014). "The VLT-FLAMES Tarantula Survey: XVII. Physical and wind properties of massive stars at the top of the main sequence".Astronomy & Astrophysics.570: A38.arXiv:1407.1837.Bibcode:2014A&A...570A..38B.doi:10.1051/0004-6361/201423643.ISSN 0004-6361.S2CID 118606369.
  12. ^abcdeBik, A.; Henning, Th.; Wu, S.-W.; Zhang, M.; Brandner, W.; Pasquali, A.; Stolte, A. (April 2019). "Near-infrared spectroscopy of the massive stellar population of W51: evidence for multi-seeded star formation".Astronomy & Astrophysics.624: A63.arXiv:1902.05460.Bibcode:2019A&A...624A..63B.doi:10.1051/0004-6361/201935061.ISSN 0004-6361.S2CID 118711844.
  13. ^De Becker, M.; Rauw, G.; Manfroid, J.; Eenens, P. (September 2006). "Early-type stars in the young open cluster IC 1805: II. The probably single stars HD 15570 and HD 15629, and the massive binary/triple system HD 15558".Astronomy & Astrophysics.456 (3):1121–1130.arXiv:astro-ph/0606379.Bibcode:2006A&A...456.1121D.doi:10.1051/0004-6361:20065300.ISSN 0004-6361.S2CID 16519684.
  14. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiajDucati, J.R. (2002). VizieR Online Data Catalog: Catalogue of Stellar Photometry in Johnson's 11-color system (Report). Collection of Electronic Catalogues. Vol. 2237. CDS/ADC.Bibcode:2002yCat.2237....0D.S2CID 118191108.
  15. ^abTehrani, Katie A.; Crowther, Paul A.; Bestenlehner, Joachim M.; Littlefair, Stuart P.; Pollock, A.M.T.; Parker, Richard J.; Schnurr, Olivier (1 April 2019)."Weighing Melnick 34: the most massive binary system known".Monthly Notices of the Royal Astronomical Society.484 (2):2692–2710.arXiv:1901.04769.Bibcode:2019MNRAS.484.2692T.doi:10.1093/mnras/stz147.ISSN 0035-8711.S2CID 119069481.
  16. ^abcdefghijklmnopSchneider, F.R.N.; Sana, H.; Evans, C.J.; Bestenlehner, J.M.; Castro, N.; Fossati, L.; et al. (5 January 2018). "An excess of massive stars in the local 30 Doradus starburst".Science.359 (6371):69–71.arXiv:1801.03107.Bibcode:2018Sci...359...69S.doi:10.1126/science.aan0106.ISSN 0036-8075.PMID 29302009.S2CID 206658504.
  17. ^abcdWalborn, Nolan R.; Howarth, Ian D.; Lennon, Daniel J.; Massey, Philip; Oey, M. S.; Moffat, Anthony F. J.; et al. (May 2002)."A New Spectral Classification System for the Earliest O Stars: Definition of Type O2".The Astronomical Journal.123 (5):2754–2771.Bibcode:2002AJ....123.2754W.doi:10.1086/339831.ISSN 0004-6256.S2CID 122127697.
  18. ^abcdefghijklmnopqrstuvwxyBonanos, A.Z.; Massa, D.L.; Sewilo, M.; Lennon, D.J.; Panagia, N.; Smith, L.J.; et al. (1 October 2009). "Spitzer SAGE Infrared Photometry of Massive Stars in the Large Magellanic Cloud".The Astronomical Journal.138 (4):1003–1021.arXiv:0905.1328.Bibcode:2009AJ....138.1003B.doi:10.1088/0004-6256/138/4/1003.ISSN 0004-6256.S2CID 14056495.
  19. ^Walborn, Nolan R.; Drissen, Laurent; Parker, Joel Wm.; Saha, Abhijit; MacKenty, John W.; White, Richard L. (October 1999). "[ITAL]HST[/ITAL]/FOS Spatially Resolved Spectral Classification of Compact OB Groups in the Large Magellanic Cloud".The Astronomical Journal.118 (4):1684–1699.doi:10.1086/301038.
  20. ^Sabín-Sanjulián, C.; Simón-Díaz, S.; Herrero, A.; Puls, J.; Schneider, F. R. N.; Evans, C. J.; Garcia, M.; Najarro, F.; Brott, I.; Castro, N.; Crowther, P. A.; de Koter, A.; de Mink, S. E.; Gräfener, G.; Grin, N. J.; Holgado, G.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Ramírez-Agudelo, O. H.; Sana, H.; Taylor, W. D.; Vink, J. S.; Walborn, N. R. (May 2017). "The VLT-FLAMES Tarantula Survey: XXVI. Properties of the O-dwarf population in 30 Doradus⋆⋆⋆".Astronomy & Astrophysics.601: A79.doi:10.1051/0004-6361/201629210.
  21. ^abcdCrowther, Paul A.; Schnurr, Olivier; Hirschi, Raphael; Yusof, Norhasliza; Parker, Richard J.; Goodwin, Simon P.; Kassim, Hasan Abu (21 October 2010)."The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M⊙ stellar mass limit".Monthly Notices of the Royal Astronomical Society.408 (2):731–751.arXiv:1007.3284.Bibcode:2010MNRAS.408..731C.doi:10.1111/j.1365-2966.2010.17167.x.ISSN 0035-8711.S2CID 53001712.
  22. ^abcdefMelena, Nicholas W.; Massey, Philip; Morrell, Nidia I.; Zangari, Amanda M. (1 March 2008). "The massive star content of NGC 3603".The Astronomical Journal.135 (3):878–891.arXiv:0712.2621.Bibcode:2008AJ....135..878M.doi:10.1088/0004-6256/135/3/878.ISSN 0004-6256.S2CID 16765414.
  23. ^Evans, C.J.; Walborn, N.R.; Crowther, P.A.; Hénault-Brunet, V.; Massa, D.; Taylor, W.D.; et al. (1 June 2010). "A massive runaway star from 30 Doradus".The Astrophysical Journal.715 (2):L74 –L79.arXiv:1004.5402.Bibcode:2010ApJ...715L..74E.doi:10.1088/2041-8205/715/2/L74.ISSN 2041-8205.S2CID 118498849.
  24. ^abcdefghijZacharias, N.; Finch, C.T.; Girard, T.M.; Henden, A.;Bartlett, J.L.; Monet, D.G.; Zacharias, M.I. (July 2012). "VizieR On-line Data Catalog: UCAC4 Catalogue".VizieR On-line Data Catalog: I/322A. Originally Published in: 2012yCat.1322....0Z; 2013AJ....145...44Z.1322.Bibcode:2012yCat.1322....0Z.S2CID 211646126.
  25. ^Roman-Lopes, A.; Franco, G.A.P.; Sanmartim, D. (26 May 2016)."SOAR Optical and Near-infrared Spectroscopic Survey of Newly Discovered Massive Stars in the Periphery of Galactic Massive Star Clusters I-NGC 3603".The Astrophysical Journal.823 (2): 96.arXiv:1604.01096.Bibcode:2016ApJ...823...96R.doi:10.3847/0004-637X/823/2/96.ISSN 1538-4357.S2CID 119204619.
  26. ^abcdefghijklmnopqrstuMassey, Philip; Waterhouse, Elizabeth;DeGioia-Eastwood, Kathleen (May 2000). "The progenitor masses of Wolf-Rayet stars and luminous blue variables determined from cluster turnoffs. I. Results from 19 OB associations in the Magellanic Clouds".The Astronomical Journal.119 (5):2214–2241.arXiv:astro-ph/0002233.Bibcode:2000AJ....119.2214M.doi:10.1086/301345.ISSN 0004-6256.S2CID 16891188.
  27. ^Fabricius, C.; Høg, E.; Makarov, V.V.; Mason, B.D.; Wycoff, G.L.; Urban, S.E. (March 2002)."The Tycho double star catalogue".Astronomy & Astrophysics.384 (1):180–189.Bibcode:2002A&A...384..180F.doi:10.1051/0004-6361:20011822.ISSN 0004-6361.S2CID 56060737.
  28. ^abcdZaritsky, Dennis; Harris, Jason; Thompson, Ian B.; Grebel, Eva K. (October 2004). "The Magellanic Clouds Photometric Survey: The Large Magellanic Cloud Stellar Catalog and Extinction Map".The Astronomical Journal.128 (4):1606–1614.arXiv:astro-ph/0407006.Bibcode:2004AJ....128.1606Z.doi:10.1086/423910.ISSN 0004-6256.S2CID 119532934.
  29. ^Drew, J.E.; Herrero, A.; Mohr-Smith, M.; Monguió, M.; Wright, N.J.; Kupfer, T.; Napiwotzki, R. (21 October 2018)."Massive stars in the hinterland of the young cluster, Westerlund 2".Monthly Notices of the Royal Astronomical Society.480 (2):2109–2124.arXiv:1807.06486.Bibcode:2018MNRAS.480.2109D.doi:10.1093/mnras/sty1905.ISSN 0035-8711.S2CID 53126230.
  30. ^Vargas Álvarez, Carlos A.; Kobulnicky, Henry A.; Bradley, David R.; Kannappan, Sheila J.; Norris, Mark A.; Cool, Richard J.; Miller, Brendan P. (25 March 2013). "The distance to the massive galactic cluster Westerlund 2 from a spectroscopic and HST photometric study".The Astronomical Journal.145 (5): 125.arXiv:1302.0863.Bibcode:2013AJ....145..125V.doi:10.1088/0004-6256/145/5/125.ISSN 0004-6256.S2CID 67769122.
  31. ^abcdHamann, W.-R.; Gräfener, G.; Liermann, A.; Hainich, R.; Sander, A.a.C.; Shenar, T.; et al. (1 May 2019). "The galactic WN stars revisited - impact of Gaia distances on fundamental stellar parameters".Astronomy & Astrophysics.625: A57.arXiv:1904.04687.Bibcode:2019A&A...625A..57H.doi:10.1051/0004-6361/201834850.ISSN 0004-6361.S2CID 104292503.
  32. ^abSamus, N.N.; Kazarovets, E.V.; Durlevich, O.V.; Kireeva, N.N.; Pastukhova, E.N. (January 2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007-2013)".VizieR On-line Data Catalog: B/GCVS. Originally Published in: 2017ARep...61...80S; 2017AZh....94...87S.1.Bibcode:2009yCat....102025S.S2CID 208116145.
  33. ^abcdefghGräfener, G.; Vink, J.S.; de Koter, A.; Langer, N. (November 2011). "The Eddington factor as the key to understand the winds of the most massive stars: Evidence for a Γ-dependence of Wolf-Rayet type mass loss".Astronomy & Astrophysics.535: A56.arXiv:1106.5361.Bibcode:2011A&A...535A..56G.doi:10.1051/0004-6361/201116701.ISSN 0004-6361.S2CID 59396651.
  34. ^abcdefghFiger, Donald F.; Najarro, Francisco; Gilmore, Diane; Morris, Mark; Kim, Sungsoo S.; Serabyn, Eugene; et al. (10 December 2002). "Massive Stars in the Arches Cluster".The Astrophysical Journal.581 (1):258–275.arXiv:astro-ph/0208145.Bibcode:2002ApJ...581..258F.doi:10.1086/344154.ISSN 0004-637X.S2CID 119002004.
  35. ^Oskinova, L. M.; Huenemoerder, D. P.; Hamann, W. -R.; Shenar, T.; Sander, A. A. C.; Ignace, R.; Todt, H.; Hainich, R. (2017)."On the Binary Nature of Massive Blue Hypergiants: High-resolution X-Ray Spectroscopy Suggests That Cyg OB2 12 is a Colliding Wind Binary".The Astrophysical Journal.845 (1): 39.arXiv:1707.04473.Bibcode:2017ApJ...845...39O.doi:10.3847/1538-4357/aa7e79.S2CID 119537489.
  36. ^Laur, Jaan; Kolka, Indrek; Eenmäe, Tõnis; Tuvikene, Taavi; Leedjärv, Laurits (February 2017). "Variability survey of brightest stars in selected OB associations".Astronomy & Astrophysics.598: A108.arXiv:1611.02452.Bibcode:2017A&A...598A.108L.doi:10.1051/0004-6361/201629395.ISSN 0004-6361.S2CID 119076598.
  37. ^abPollock, A. M. T.; Crowther, P. A.; Bestenlehner, J. M.; Broos, Patrick S.; Townsley, Leisa K. (2025-03-21)."Melnick 39 is a very massive intermediate-period colliding-wind binary".Monthly Notices of the Royal Astronomical Society.539 (2): 1291.arXiv:2503.17150.Bibcode:2025MNRAS.539.1291P.doi:10.1093/mnras/staf501.
  38. ^abcdWu, Shi-Wei; Bik, Arjan; Bestenlehner, Joachim M.; Henning, Thomas; Pasquali, Anna; Brandner, Wolfgang; Stolte, Andrea (May 2016). "The massive stellar population of W49: A spectroscopic survey".Astronomy & Astrophysics.589: A16.arXiv:1602.05190.Bibcode:2016A&A...589A..16W.doi:10.1051/0004-6361/201527823.ISSN 0004-6361.S2CID 59425112.
  39. ^abcdefCutri, Roc M.; Skrutskie, Michael F.; van Dyk, Schuyler D.; Beichman, Charles A.; Carpenter, John M.; Chester, Thomas; et al. (2003).VizieR Online Data Catalog: 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003) (Report). Collection of Electronic Catalogues. Vol. 2246. CDS/ADC. p. II/246.Bibcode:2003yCat.2246....0C.S2CID 115529446.
  40. ^Oskinova, L. M.; Steinke, M.; Hamann, W.-R.; Sander, A.; Todt, H.; Liermann, A. (21 December 2013)."One of the most massive stars in the Galaxy may have formed in isolation".Monthly Notices of the Royal Astronomical Society.436 (4):3357–3365.arXiv:1309.7651.Bibcode:2013MNRAS.436.3357O.doi:10.1093/mnras/stt1817.ISSN 0035-8711.S2CID 118513968.
  41. ^Gruner, D.; Hainich, R.; Sander, A. A. C.; Shenar, T.; Todt, H.; Oskinova, L. M.; Ramachandran, V.; Ayres, T.; Hamann, W.-R. (January 2019). "The extreme O-type spectroscopic binary HD 93129A: A quantitative, multiwavelength analysis".Astronomy & Astrophysics.621: A63.arXiv:1811.07820.Bibcode:2019A&A...621A..63G.doi:10.1051/0004-6361/201833178.
  42. ^abcdefde la Fuente, D.; Najarro, F.; Borissova, J.; Ramírez Alegría, S.; Hanson, M.M.; Trombley, C.; et al. (May 2016). "Probing the Dragonfish star-forming complex: The ionizing population of the young massive cluster Mercer 30".Astronomy & Astrophysics.589: A69.arXiv:1602.02503.Bibcode:2016A&A...589A..69D.doi:10.1051/0004-6361/201528004.ISSN 0004-6361.S2CID 119096455.
  43. ^Rivero González, J.G.; Puls, J.; Najarro, F.; Brott, I. (January 2012). "Nitrogen line spectroscopy of O-stars: II. Surface nitrogen abundances for O-stars in the Large Magellanic Cloud".Astronomy & Astrophysics.537: A79.arXiv:1110.5148.Bibcode:2012A&A...537A..79R.doi:10.1051/0004-6361/201117790.ISSN 0004-6361.S2CID 119110554.
  44. ^abcdefgMassey, Philip;DeGioia-Eastwood, Kathleen; Waterhouse, Elizabeth (February 2001). "The progenitor masses of Wolf-Rayet stars and luminous blue variables determined from cluster turnoffs. II. Results from 12 galactic clusters and OB associations".The Astronomical Journal.121 (2):1050–1070.arXiv:astro-ph/0010654.Bibcode:2001AJ....121.1050M.doi:10.1086/318769.ISSN 0004-6256.S2CID 53345173.
  45. ^abcReed, B. Cameron (May 2003)."Catalog of Galactic OB Stars".The Astronomical Journal.125 (5):2531–2533.Bibcode:2003AJ....125.2531R.doi:10.1086/374771.ISSN 0004-6256.S2CID 121285799.
  46. ^abcdSchild, H.; Testor, G. (March 1992). "Spectral types and UBV magnitudes of stars in the 30 Doradus complex".Astronomy and Astrophysics Supplement Series.92:729–748.Bibcode:1992A&AS...92..729S.ISSN 0365-0138.S2CID 115371295.
  47. ^abMassey, Philip; Bodansky, Sarah; Penny, Laura R.; Neugent, Kathryn F. (2025)."A New Determination of the Mass of NGC 3603-A1: The Most Massive Binary Known?".The Astrophysical Journal.990 (1): 52.arXiv:2506.13522.Bibcode:2025ApJ...990...52M.doi:10.3847/1538-4357/ade799.
  48. ^Barbá, Rodolfo H.; Gamen, Roberto C.; Martín-Ravelo, Pablo; Arias, Julia I.; Morrell, Nidia I. (2022)."The winking eye of a very massive star: WR 21a revealed as an eclipsing binary by TESS".Monthly Notices of the Royal Astronomical Society.516 (1): 1149.arXiv:2109.06311.Bibcode:2022MNRAS.516.1149B.doi:10.1093/mnras/stac2173.
  49. ^abcdBonanos, A.Z.; Lennon, D.J.; Köhlinger, F.; van Loon, J.Th.; Massa, D. L.; Sewilo, M.; et al. (1 August 2010). "Spitzer SAGE-SMC infrared photometry of massive stars in the Small Magellanic Cloud".The Astronomical Journal.140 (2):416–429.arXiv:1004.0949.Bibcode:2010AJ....140..416B.doi:10.1088/0004-6256/140/2/416.hdl:1887/61635.ISSN 0004-6256.S2CID 119290443.
  50. ^Clementel, N.; Madura, T.I.; Kruip, C.J.H.; Paardekooper, J.-P.; Gull, T.R. (1 March 2015)."3D radiative transfer simulations of Eta Carinae's inner colliding winds - I. Ionization structure of helium at apastron".Monthly Notices of the Royal Astronomical Society.447 (3):2445–2458.arXiv:1412.7569.Bibcode:2015MNRAS.447.2445C.doi:10.1093/mnras/stu2614.ISSN 0035-8711.S2CID 118405692.
  51. ^Gull, Theodore R.; Hillier, D. John; Hartman, Henrik; Corcoran, Michael F.; Damineli, Augusto; Espinoza-Galeas, David; et al. (2022-07-01)."Eta Carinae: An evolving view of the central binary, its interacting winds and its foreground ejecta".The Astrophysical Journal.933 (2): 175.arXiv:2205.15116.Bibcode:2022ApJ...933..175G.doi:10.3847/1538-4357/ac74c2.ISSN 0004-637X.
  52. ^Ulaczyk, K.; Szymański, M.K.; Udalski, A.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; et al. (1 June 2013). "Variable Stars from the OGLE-III Shallow Survey in the Large Magellanic Cloud".Acta Astronomica.63 (2):159–179.arXiv:1306.4802.Bibcode:2013AcA....63..159U.doi:10.1086/338286.ISSN 0001-5237.S2CID 119228254.
  53. ^Evans, C.J.; Lennon, D.J.; Smartt, S. J.; Trundle, C. (September 2006). "The VLT-FLAMES survey of massive stars: observations centered on the Magellanic Cloud clusters NGC 330, NGC 346, NGC 2004, and the N11 region".Astronomy & Astrophysics.456 (2):623–638.arXiv:astro-ph/0606405.Bibcode:2006A&A...456..623E.doi:10.1051/0004-6361:20064988.ISSN 0004-6361.S2CID 13160849.
  54. ^abShenar, T.; Sablowski, D. P.; Hainich, R.; Todt, H.; Moffat, A. F. J.; Oskinova, L. M.; Ramachandran, V.; Sana, H.; Sander, A. A. C.; Schnurr, O.; St-Louis, N.; Vanbeveren, D.; Götberg, Y.; Hamann, W.-R. (July 2019). "The Wolf–Rayet binaries of the nitrogen sequence in the Large Magellanic Cloud: Spectroscopy, orbital analysis, formation, and evolution".Astronomy & Astrophysics.627: A151.arXiv:1905.09296.Bibcode:2019A&A...627A.151S.doi:10.1051/0004-6361/201935684.
  55. ^abcdefgMassa, D.; Fullerton, A. W.; Prinja, R. K. (September 2017)."Mass-loss rates from mid-infrared excesses in LMC and SMC O stars".Monthly Notices of the Royal Astronomical Society.470 (3):3765–3774.arXiv:1706.02627.Bibcode:2017MNRAS.470.3765M.doi:10.1093/mnras/stx1443.ISSN 0035-8711.S2CID 119475951.
  56. ^Bestenlehner, Joachim M.; Crowther, Paul A.; Broos, Patrick S.; Pollock, Andrew M.T.; Townsley, Leisa K. (2022)."Melnick 33Na: A very massive colliding-wind binary system in 30 Doradus".Monthly Notices of the Royal Astronomical Society.510 (4):6133–6149.arXiv:2112.00022.Bibcode:2022MNRAS.510.6133B.doi:10.1093/mnras/stab3521.
  57. ^Castro, N.; Crowther, P.A.; Evans, C.J.; Mackey, J.; Castro-Rodriguez, N.; Vink, J.S.; et al. (2018). "Mapping the core of the Tarantula Nebula with VLT-MUSE. I. Spectral and nebular content around R136".Astronomy & Astrophysics.614: 12.arXiv:1802.01597.Bibcode:2018A&A...614A.147C.doi:10.1051/0004-6361/201732084.S2CID 119341920. A147.
  58. ^abRauw, G.; Crowther, P.A.; de Becker, M.; Gosset, E.; Nazé, Y.; Sana, H.; et al. (March 2005)."The spectrum of the very massive binary system WR 20a (WN6ha + WN6ha): Fundamental parameters and wind interactions".Astronomy & Astrophysics.432 (3):985–998.Bibcode:2005A&A...432..985R.doi:10.1051/0004-6361:20042136.ISSN 0004-6361.S2CID 53372849.
  59. ^abLohr, M. E.; Clark, J. S.; Najarro, F.; Patrick, L. R.; Crowther, P. A.; Evans, C. J. (September 2018). "The Arches cluster revisited: II. A massive eclipsing spectroscopic binary in the Arches cluster".Astronomy & Astrophysics.617: A66.arXiv:1804.05607.Bibcode:2018A&A...617A..66L.doi:10.1051/0004-6361/201832670.
  60. ^abMahy, L.; Sana, H.; Abdul-Masih, M.; Almeida, L. A.; Langer, N.; Shenar, T.; de Koter, A.; de Mink, S. E.; de Wit, S.; Grin, N. J.; Evans, C. J.; Moffat, A. F. J.; Schneider, F. R. N.; Barbá, R.; Clark, J. S.; Crowther, P.; Gräfener, G.; Lennon, D. J.; Tramper, F.; Vink, J. S. (February 2020). "The Tarantula Massive Binary Monitoring: III. Atmosphere analysis of double-lined spectroscopic systems".Astronomy & Astrophysics.634: A118.arXiv:1912.08107.Bibcode:2020A&A...634A.118M.doi:10.1051/0004-6361/201936151.
  61. ^abcFang, M.; van Boekel, R.; King, R. R.; Henning, Th.; Bouwman, J.; Doi, Y.; et al. (March 2012). "Star formation and disk properties in Pismis 24".Astronomy & Astrophysics.539: A119.arXiv:1201.0833.Bibcode:2012A&A...539A.119F.doi:10.1051/0004-6361/201015914.ISSN 0004-6361.S2CID 73612793.
  62. ^Crowther, P. A.; Hadfield, L. J.; Clark, J. S.; Negueruela, I.; Vacca, W. D. (1 November 2006)."A census of the Wolf-Rayet content in Westerlund 1 from near-infrared imaging and spectroscopy".Monthly Notices of the Royal Astronomical Society.372 (3):1407–1424.arXiv:astro-ph/0608356.Bibcode:2006MNRAS.372.1407C.doi:10.1111/j.1365-2966.2006.10952.x.
  63. ^Vázquez, R.A.; Baume, G. (June 2001)."The open cluster Havlen-Moffat no. 1 revisited".Astronomy & Astrophysics.371 (3):908–920.Bibcode:2001A&A...371..908V.doi:10.1051/0004-6361:20010410.ISSN 0004-6361.S2CID 121918776.
  64. ^abHainich, R.; Pasemann, D.; Todt, H.; Shenar, T.; Sander, A.; Hamann, W. -R (2015). "Wolf-Rayet stars in the Small Magellanic Cloud. I. Analysis of the single WN stars".Astronomy & Astrophysics.581 (21): 30.arXiv:1507.04000.Bibcode:2015A&A...581A..21H.doi:10.1051/0004-6361/201526241.S2CID 56230998.
  65. ^abShenar, T.; Sana, H.; Marchant, P.; Pablo, B.; Richardson, N.; Moffat, A. F. J.; Van Reeth, T.; Barbá, R. H.; Bowman, D. M.; Broos, P.; Crowther, P. A.; Clark, J. S.; de Koter, A.; de Mink, S. E.; Dsilva, K.; Gräfener, G.; Howarth, I. D.; Langer, N.; Mahy, L.; Maíz Apellániz, J.; Pollock, A. M. T.; Schneider, F. R. N.; Townsley, L.; Vink, J. S. (June 2021). "The Tarantula Massive Binary Monitoring: V. R 144: a wind-eclipsing binary with a total mass ≳140 M ⊙".Astronomy & Astrophysics.650: A147.doi:10.1051/0004-6361/202140693.
  66. ^abSkiff, B. A. (October 2014). "VizieR Online Data Catalog: Catalogue of Stellar Spectral Classifications (Skiff, 2009- )".VizieR On-line Data Catalog: B/Mk. Originally Published in: Lowell Observatory (October 2014).1.Bibcode:2014yCat....1.2023S.S2CID 215961366.
  67. ^McEvoy, C.M.; Dufton, P.L.; Evans, C.J.; Kalari, V.M.; Markova, N.; Simón-Díaz, S.; et al. (March 2015). "The VLT-FLAMES Tarantula Survey: XIX. B-type supergiants: Atmospheric parameters and nitrogen abundances to investigate the role of binarity and the width of the main sequence⋆".Astronomy & Astrophysics.575: A70.arXiv:1412.2705.Bibcode:2015A&A...575A..70M.doi:10.1051/0004-6361/201425202.ISSN 0004-6361.S2CID 39125418.
  68. ^Kastner, Joel H.; Buchanan, Catherine L.; Sargent, B.; Forrest, W. J. (10 February 2006)."Spitzer Spectroscopy of Dusty Disks around B[e] Hypergiants in the Large Magellanic Cloud".The Astrophysical Journal.638 (1):L29 –L32.Bibcode:2006ApJ...638L..29K.doi:10.1086/500804.ISSN 0004-637X.S2CID 121769413.
  69. ^Orosz, Jerome A.; McClintock, Jeffrey E.; Narayan, Ramesh; Bailyn, Charles D.; Hartman, Joel D.; Macri, Lucas; et al. (October 2007). "A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33".Nature.449 (7164):872–875.arXiv:0710.3165.Bibcode:2007Natur.449..872O.doi:10.1038/nature06218.ISSN 0028-0836.PMID 17943124.S2CID 4311574.
  70. ^Grimm, H.-J.; McDowell, J.; Zezas, A.; Kim, D.-W.; Fabbiano, G. (December 2005). "The X-Ray Binary Population in M33. I. Source List and Luminosity Function".The Astrophysical Journal Supplement Series.161 (2):271–303.arXiv:astro-ph/0506353.Bibcode:2005ApJS..161..271G.doi:10.1086/468185.ISSN 0067-0049.S2CID 119381693.
  71. ^Holgado, G.; Simón-Díaz, S.; Herrero, A.; Barbá, R. H. (September 2022). "The IACOB project: VII. The rotational properties of Galactic massive O-type stars revisited".Astronomy & Astrophysics.665: A150.arXiv:2207.12776.Bibcode:2022A&A...665A.150H.doi:10.1051/0004-6361/202243851.
  72. ^Rauw, G.; Sana, H.; Gosset, E.; Vreux, J.-M.; Jehin, E.; Parmentier, G. (August 2000). "A new orbital solution for the massive binary system HD 93403".Astronomy & Astrophysics.360:1003–1010.Bibcode:2000A&A...360.1003R.ISSN 0004-6361.S2CID 13886945.
  73. ^Urbaneja, Miguel (2011). "Quantitative Spectroscopy of Blue Supergiant Stars in the Disk of M81: Metallicity, Metallicity Gradient, and Distance".The Astrophysical Journal.747 (1): 15.arXiv:1112.3643.Bibcode:2012ApJ...747...15K.doi:10.1088/0004-637X/747/1/15.
  74. ^abcShenar, T.; Hainich, R.; Todt, H.; Sander, A.; Hamann, W.-R.; Moffat, A.F.J.; et al. (July 2016). "Wolf-Rayet stars in the Small Magellanic Cloud: II. Analysis of the binaries".Astronomy & Astrophysics.591: A22.arXiv:1604.01022.Bibcode:2016A&A...591A..22S.doi:10.1051/0004-6361/201527916.ISSN 0004-6361.S2CID 119255408.
  75. ^abcdHøg, E.; Fabricius, C.; Makarov, V.V.; Urban, S.; Corbin, T.; Wycoff, G.; et al. (March 2000). "The Tycho-2 catalogue of the 2.5 million brightest stars".Astronomy & Astrophysics.355:L27 –L30.Bibcode:2000A&A...355L..27H.ISSN 0004-6361.S2CID 17128864.
  76. ^abcBrands, Sarah A.; Backs, Frank; de Koter, Alex; Puls, Joachim; Crowther, Paul A.; Sana, Hugues; Tramper, Frank; Kaper, Lex; Sundqvist, Jon O.; Bestenlehner, Joachim M.; Driessen, Florian A.; Erba, Christiana; Hawcroft, Calum; Herrero, Artemio; John Hillier, D.; Ignace, Richard; Lefever, Roel R.; Dylan Kee, N.; Kubátová, Brankica; Mahy, Laurent; Moffat, Anthony F. J.; Najarro, Francisco; Prinja, Raman K.; Ramachandran, Varsha; Sander, Andreas A. C.; Vink, Jorick S. (May 2025). "X-Shooting ULLYSES: Massive stars at low metallicity: XII. Clumped winds of O-type (super)giants in the Large Magellanic Cloud".Astronomy & Astrophysics.697: A54.arXiv:2503.14687.Bibcode:2025A&A...697A..54B.doi:10.1051/0004-6361/202452784.
  77. ^abBouret, J.-C.; Hillier, D.J.; Lanz, T.; Fullerton, A.W. (2012). "Properties of galactic early-type O-supergiants: A combined FUV-UV and optical analysis".Astronomy & Astrophysics.544: A67.arXiv:1205.3075.Bibcode:2012A&A...544A..67B.doi:10.1051/0004-6361/201118594.S2CID 119280104.
  78. ^abComerón, F.; Pasquali, A. (July 2012)."New members of the massive stellar population in Cygnus".Astronomy & Astrophysics.543: A101.Bibcode:2012A&A...543A.101C.doi:10.1051/0004-6361/201219022.ISSN 0004-6361.S2CID 73520813.
  79. ^Patten, Nikhil; Kobulnicky, Henry A.; Povich, Matthew S.; Whisnant, Angelica S.; Andrews, Sydney; Boone, Alexandra; Dandu, Srujan; Jones, Naomi; Justice, S. Nick; Hope, Dylan; Larsen, Alexander; McCrory, Ryan; Meredith, Julia; Meza, Maria Renee; Rosenthal, Alexandra C.; Salazar, William; Sterling, Alexander R.; Yesmin, Noshin; Dale, Daniel A. (1 August 2025)."Fundamental Parameters for Central Stars of 103 Infrared Bow Shock Nebulae".The Astrophysical Journal.988 (2): 183.arXiv:2506.07904.Bibcode:2025ApJ...988..183P.doi:10.3847/1538-4357/ade22f.
  80. ^Liermann, Adriane; Hamann, Wolf-Rainer; Oskinova, Lidia M.; Todt, Helge (January 2011). "High-mass stars in the Galactic center Quintuplet cluster".Société Royale des Sciences de Liège, Bulletin.80:160–164.Bibcode:2011BSRSL..80..160L.ISSN 0037-9565.S2CID 116895316.
  81. ^Liermann, A.; Hamann, W.-R.; Oskinova, L. M.; Todt, H.; Butler, K. (December 2010). "The Quintuplet cluster: II. Analysis of the WN stars⋆".Astronomy & Astrophysics.524: A82.arXiv:1011.5796.Bibcode:2010A&A...524A..82L.doi:10.1051/0004-6361/200912612.
  82. ^Massey, Philip (July 2002). "A UBVR CCD Survey of the Magellanic Clouds".The Astrophysical Journal Supplement Series.141 (1):81–122.arXiv:astro-ph/0110531.Bibcode:2002ApJS..141...81M.doi:10.1086/338286.ISSN 0067-0049.S2CID 119447348.
  83. ^de Vries, N.; Portegies Zwart, S.; Figueira, J. (2014)."The evolution of triples with a Roche lobe filling outer star".Monthly Notices of the Royal Astronomical Society.438 (3): 1909.arXiv:1309.1475.Bibcode:2014MNRAS.438.1909D.doi:10.1093/mnras/stt1688.
  84. ^Hill, G. M.; Moffat, A. F. J.; St-Louis, N. (1 October 2002)."Modelling the colliding-winds spectra of the 19-d WR + OB binary in the massive triple system θ Muscae".Monthly Notices of the Royal Astronomical Society.335 (4):1069–1078.Bibcode:2002MNRAS.335.1069H.doi:10.1046/j.1365-8711.2002.05694.x.ISSN 0035-8711.S2CID 121923927.
  85. ^Mitschang, Arik W.; Schulz, Norbert S.; Huenemoerder, David P.; Nichols, Joy S.; Testa, Paola (2011). "Detailed X-ray line properties ofθ2 Ori A in quiescence".The Astrophysical Journal.734 (1): 14.arXiv:1009.1896.Bibcode:2011ApJ...734...14M.doi:10.1088/0004-637X/734/1/14.S2CID 15568141.
  86. ^Aldoretta, E.J.; Caballero-Nieves, S.M.; Gies, D.R.; Nelan, E.P.; Wallace, D.J.; Hartkopf, W.I.; et al. (2015). "The multiplicity of massive stars: A high angular-resolution survey with the guidance sensor".The Astronomical Journal.149 (1): 26.arXiv:1410.0021.Bibcode:2015AJ....149...26A.doi:10.1088/0004-6256/149/1/26.S2CID 58911264.
  87. ^abcRepolust, T.; Puls, J.; Herrero, A. (February 2004)."Stellar and wind parameters of Galactic O-stars: The influence of line-blocking/blanketing".Astronomy & Astrophysics.415 (1):349–376.Bibcode:2004A&A...415..349R.doi:10.1051/0004-6361:20034594.ISSN 0004-6361.S2CID 56418916.
  88. ^Rivet, J-P; Siciak, A.; de Almeida, E.S.G.; Vakili, F.; Domiciano de Souza, A.; Fouché, M.; et al. (2020)."Intensity interferometry of P Cygni in the H α emission line: Towards distance calibration of LBV supergiant stars".Monthly Notices of the Royal Astronomical Society.494 (1):218–227.arXiv:1910.08366.Bibcode:2020MNRAS.494..218R.doi:10.1093/mnras/staa588.S2CID 204788654.
  89. ^Clark, J. S.; Najarro, F.; Negueruela, I.; Ritchie, B. W.; Urbaneja, M. A.; Howarth, I. D. (May 2012). "On the nature of the galactic early-B hypergiants".Astronomy & Astrophysics.541: A145.arXiv:1202.3991.Bibcode:2012A&A...541A.145C.doi:10.1051/0004-6361/201117472.ISSN 0004-6361.S2CID 11978733.
  90. ^Kozok, J. R. (September 1985). "Photometric observations of emission B-stars in the southern Milky Way".Astronomy and Astrophysics Supplement Series.61:387–405.Bibcode:1985A&AS...61..387K.
  91. ^Hummel, C. A.; Rivinius, Th.; Nieva, M.-F.; Stahl, O.; van Belle, G.; Zavala, R. T. (2013). "Dynamical mass of the O-type supergiant in ζ Orionis A".Astronomy & Astrophysics.554: A52.arXiv:1306.0330.Bibcode:2013A&A...554A..52H.doi:10.1051/0004-6361/201321434.ISSN 0004-6361.S2CID 53645495.
  92. ^Balega, Yu. Yu.; Chentsov, E.L.; Leushin, V.V.; Rzaev, A.Kh.; Weigelt, G. (2014). "Young massive binary θ1 Ori C: Radial velocities of components".Astrophysical Bulletin.69 (1):46–57.Bibcode:2014AstBu..69...46B.doi:10.1134/S1990341314010052.ISSN 1990-3413.S2CID 120838635.
  93. ^Searle, S. C.; Prinja, R. K.; Massa, D.; Ryans, R. (2008). "Quantitative studies of the optical and UV spectra of Galactic early B supergiants. I. Fundamental parameters".Astronomy and Astrophysics.481 (3):777–797.arXiv:0801.4289.Bibcode:2008A&A...481..777S.doi:10.1051/0004-6361:20077125.S2CID 1552752.
  94. ^abcdefghijTetzlaff, N.; Neuhäuser, R.; Hohle, M. M. (2011)."A catalogue of young runaway Hipparcos stars within 3 kpc from the Sun".Monthly Notices of the Royal Astronomical Society.410 (1):190–200.arXiv:1007.4883.Bibcode:2011MNRAS.410..190T.doi:10.1111/j.1365-2966.2010.17434.x.S2CID 118629873.
  95. ^Kashi, Amit; Soker, Noam (1 November 2010). "Periastron Passage Triggering of the 19th Century Eruptions of Eta Carinae".The Astrophysical Journal.723 (1):602–611.arXiv:0912.1439.Bibcode:2010ApJ...723..602K.doi:10.1088/0004-637X/723/1/602.ISSN 0004-637X.S2CID 118399302.
  96. ^Hamaguchi, Kenji; Corcoran, Michael F.; Pittard, Julian M.; Sharma, Neetika; Takahashi, Hiromitsu; Russell, Christopher M.P.; et al. (September 2018). "Non-thermal X-rays from colliding wind shock acceleration in the massive binary Eta Carinae".Nature Astronomy.2 (9):731–736.arXiv:1904.09219.Bibcode:2018NatAs...2..731H.doi:10.1038/s41550-018-0505-1.ISSN 2397-3366.S2CID 126188024.
  97. ^abNorth, J.R.; Tuthill, P.G.; Tango, W.J.; Davis, J. (2007-05-01)."γ2 Velorum: Orbital solution and fundamental parameter determination with SUSI".Monthly Notices of the Royal Astronomical Society.377 (1):415–424.arXiv:astro-ph/0702375.Bibcode:2007MNRAS.377..415N.doi:10.1111/j.1365-2966.2007.11608.x.ISSN 0035-8711.S2CID 16425744.
  98. ^Oplištilová, Alžběta; Brož, Miroslav; Hummel, Christian A.; Harmanec, Petr; Barlow, Brad (2025-07-03). "Star formation and disk properties in Pismis 24".Astronomy & Astrophysics.539: A119.arXiv:2507.02276.Bibcode:2012A&A...539A.119F.doi:10.1051/0004-6361/201015914.
  99. ^abcHoffleit, Dorrit; Jaschek, Carlos (1991).The Bright star catalogue (5th Revised ed.). New Haven, Conn.: Yale University Observatory.Bibcode:1991bsc..book.....H.
  100. ^Howarth, Ian D; van Leeuwen, Floor (2019-01-31)."The distance, rotation, and physical parameters of ζ Pup".Monthly Notices of the Royal Astronomical Society.484 (4): 5350.arXiv:1901.08020.Bibcode:2019MNRAS.484.5350H.doi:10.1093/mnras/stz291.ISSN 0035-8711.
  101. ^Shenar, T.; Oskinova, L.; Hamann, W.-R.; Corcoran, M.F.; Moffat, A.F.J.; Pablo, H.; et al. (2015). "A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, δ Orionis Aa. IV. A Multiwavelength, Non-LTE Spectroscopic Analysis".Astrophysical Journal.809 (2): 135.arXiv:1503.03476.Bibcode:2015ApJ...809..135S.doi:10.1088/0004-637X/809/2/135.hdl:10045/59172.S2CID 14909574.
  102. ^Tokovinin, A A. (1997)."MSC - a catalogue of physical multiple stars".Astronomy and Astrophysics Supplement Series.124:75–84.Bibcode:1997A&AS..124...75T.doi:10.1051/aas:1997181.
  103. ^abMarchenko, Sergey V.; Rauw, Gregor; Antokhina, Eleonora A.; Antokhin, Igor I.; Ballereau, Dominique; Chauville, Jacques; et al. (2000)."Coordinated monitoring of the eccentric O-star binary Iota Orionis: Optical spectroscopy and photometry".Monthly Notices of the Royal Astronomical Society.317 (2): 333.Bibcode:2000MNRAS.317..333M.doi:10.1046/j.1365-8711.2000.03542.x.
  104. ^abcNicolet, B. (1978). "Photoelectric photometric Catalogue of homogeneous measurements in the UBV System".Astronomy and Astrophysics Supplement Series.34:1–49.Bibcode:1978A&AS...34....1N.
  105. ^Dufton, P.L.; Smartt, S.J.; Lee, J.K.; Ryans, R.S.I.; Hunter, I.; Evans, C.J.; et al. (2006). "The VLT-FLAMES survey of massive stars: stellar parameters and rotational velocities in NGC 3293, NGC 4755 and NGC 6611".Astronomy & Astrophysics.457 (1):265–280.arXiv:astro-ph/0606409.Bibcode:2006A&A...457..265D.doi:10.1051/0004-6361:20065392.ISSN 0004-6361.S2CID 15874925.
  106. ^Shultz, M.; Wade, G.A.; Petit, V.; Grunhut, J.; Neiner, C.; Hanes, D.; et al. (MiMeS Collaboration) (2014)."An observational evaluation of magnetic confinement in the winds of BA supergiants".Monthly Notices of the Royal Astronomical Society.438 (2): 1114.arXiv:1311.5116.Bibcode:2014MNRAS.438.1114S.doi:10.1093/mnras/stt2260.S2CID 118557626.
  107. ^Smith, M.A. (August 1981). "Nonradial pulsations in the zero-age main-sequence star upsilon Orionis (O9.5V)".The Astrophysical Journal.248:214–221.Bibcode:1981ApJ...248..214S.doi:10.1086/159145.ISSN 0004-637X.
  108. ^Nieva, M.-F. (2013). "Temperature, gravity, and bolometric correction scales for non-supergiant OB stars".Astronomy & Astrophysics.550: A26.arXiv:1212.0928.Bibcode:2013A&A...550A..26N.doi:10.1051/0004-6361/201219677.ISSN 0004-6361.S2CID 119275940.
  109. ^abcSimón-Díaz, S.; Caballero, J.A.; Lorenzo, J.; Maíz Apellániz, J.; Schneider, F.R.N.; Negueruela, I.; et al. (2015). "Orbital and Physical Properties of the σ Ori Aa, Ab, B Triple System".The Astrophysical Journal.799 (2): 169.arXiv:1412.3469.Bibcode:2015ApJ...799..169S.doi:10.1088/0004-637X/799/2/169.S2CID 118500350.
  110. ^abcMason, Brian D.; Wycoff, Gary L.; Hartkopf, William I.; Douglass, Geoffrey G.; Worley, Charles E. (2001)."The 2001 US Naval Observatory Double Star CD-ROM. I. The Washington Double Star Catalog".The Astronomical Journal.122 (6): 3466.Bibcode:2001AJ....122.3466M.doi:10.1086/323920.
  111. ^Martins, F.; Schaerer, D.; Hillier, D. J.; Meynadier, F.; Heydari-Malayeri, M.; Walborn, N. R. (2005). "O stars with weak winds: the Galactic case".Astronomy & Astrophysics.441 (2):735–762.arXiv:astro-ph/0507278.Bibcode:2005A&A...441..735M.doi:10.1051/0004-6361:20052927.ISSN 0004-6361.S2CID 11547293.
  112. ^abHohle, M.M.; Neuhäuser, R.; Schutz, B.F. (April 2010). "Masses and luminosities of O- and B-type stars and red supergiants".Astronomische Nachrichten.331 (4): 349.arXiv:1003.2335.Bibcode:2010AN....331..349H.doi:10.1002/asna.200911355.S2CID 111387483.
  113. ^Przybilla, N.; Firnstein, M.; Nieva, M.F.; Meynet, G.; Maeder, A. (2010). "Mixing of CNO-cycled matter in massive stars".Astronomy and Astrophysics.517: A38.arXiv:1005.2278.Bibcode:2010A&A...517A..38P.doi:10.1051/0004-6361/201014164.S2CID 55532189.
  114. ^Firnstein, M.; Przybilla, N. (2012). "Quantitative spectroscopy of Galactic BA-type supergiants. I. Atmospheric parameters".Astronomy & Astrophysics.543: A80.arXiv:1207.0308.Bibcode:2012A&A...543A..80F.doi:10.1051/0004-6361/201219034.S2CID 54725386.
  115. ^abcdJohnson, H.L.; Iriarte, B.; Mitchell, R.I.; Wisniewskj, W.Z. (1966). "UBVRIJKL photometry of the bright stars".Communications of the Lunar and Planetary Laboratory.4 (99): 99.Bibcode:1966CoLPL...4...99J.
  116. ^Nieva, María-Fernanda; Przybilla, Norbert (2014). "Fundamental properties of nearby single early B-type stars".Astronomy & Astrophysics.566: A7.arXiv:1412.1418.Bibcode:2014A&A...566A...7N.doi:10.1051/0004-6361/201423373.S2CID 119227033.
  117. ^Mazumdar, A.; Briquet, M.; Desmet, M.; Aerts, C. (November 2006). "An asteroseismic study of the β Cephei star β Canis Majoris".Astronomy and Astrophysics.459 (2):589–596.arXiv:astro-ph/0607261.Bibcode:2006A&A...459..589M.doi:10.1051/0004-6361:20064980.S2CID 11807580.
  118. ^Cousins, A.W.J. (1972). "UBV Photometry of Some Very Bright Stars".Monthly Notes of the Astronomical Society of Southern Africa.31: 69.Bibcode:1972MNSSA..31...69C.
  119. ^Libich, J.; Harmanec, P.; Vondrák, J.; Yang, S.; Hadrava, P.; Aerts, C.; et al. (February 2006)."The new orbital elements and properties of ɛ Persei".Astronomy and Astrophysics.446 (2):583–589.Bibcode:2006A&A...446..583L.doi:10.1051/0004-6361:20053032.hdl:2066/35168.
  120. ^Lutz, T.E.;Lutz, J.H. (June 1977)."Spectral classification and UBV photometry of bright visual double stars".Astronomical Journal.82:431–434.Bibcode:1977AJ.....82..431L.doi:10.1086/112066.
  121. ^Miroshnichenko, A.S.; Pasechnik, A.V.; Manset, N.; Carciofi, A.C.; Rivinius, Th.; Štefl, S.; et al. (2013). "The 2011 periastron passage of the Be binary δ Scorpii".The Astrophysical Journal.766 (2): 119.arXiv:1302.4021.Bibcode:2013ApJ...766..119M.doi:10.1088/0004-637X/766/2/119.S2CID 38692193.
  122. ^Gutierrez-Moreno, Adelina; Moreno, Hugo (1968-06-01)."A Photometric Investigation of the SCORPlO-CENTAURUS Association".The Astrophysical Journal Supplement Series.15: 459.Bibcode:1968ApJS...15..459G.doi:10.1086/190168.ISSN 0067-0049.
  123. ^Nugis, T.; Lamers, H.J.G.L.M. (2000). "Mass-loss rates of Wolf-Rayet stars as a function of stellar parameters".Astronomy and Astrophysics.360: 227.Bibcode:2000A&A...360..227N.
  124. ^Challouf, M.; Nardetto, N.; Mourard, D.; Graczyk, D.; Aroui, H.; Chesneau, O.; et al. (2014). "Improving the surface brightness-color relation for early-type stars using optical interferometry".Astronomy & Astrophysics.570: A104.arXiv:1409.1351.Bibcode:2014A&A...570A.104C.doi:10.1051/0004-6361/201423772.S2CID 14624307.
  125. ^Kudritzki, R.P.; Reimers, D. (1978). "On the absolute scale of mass-loss in red giants. II. Circumstellar absorption lines in the spectrum ofα Sco B and mass-loss ofα Sco A".Astronomy and Astrophysics.70: 227.Bibcode:1978A&A....70..227K.
  126. ^Dervişoğlu, A.; Tout, Christopher A.; Ibanoğlu, C. (August 2010)."Spin angular momentum evolution of the long-period Algols".Monthly Notices of the Royal Astronomical Society.406 (2):1071–1083.arXiv:1003.4392.Bibcode:2010MNRAS.406.1071D.doi:10.1111/j.1365-2966.2010.16732.x.S2CID 119198387.
  127. ^Nicolet, B. (October 1978). "Catalogue of homogeneous data in the UBV photoelectric photometric system".Astronomy and Astrophysics Supplement Series.34:1–49.Bibcode:1978A&AS...34....1N.
  128. ^abDavid, Trevor J.; Hillenbrand, Lynne A. (2015). "The ages of early-type stars: Strömgren photometric methods calibrated, validated, tested, and applied to hosts and prospective hosts of directly imaged exoplanets".The Astrophysical Journal.804 (2): 146.arXiv:1501.03154.Bibcode:2015ApJ...804..146D.doi:10.1088/0004-637X/804/2/146.S2CID 33401607.
  129. ^Zorec, J.; Frémat, Y.; Cidale, L. (2005). "On the evolutionary status of Be stars. I. Field Be stars near the Sun".Astronomy and Astrophysics.441 (1):235–248.arXiv:astro-ph/0509119.Bibcode:2005A&A...441..235Z.doi:10.1051/0004-6361:20053051.S2CID 17592657.
  130. ^Fernie, J.D. (May 1983)."New UBVRI photometry for 900 supergiants".Astrophysical Journal Supplement Series.52:7–22.Bibcode:1983ApJS...52....7F.doi:10.1086/190856.
  131. ^Sánchez Arias, Julieta Paz; Németh, Péter; De Almeida, Elisson Saldanha da Gama; Ruiz Diaz, Matias Agustin; Kraus, Michaela; Haucke, Maximiliano (2023)."Unveiling the Evolutionary State of Three B Supergiant Stars: PU Gem, ϵ CMa, and η CMa".Galaxies.11 (5): 93.arXiv:2308.12745.Bibcode:2023Galax..11...93S.doi:10.3390/galaxies11050093.
  132. ^Hubrig, S.; Briquet, M.; de Cat, P.; Schöller, M.; Morel, T.; Ilyin, I. (2009). "New magnetic field measurements of β Cephei stars and slowly pulsating B stars".Astronomische Nachrichten.330 (4):317–329.arXiv:0902.1314.Bibcode:2009AN....330..317H.doi:10.1002/asna.200811187.S2CID 17497112.
  133. ^de Almeida, E.S.G.; Meilland, A.; Domiciano de Souza, A.; Stee, P.; Mourard, D.; Nardetto, N.; et al. (April 2020). "Visible and near-infrared spectro-interferometric analysis of the edge-on Be star o Aquarii".Astronomy & Astrophysics.636: 23.arXiv:2002.09552.Bibcode:2020A&A...636A.110D.doi:10.1051/0004-6361/201936039.S2CID 211258993. A110.
  134. ^Feinstein, A.; Marraco, H.G. (November 1979)."The photometric behavior of Be Stars".Astronomical Journal.84:1713–1725.Bibcode:1979AJ.....84.1713F.doi:10.1086/112600.
  135. ^North, P. (1998). "Do SI stars undergo any rotational braking?".Astronomy and Astrophysics.334:181–187.arXiv:astro-ph/9802286.Bibcode:1998A&A...334..181N.
  136. ^Mermilliod, J.-C. (1986). Compilation of Eggen's UBV data, transformed to UBV (unpublished).Catalogue of Eggen's UBV Data (Report).SIMBAD.Bibcode:1986EgUBV........0M.
  137. ^Mamajek, Eric E.; Lawson, Warrick A.; Feigelson, Eric D. (1999)."The η Chamaeleontis cluster: A remarkable new nearby young open cluster".The Astrophysical Journal.516 (2):L77 –L80.Bibcode:1999ApJ...516L..77M.doi:10.1086/312005.
  138. ^Fang, M.; van Boekel, R.; Bouwman, J.; Henning, Th.; Lawson, W.A.; Sicilia-Aguilar, A. (January 2013). "Young stars in ϵ Chamaleontis and their disks: Disk evolution in sparse associations".Astronomy & Astrophysics.549: A15.arXiv:1209.5832.Bibcode:2013A&A...549A..15F.doi:10.1051/0004-6361/201118528.ISSN 0004-6361.S2CID 118332644.
  139. ^abZorec, J.; Royer, F. (2012). "Rotational velocities of A-type stars".Astronomy & Astrophysics.537: A120.arXiv:1201.2052.Bibcode:2012A&A...537A.120Z.doi:10.1051/0004-6361/201117691.S2CID 55586789.
  140. ^Corben, P.M.; Stoy, R.H. (1968). "Photoelectric Magnitudes and Colours for Bright Southern Stars".Monthly Notes of the Astronomical Society of Southern Africa.27: 11.Bibcode:1968MNSSA..27...11C.
  141. ^Anderson, E.; Francis, Ch. (2012). "XHIP: An extended hipparcos compilation".Astronomy Letters.38 (5): 331.arXiv:1108.4971.Bibcode:2012AstL...38..331A.doi:10.1134/S1063773712050015.S2CID 119257644.
  142. ^Luzum, Brian; Capitaine, Nicole; Fienga, Agnès; Folkner, William; Fukushima, Toshio; Hilton, James; et al. (August 2011)."The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for Fundamental Astronomy".Celestial Mechanics and Dynamical Astronomy.110 (4):293–304.Bibcode:2011CeMDA.110..293L.doi:10.1007/s10569-011-9352-4.ISSN 0923-2958.S2CID 122755461.
  143. ^Bessell, M.S.; Castelli, F.; Plez, B. (May 1998). "Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O–M stars".Astronomy & Astrophysics.333:231–250.Bibcode:1998A&A...333..231B.ISSN 0004-6361.S2CID 10513623.
  144. ^Mamajek, E.E.; Prsa, A.; Torres, G.; Harmanec, P.; Asplund, M.; Bennett, P.D.; et al. (October 2015). "IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties".arXiv:1510.07674 [astro-ph.SR].

External links

[edit]
Formation
Evolution
Classification
Remnants
Hypothetical
Nucleosynthesis
Structure
Properties
Star systems
Earth-centric
observations
Lists
Related
Classes
Physics of
Related
Progenitors
Remnants
Discovery
Lists
Notable
Research
Types
Size
Formation
Properties
Issues
Metrics
Alternatives
Analogs
Lists
Related
Notable
Portals:
Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_most_massive_stars&oldid=1324017295"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp