Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

List of mathematical constants

From Wikipedia, the free encyclopedia

Amathematical constant is a keynumber whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., analphabet letter), or by mathematicians' names to facilitate using it across multiplemathematical problems.[1] For example, the constantπ may be defined as the ratio of the length of a circle'scircumference to itsdiameter. The following list includes adecimal expansion and set containing each number, ordered by year of discovery.

The column headings may be clicked to sort the table alphabetically, by decimal value, or by set. Explanations of the symbols in the right hand column can be found by clicking on them.

List

[edit]
NameSymbolDecimal expansionFormulaYearSet
Q{\displaystyle \mathbb {Q} }A{\displaystyle \mathbb {A} }P{\displaystyle {\mathcal {P}}}
One11Multiplicative identity ofC{\displaystyle \mathbb {C} }.Prehistory
Two22Prehistory
One half1/20.5Multiplicative inverse of 2.Prehistory
Piπ{\displaystyle \pi }3.14159 26535 89793 23846[Mw 1][OEIS 1]Ratio of a circle's circumference to its diameter.1900 to 1600 BCE[2]
Tauτ{\displaystyle \tau }6.28318 53071 79586 47692[3][OEIS 2]Ratio of a circle's circumference to its radius. Equal to2π{\displaystyle 2\pi }1900 to 1600 BCE[2]
Square root of 2,

Pythagoras constant[4]

2{\displaystyle {\sqrt {2}}}1.41421 35623 73095 04880[Mw 2][OEIS 3]Positive root ofx2=2{\displaystyle x^{2}=2}1800 to 1600 BCE[5]
Square root of 3,

Theodorus' constant[6]

3{\displaystyle {\sqrt {3}}}1.73205 08075 68877 29352[Mw 3][OEIS 4]Positive root ofx2=3{\displaystyle x^{2}=3}465 to 398 BCE
Square root of 5[7]5{\displaystyle {\sqrt {5}}}2.23606 79774 99789 69640[OEIS 5]Positive root ofx2=5{\displaystyle x^{2}=5}
Phi,Golden ratio[8]φ{\displaystyle \varphi } orϕ{\displaystyle \phi }1.61803 39887 49894 84820[Mw 4][OEIS 6]1+52{\displaystyle {\frac {1+{\sqrt {5}}}{2}}}~300 BCE
Silver ratio[9]σ{\displaystyle \sigma }2.41421 35623 73095 04880[Mw 5][OEIS 7]2+1{\displaystyle {\sqrt {2}}+1}~300 BCE
Zero00Additive identity ofC{\displaystyle \mathbb {C} }.300 to 100 BCE[10]
Negative one−1−1Additive inverse of 1.300 to 200 BCE
Cube root of 2,

Delian constant

23{\displaystyle {\sqrt[{3}]{2}}}1.25992 10498 94873 16476[Mw 6][OEIS 8]Real root ofx3=2{\displaystyle x^{3}=2}46 to 120 CE[11]
Cube root of 333{\displaystyle {\sqrt[{3}]{3}}}1.44224 95703 07408 38232[OEIS 9]Real root ofx3=3{\displaystyle x^{3}=3}
Twelfth root of 2[12]212{\displaystyle {\sqrt[{12}]{2}}}1.05946 30943 59295 26456[OEIS 10]Real positive root ofx12=2{\displaystyle x^{12}=2}
Supergolden ratio[13]ψ{\displaystyle \psi }1.46557 12318 76768 02665[OEIS 11]1+29+39323+29393233{\displaystyle {\frac {1+{\sqrt[{3}]{\frac {29+3{\sqrt {93}}}{2}}}+{\sqrt[{3}]{\frac {29-3{\sqrt {93}}}{2}}}}{3}}}

Real root ofx3=x2+1{\displaystyle x^{3}=x^{2}+1}

Imaginary unit[14]i{\displaystyle i}0 + 1iPrincipal root ofx2=1{\displaystyle x^{2}=-1}[nb 1]1501 to 1576
Connective constant for the hexagonal lattice[15][16]μ{\displaystyle \mu }1.84775 90650 22573 51225[Mw 7][OEIS 12]2+2{\displaystyle {\sqrt {2+{\sqrt {2}}}}}, as a root of the polynomialx44x2+2=0{\displaystyle x^{4}-4x^{2}+2=0}1593[OEIS 12]
Kepler–Bouwkamp constant[17]K{\displaystyle K'}0.11494 20448 53296 20070[Mw 8][OEIS 13]n=3cos(πn)=cos(π3)cos(π4)cos(π5)...{\displaystyle \prod _{n=3}^{\infty }\cos \left({\frac {\pi }{n}}\right)=\cos \left({\frac {\pi }{3}}\right)\cos \left({\frac {\pi }{4}}\right)\cos \left({\frac {\pi }{5}}\right)...}1596[OEIS 13]???
Wallis's constant2.09455 14815 42326 59148[Mw 9][OEIS 14]451929183+45+1929183{\displaystyle {\sqrt[{3}]{\frac {45-{\sqrt {1929}}}{18}}}+{\sqrt[{3}]{\frac {45+{\sqrt {1929}}}{18}}}}

Real root ofx32x5=0{\displaystyle x^{3}-2x-5=0}

1616 to 1703
Euler's number[18]e{\displaystyle e}2.71828 18284 59045 23536[Mw 10][OEIS 15]limn(1+1n)n=n=01n!=1+11!+12!+13!{\displaystyle \lim _{n\to \infty }\left(1+{\frac {1}{n}}\right)^{n}=\sum _{n=0}^{\infty }{\frac {1}{n!}}=1+{\frac {1}{1!}}+{\frac {1}{2!}}+{\frac {1}{3!}}\cdots }1618[19]?
Natural logarithm of 2[20]ln2{\displaystyle \ln 2}0.69314 71805 59945 30941[Mw 11][OEIS 16]Real root ofex=2{\displaystyle e^{x}=2}

n=1(1)n+1n=1112+1314+{\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}={\frac {1}{1}}-{\frac {1}{2}}+{\frac {1}{3}}-{\frac {1}{4}}+\cdots }

1619[21] & 1668[22]
Lemniscate constant[23]ϖ{\displaystyle \varpi }2.62205 75542 92119 81046[Mw 12][OEIS 17]201dt1t4=142πΓ(14)2{\displaystyle 2\int _{0}^{1}{\frac {dt}{\sqrt {1-t^{4}}}}={\frac {1}{4}}{\sqrt {\frac {2}{\pi }}}\,\Gamma {\left({\frac {1}{4}}\right)^{2}}}

Ratio of the perimeter ofBernoulli's lemniscate to its diameter.

1718 to 1798
Euler's constantγ{\displaystyle \gamma }0.57721 56649 01532 86060[Mw 13][OEIS 18]limn(logn+k=1n1k)=1(1x+1x)dx{\displaystyle \lim _{n\to \infty }\left(-\log n+\sum _{k=1}^{n}{\frac {1}{k}}\right)=\int _{1}^{\infty }\left(-{\frac {1}{x}}+{\frac {1}{\lfloor x\rfloor }}\right)\,dx}

Limiting difference between theharmonic series and thenatural logarithm.

1735???
Erdős–Borwein constant[24]E{\displaystyle E}1.60669 51524 15291 76378[Mw 14][OEIS 19]n=112n1=11+13+17+115+{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{2^{n}-1}}={\frac {1}{1}}\!+\!{\frac {1}{3}}\!+\!{\frac {1}{7}}\!+\!{\frac {1}{15}}\!+\!\cdots }1749[25]??
Omega constantΩ{\displaystyle \Omega }0.56714 32904 09783 87299[Mw 15][OEIS 20]W(1)=1π0πlog(1+sinttetcott)dt{\displaystyle W(1)={\frac {1}{\pi }}\int _{0}^{\pi }\log \left(1+{\frac {\sin t}{t}}e^{t\cot t}\right)dt}

where W is theLambert W function

1758 & 1783?
Apéry's constant[26]ζ(3){\displaystyle \zeta (3)}1.20205 69031 59594 28539[Mw 16][OEIS 21]ζ(3)=n=11n3=113+123+133+143+153+{\displaystyle \zeta (3)=\sum _{n=1}^{\infty }{\frac {1}{n^{3}}}={\frac {1}{1^{3}}}+{\frac {1}{2^{3}}}+{\frac {1}{3^{3}}}+{\frac {1}{4^{3}}}+{\frac {1}{5^{3}}}+\cdots }

with theRiemann zeta functionζ(s){\displaystyle \zeta (s)}.

1780[OEIS 21]?
Laplace limit[27]0.66274 34193 49181 58097[Mw 17][OEIS 22]Real root ofxex2+1x2+1+1=1{\displaystyle {\frac {xe^{\sqrt {x^{2}+1}}}{{\sqrt {x^{2}+1}}+1}}=1}~1782?
Soldner constant[28][29]μ{\displaystyle \mu }1.45136 92348 83381 05028[Mw 18][OEIS 23]li(x)=0xdtlnt=0{\displaystyle \mathrm {li} (x)=\int _{0}^{x}{\frac {dt}{\ln t}}=0}; root of thelogarithmic integral function.1792[OEIS 23]???
Gauss's constant[30]G{\displaystyle G}0.83462 68416 74073 18628[Mw 19][OEIS 24]1agm(1,2)=14π2πΓ(14)2=ϖπ{\displaystyle {\frac {1}{\mathrm {agm} (1,{\sqrt {2}})}}={\frac {1}{4\pi }}{\sqrt {\frac {2}{\pi }}}\Gamma \left({\frac {1}{4}}\right)^{2}={\frac {\varpi }{\pi }}}

whereagm is thearithmetic–geometric mean andϖ{\displaystyle \varpi } is thelemniscate constant.

1799[31]?
SecondHermite constant[32]γ2{\displaystyle \gamma _{2}}1.15470 05383 79251 52901[Mw 20][OEIS 25]23{\displaystyle {\frac {2}{\sqrt {3}}}}1822 to 1901
Liouville's constant[33]L{\displaystyle L}0.11000 10000 00000 00000 0001[Mw 21][OEIS 26]n=1110n!=1101!+1102!+1103!+1104!+{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{10^{n!}}}={\frac {1}{10^{1!}}}+{\frac {1}{10^{2!}}}+{\frac {1}{10^{3!}}}+{\frac {1}{10^{4!}}}+\cdots }Before 1844?
Firstcontinued fraction constantC1{\displaystyle C_{1}}0.69777 46579 64007 98201[Mw 22][OEIS 27]C1=[0;1,2,3,4,5,...]=I1(2)I0(2){\displaystyle C_{1}=[0;1,2,3,4,5,...]={\frac {I_{1}(2)}{I_{0}(2)}}}, (seeBessel functions).C1A.{\displaystyle C_{1}\notin \mathbb {A} .}[34]1855[35]?
Ramanujan's constant[36]262 53741 26407 68743
.99999 99999 99250 073[Mw 23][OEIS 28]
eπ163{\displaystyle e^{\pi {\sqrt {163}}}}1859?
Glaisher–Kinkelin constantA{\displaystyle A}1.28242 71291 00622 63687[Mw 24][OEIS 29]e112ζ(1)=e1812n=01n+1k=0n(1)k(nk)(k+1)2ln(k+1){\displaystyle e^{{\frac {1}{12}}-\zeta ^{\prime }(-1)}=e^{{\frac {1}{8}}-{\frac {1}{2}}\sum \limits _{n=0}^{\infty }{\frac {1}{n+1}}\sum \limits _{k=0}^{n}\left(-1\right)^{k}{\binom {n}{k}}\left(k+1\right)^{2}\ln(k+1)}}1860[OEIS 29]???
Catalan's constant[37][38][39]G{\displaystyle G}0.91596 55941 77219 01505[Mw 25][OEIS 30]β(2)=n=0(1)n(2n+1)2=112132+152172+192+{\displaystyle \beta (2)=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)^{2}}}={\frac {1}{1^{2}}}-{\frac {1}{3^{2}}}+{\frac {1}{5^{2}}}-{\frac {1}{7^{2}}}+{\frac {1}{9^{2}}}+\cdots }

with theDirichlet beta functionβ(s){\displaystyle \beta (s)}.

1864??
Dottie number[40]D{\displaystyle D}0.73908 51332 15160 64165[Mw 26][OEIS 31]Real root ofcosx=x{\displaystyle \cos x=x}1865[Mw 26]?
Meissel–Mertens constant[41]M{\displaystyle M}0.26149 72128 47642 78375[Mw 27][OEIS 32]limn(pn1plnlnn)=γ+p(ln(11p)+1p){\displaystyle \lim _{n\to \infty }\left(\sum _{p\leq n}{\frac {1}{p}}-\ln \ln n\right)=\gamma +\sum _{p}\left(\ln \left(1-{\frac {1}{p}}\right)+{\frac {1}{p}}\right)}

whereγ is theEuler–Mascheroni constant andp is prime

1866 & 1873???
Universal parabolic constant[42]P{\displaystyle P}2.29558 71493 92638 07403[Mw 28][OEIS 33]ln(1+2)+2=arsinh(1)+2{\displaystyle \ln(1+{\sqrt {2}})+{\sqrt {2}}\;=\;\operatorname {arsinh} (1)+{\sqrt {2}}}Before 1891[43]
Cahen's constant[44]C{\displaystyle C}0.64341 05462 88338 02618[Mw 29][OEIS 34]k=1(1)ksk1=1112+16142+11806±{\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k}}{s_{k}-1}}={\frac {1}{1}}-{\frac {1}{2}}+{\frac {1}{6}}-{\frac {1}{42}}+{\frac {1}{1806}}{\,\pm \cdots }}

wheresk is thekth term ofSylvester's sequence 2, 3, 7, 43, 1807, ...

1891?
Gelfond's constant[45]eπ{\displaystyle e^{\pi }}23.14069 26327 79269 0057[Mw 30][OEIS 35](1)i=i2i=n=0πnn!=1+π11+π22+π36+{\displaystyle (-1)^{-i}=i^{-2i}=\sum _{n=0}^{\infty }{\frac {\pi ^{n}}{n!}}=1+{\frac {\pi ^{1}}{1}}+{\frac {\pi ^{2}}{2}}+{\frac {\pi ^{3}}{6}}+\cdots }1900[46]?
Gelfond–Schneider constant[47]22{\displaystyle 2^{\sqrt {2}}}2.66514 41426 90225 18865[Mw 31][OEIS 36]22{\displaystyle 2^{\sqrt {2}}}Before 1902[OEIS 36]?
SecondFavard constant[48]K2{\displaystyle K_{2}}1.23370 05501 36169 82735[Mw 32][OEIS 37]π28=n=01(2n+1)2=112+132+152+172+{\displaystyle {\frac {\pi ^{2}}{8}}=\sum _{n=0}^{\infty }{\frac {1}{(2n+1)^{2}}}={\frac {1}{1^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{5^{2}}}+{\frac {1}{7^{2}}}+\cdots }1902 to 1965
Golden angle[49]g{\displaystyle g}2.39996 32297 28653 32223[Mw 33][OEIS 38]2πφ2=π(35){\displaystyle {\frac {2\pi }{\varphi ^{2}}}=\pi (3-{\sqrt {5}})} or

180(35)=137.50776{\displaystyle 180(3-{\sqrt {5}})=137.50776\ldots } in degrees

1907
Sierpiński's constant[50]K{\displaystyle K}2.58498 17595 79253 21706[Mw 34][OEIS 39]π(2γ+ln4π3Γ(14)4)=π(2γ+4lnΓ(34)lnπ)=π(2ln2+3lnπ+2γ4lnΓ(14)){\displaystyle {\begin{aligned}&\pi \left(2\gamma +\ln {\frac {4\pi ^{3}}{\Gamma ({\tfrac {1}{4}})^{4}}}\right)=\pi (2\gamma +4\ln \Gamma ({\tfrac {3}{4}})-\ln \pi )\\&=\pi \left(2\ln 2+3\ln \pi +2\gamma -4\ln \Gamma ({\tfrac {1}{4}})\right)\end{aligned}}}1907???
Landau–Ramanujan constant[51]K{\displaystyle K}0.76422 36535 89220 66299[Mw 35][OEIS 40]12p3 mod 4pprime(11p2)12=π4p1 mod 4pprime(11p2)12{\displaystyle {\frac {1}{\sqrt {2}}}\prod _{{p\equiv 3{\text{ mod }}4} \atop p\;{\rm {prime}}}{\left(1-{\frac {1}{p^{2}}}\right)^{-{\frac {1}{2}}}}\!\!={\frac {\pi }{4}}\prod _{{p\equiv 1{\text{ mod }}4} \atop p\;{\rm {prime}}}{\left(1-{\frac {1}{p^{2}}}\right)^{\frac {1}{2}}}}1908[OEIS 40]???
FirstNielsenRamanujan constant[52]a1{\displaystyle a_{1}}0.82246 70334 24113 21823[Mw 36][OEIS 41]ζ(2)2=π212=n=1(1)n+1n2=112122+132142+{\displaystyle {\frac {{\zeta }(2)}{2}}={\frac {\pi ^{2}}{12}}=\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{2}}}={\frac {1}{1^{2}}}{-}{\frac {1}{2^{2}}}{+}{\frac {1}{3^{2}}}{-}{\frac {1}{4^{2}}}{+}\cdots }1909
Gieseking constant[53]V{\displaystyle V}1.01494 16064 09653 62502[Mw 37][OEIS 42]334(1n=01(3n+2)2+n=11(3n+1)2){\displaystyle {\frac {3{\sqrt {3}}}{4}}\left(1-\sum _{n=0}^{\infty }{\frac {1}{(3n+2)^{2}}}+\sum _{n=1}^{\infty }{\frac {1}{(3n+1)^{2}}}\right)}
=33(ψ1(1/3)2π23){\displaystyle ={\frac {\sqrt {3}}{3}}\left({\frac {\psi _{1}(1/3)}{2}}-{\frac {\pi ^{2}}{3}}\right)} with thetrigamma functionψ1{\displaystyle \psi _{1}}.
1912??
Bernstein's constant[54]β{\displaystyle \beta }0.28016 94990 23869 13303[Mw 38][OEIS 43]limn2nE2n(f){\displaystyle \lim _{n\to \infty }2nE_{2n}(f)}, whereEn(f) is the error of the bestuniform approximation to areal functionf(x) on the interval [−1, 1] by real polynomials of no more than degreen, andf(x) = |x|1913???
Tribonacci constant[55]1.83928 67552 14161 13255[Mw 39][OEIS 44]1+19+3333+1933333=1+4cosh(13cosh1(2+38))3{\textstyle {\frac {1+{\sqrt[{3}]{19+3{\sqrt {33}}}}+{\sqrt[{3}]{19-3{\sqrt {33}}}}}{3}}={\frac {1+4\cosh \left({\frac {1}{3}}\cosh ^{-1}\left(2+{\frac {3}{8}}\right)\right)}{3}}}

Real root ofx3x2x1=0{\displaystyle x^{3}-x^{2}-x-1=0}

1914 to 1963
Brun's constant[56]B2{\displaystyle B_{2}}1.90216 05831 04[Mw 40][OEIS 45]p(1p+1p+2)=(13+15)+(15+17)+(111+113)+{\displaystyle \textstyle {\sum \limits _{p}({\frac {1}{p}}+{\frac {1}{p+2}})}=({\frac {1}{3}}\!+\!{\frac {1}{5}})+({\tfrac {1}{5}}\!+\!{\tfrac {1}{7}})+({\tfrac {1}{11}}\!+\!{\tfrac {1}{13}})+\cdots }

where the sum ranges over all primesp such thatp + 2 is also a prime

1919[OEIS 45]???
Twin primes constantC2{\displaystyle C_{2}}0.66016 18158 46869 57392[Mw 41][OEIS 46]pprimep3(11(p1)2){\displaystyle \prod _{\textstyle {p\;{\rm {prime}} \atop p\geq 3}}\left(1-{\frac {1}{(p-1)^{2}}}\right)}1922???
Plastic ratio[57]ρ{\displaystyle \rho }1.32471 79572 44746 02596[Mw 42][OEIS 47]1+1+1+333=12+69183+1269183{\displaystyle {\sqrt[{3}]{1+\!{\sqrt[{3}]{1+\!{\sqrt[{3}]{1+\cdots }}}}}}=\textstyle {\sqrt[{3}]{{\frac {1}{2}}+{\frac {\sqrt {69}}{18}}}}+{\sqrt[{3}]{{\frac {1}{2}}-{\frac {\sqrt {69}}{18}}}}}

Real root ofx3=x+1{\displaystyle x^{3}=x+1}

1924[OEIS 47]
Bloch's constant[58]B{\displaystyle B}0.4332B0.4719{\displaystyle 0.4332\leq B\leq 0.4719}[Mw 43][OEIS 48]The best known bounds are34+2×104B312Γ(13)Γ(1112)Γ(14){\displaystyle {\frac {\sqrt {3}}{4}}+2\times 10^{-4}\leq B\leq {\sqrt {\frac {{\sqrt {3}}-1}{2}}}\cdot {\frac {\Gamma ({\frac {1}{3}})\Gamma ({\frac {11}{12}})}{\Gamma ({\frac {1}{4}})}}}1925[OEIS 48]???
Z score for the 97.5 percentile point[59][60][61][62]z.975{\displaystyle z_{.975}}1.95996 39845 40054 23552[Mw 44][OEIS 49]2erf1(0.95){\displaystyle {\sqrt {2}}\operatorname {erf} ^{-1}(0.95)} whereerf−1(x) is theinverse error function

Real numberz{\displaystyle z} such that12πzex2/2dx=0.975{\displaystyle {\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{z}e^{-x^{2}/2}\,\mathrm {d} x=0.975}

1925???
Landau's constant[58]L{\displaystyle L}0.5<L0.54326{\displaystyle 0.5<L\leq 0.54326}[Mw 45][OEIS 50]The best known bounds are0.5<LΓ(13)Γ(56)Γ(16){\displaystyle 0.5<L\leq {\frac {\Gamma ({\frac {1}{3}})\Gamma ({\frac {5}{6}})}{\Gamma ({\frac {1}{6}})}}}1929???
Landau's third constant[58]A{\displaystyle A}0.5<A0.7853{\displaystyle 0.5<A\leq 0.7853}1929???
Prouhet–Thue–Morse constant[63]τ{\displaystyle \tau }0.41245 40336 40107 59778[Mw 46][OEIS 51]n=0tn2n+1=14[2n=0(1122n)]{\displaystyle \sum _{n=0}^{\infty }{\frac {t_{n}}{2^{n+1}}}={\frac {1}{4}}\left[2-\prod _{n=0}^{\infty }\left(1-{\frac {1}{2^{2^{n}}}}\right)\right]}

wheretn{\displaystyle {t_{n}}} is thenth term of theThue–Morse sequence

1929[OEIS 51]?
Golomb–Dickman constant[64]λ{\displaystyle \lambda }0.62432 99885 43550 87099[Mw 47][OEIS 52]01eLi(t)dt=0ρ(t)t+2dt{\displaystyle \int _{0}^{1}e^{\mathrm {Li} (t)}dt=\int _{0}^{\infty }{\frac {\rho (t)}{t+2}}dt}

where Li(t) is the logarithmic integral, andρ(t) is theDickman function

1930 & 1964???
Constant related to the asymptotic behavior ofLebesgue constants[65]c{\displaystyle c}0.98943 12738 31146 95174[Mw 48][OEIS 53]limn(Ln4π2ln(2n+1))=4π2(Γ(12)Γ(12)+k=12lnk4k21){\displaystyle \lim _{n\to \infty }\!\!\left(\!{L_{n}{-}{\frac {4}{\pi ^{2}}}\ln(2n{+}1)}\!\!\right)\!{=}{\frac {4}{\pi ^{2}}}\!\left({-}{\frac {\Gamma '({\tfrac {1}{2}})}{\Gamma ({\tfrac {1}{2}})}}{+}{\sum _{k=1}^{\infty }\!{\frac {2\ln k}{4k^{2}{-}1}}}\right)}1930[Mw 48]???
Feller–Tornier constant[66]CFT{\displaystyle {\mathcal {C}}_{\mathrm {FT} }}0.66131 70494 69622 33528[Mw 49][OEIS 54]12p prime(12p2)+12=3π2p prime(11p21)+12{\displaystyle {{\frac {1}{2}}\prod _{p{\text{ prime}}}\left(1-{\frac {2}{p^{2}}}\right)+{\frac {1}{2}}}={\frac {3}{\pi ^{2}}}\prod _{p{\text{ prime}}}\left(1-{\frac {1}{p^{2}-1}}\right)+{\frac {1}{2}}}1932???
Base 10Champernowne constant[67]C10{\displaystyle C_{10}}0.12345 67891 01112 13141[Mw 50][OEIS 55]Defined by concatenating representations of successive integers:

0.1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

1933?
Salem constant[68]σ10{\displaystyle \sigma _{10}}1.17628 08182 59917 50654[Mw 51][OEIS 56]Largest real root ofx10+x9x7x6x5x4x3+x+1=0{\displaystyle x^{10}+x^{9}-x^{7}-x^{6}-x^{5}-x^{4}-x^{3}+x+1=0}1933[OEIS 56]
Khinchin's constant[69]K0{\displaystyle K_{0}}2.68545 20010 65306 44530 [Mw 52][OEIS 57]n=1[1+1n(n+2)]log2(n){\displaystyle \prod _{n=1}^{\infty }\left[{1+{1 \over n(n+2)}}\right]^{\log _{2}(n)}}1934???
Lévy's constant (1)[70]β{\displaystyle \beta }1.18656 91104 15625 45282[Mw 53][OEIS 58]π212ln2{\displaystyle {\frac {\pi ^{2}}{12\,\ln 2}}}1935???
Lévy's constant (2)[71]eβ{\displaystyle e^{\beta }}3.27582 29187 21811 15978[Mw 54][OEIS 59]eπ2/(12ln2){\displaystyle e^{\pi ^{2}/(12\ln 2)}}1936???
Copeland–Erdős constant[72]CCE{\displaystyle {\mathcal {C}}_{CE}}0.23571 11317 19232 93137[Mw 55][OEIS 60]Defined by concatenating representations of successive prime numbers:

0.2 3 5 7 11 13 17 19 23 29 31 37 ...

1946[OEIS 60]??
Mills' constant[73]A{\displaystyle A}1.30637 78838 63080 69046[Mw 56][OEIS 61]Smallest positive real numberA such thatA3n{\displaystyle \lfloor A^{3^{n}}\rfloor } is prime for all positive integersn1947???
Gompertz constant[74]δ{\displaystyle \delta }0.59634 73623 23194 07434[Mw 57][OEIS 62]0ex1+xdx=01dx1lnx=11+11+11+21+21+31+3/{\displaystyle \int _{0}^{\infty }\!\!{\frac {e^{-x}}{1+x}}\,dx=\!\!\int _{0}^{1}\!\!{\frac {dx}{1-\ln x}}={\tfrac {1}{1+{\tfrac {1}{1+{\tfrac {1}{1+{\tfrac {2}{1+{\tfrac {2}{1+{\tfrac {3}{1+3{/\cdots }}}}}}}}}}}}}}Before 1948[OEIS 62]???
de Bruijn–Newman constantΛ{\displaystyle \Lambda }0Λ0.2{\displaystyle 0\leq \Lambda \leq 0.2}The number Λ such thatH(λ,z)=0eλu2Φ(u)cos(zu)du{\displaystyle H(\lambda ,z)=\int _{0}^{\infty }e^{\lambda u^{2}}\Phi (u)\cos(zu)du} has real zeros if and only if λ ≥ Λ.

whereΦ(u)=n=1(2π2n4e9u3πn2e5u)eπn2e4u{\displaystyle \Phi (u)=\sum _{n=1}^{\infty }(2\pi ^{2}n^{4}e^{9u}-3\pi n^{2}e^{5u})e^{-\pi n^{2}e^{4u}}}.

1950???
Van der Pauw constantπln2{\displaystyle {\frac {\pi }{\ln 2}}}4.53236 01418 27193 80962[OEIS 63]πln2{\displaystyle {\frac {\pi }{\ln 2}}}Before 1958[OEIS 64]??
Magic angle[75]θm{\displaystyle \theta _{\mathrm {m} }}0.95531 66181 245092 78163[OEIS 65]arctan2=arccos1354.7356{\displaystyle \arctan {\sqrt {2}}=\arccos {\tfrac {1}{\sqrt {3}}}\approx \textstyle {54.7356}^{\circ }}Before 1959[76][75]
Artin's constant[77]CArtin{\displaystyle C_{\mathrm {Artin} }}0.37395 58136 19202 28805[Mw 58][OEIS 66]p prime(11p(p1)){\displaystyle \prod _{p{\text{ prime}}}\left(1-{\frac {1}{p(p-1)}}\right)}Before 1961[OEIS 66]???
Porter's constant[78]C{\displaystyle C}1.46707 80794 33975 47289[Mw 59][OEIS 67]6ln2π2(3ln2+4γ24π2ζ(2)2)12{\displaystyle {\frac {6\ln 2}{\pi ^{2}}}\left(3\ln 2+4\,\gamma -{\frac {24}{\pi ^{2}}}\,\zeta '(2)-2\right)-{\frac {1}{2}}}

whereγ is theEuler–Mascheroni constant andζ '(2) is the derivative of theRiemann zeta function evaluated ats = 2

1961[OEIS 67]???
Lochs constant[79]L{\displaystyle L}0.97027 01143 92033 92574[Mw 60][OEIS 68]6ln2ln10π2{\displaystyle {\frac {6\ln 2\ln 10}{\pi ^{2}}}}1964???
DeVicci's tesseract constant1.00743 47568 84279 37609[OEIS 69]The largest cube that can pass through a 4D hypercube.

Positive root of4x828x67x4+16x2+16=0{\displaystyle 4x^{8}{-}28x^{6}{-}7x^{4}{+}16x^{2}{+}16=0}

1966[OEIS 69]
Lieb's square ice constant[80]1.53960 07178 39002 03869[Mw 61][OEIS 70](43)32=833{\displaystyle \left({\frac {4}{3}}\right)^{\frac {3}{2}}={\frac {8}{3{\sqrt {3}}}}}1967
Niven's constant[81]C{\displaystyle C}1.70521 11401 05367 76428[Mw 62][OEIS 71]1+n=2(11ζ(n)){\displaystyle 1+\sum _{n=2}^{\infty }\left(1-{\frac {1}{\zeta (n)}}\right)}1969???
Stephens' constant[82]CS{\displaystyle C_{S}}0.57595 99688 92945 43964[Mw 63][OEIS 72]p prime(1pp31){\displaystyle \prod _{p{\text{ prime}}}\left(1-{\frac {p}{p^{3}-1}}\right)}1969[OEIS 72]???
Regular paperfolding sequence[83][84]P{\displaystyle P}0.85073 61882 01867 26036[Mw 64][OEIS 73]n=082n22n+21=n=0122n1122n+2{\displaystyle \sum _{n=0}^{\infty }{\frac {8^{2^{n}}}{2^{2^{n+2}}-1}}=\sum _{n=0}^{\infty }{\cfrac {\tfrac {1}{2^{2^{n}}}}{1-{\tfrac {1}{2^{2^{n+2}}}}}}}1970[OEIS 73]?
Reciprocal Fibonacci constant[85]ψ{\displaystyle \psi }3.35988 56662 43177 55317[Mw 65][OEIS 74]n=11Fn=11+11+12+13+15+18+113+{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{F_{n}}}={\frac {1}{1}}+{\frac {1}{1}}+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{5}}+{\frac {1}{8}}+{\frac {1}{13}}+\cdots }

whereFn is thenthFibonacci number

1974[OEIS 74]??
Chvátal–Sankoff constant for the binary alphabetγ2{\displaystyle \gamma _{2}}0.788071γ20.826280{\displaystyle 0.788071\leq \gamma _{2}\leq 0.826280}limnE[λn,2]n{\displaystyle \lim _{n\to \infty }{\frac {\operatorname {E} [\lambda _{n,2}]}{n}}}

whereE[λn,2] is theexpectedlongest common subsequence of two random length-n binary strings

1975???
Feigenbaum constant δ[86]δ{\displaystyle \delta }4.66920 16091 02990 67185[Mw 66][OEIS 75]limnan+1anan+2an+1{\displaystyle \lim _{n\to \infty }{\frac {a_{n+1}-a_{n}}{a_{n+2}-a_{n+1}}}}

where the sequencean is given by n-th period-doubling bifurcation oflogistic mapxk+1=axk(1xk){\displaystyle x_{k+1}=ax_{k}(1-x_{k})} or any other one-dimensional map with a single quadratic maximum

1975???
Chaitin's constants[87]Ω{\displaystyle \Omega }In general they areuncomputable numbers.
But one such number is 0.00787 49969 97812 3844.
[Mw 67][OEIS 76]
pP2|p|{\displaystyle \sum _{p\in P}2^{-|p|}}
  • p: Halted program
  • |p|: Size in bits of programp
  • P: Domain of all programs that stop.
1975
Robbins constant[88]Δ(3){\displaystyle \Delta (3)}0.66170 71822 67176 23515[Mw 68][OEIS 77]4+172637π105+ln(1+2)5+2ln(2+3)5{\displaystyle {\frac {4\!+\!17{\sqrt {2}}\!-6{\sqrt {3}}\!-7\pi }{105}}\!+\!{\frac {\ln(1\!+\!{\sqrt {2}})}{5}}\!+\!{\frac {2\ln(2\!+\!{\sqrt {3}})}{5}}}1977[OEIS 77]
Weierstrass constant[89]0.47494 93799 87920 65033[Mw 69][OEIS 78]25/4πeπ/8Γ(14)2{\displaystyle {\frac {2^{5/4}{\sqrt {\pi }}\,e^{\pi /8}}{\Gamma ({\frac {1}{4}})^{2}}}}Before 1978[90]?
Fransén–Robinson constant[91]F{\displaystyle F}2.80777 02420 28519 36522[Mw 70][OEIS 79]0dxΓ(x)=e+0exπ2+ln2xdx{\displaystyle \int _{0}^{\infty }{\frac {dx}{\Gamma (x)}}=e+\int _{0}^{\infty }{\frac {e^{-x}}{\pi ^{2}+\ln ^{2}x}}\,dx}1978???
Feigenbaum constant α[92]α{\displaystyle \alpha }2.50290 78750 95892 82228[Mw 66][OEIS 80]Ratio between the width of a tine and the width of one of its two subtines in abifurcation diagram1979???
Second du Bois-Reymond constant[93]C2{\displaystyle C_{2}}0.19452 80494 65325 11361[Mw 71][OEIS 81]e272=0|ddt(sintt)2|dt1{\displaystyle {\frac {e^{2}-7}{2}}=\int _{0}^{\infty }\left|{{\frac {d}{dt}}\left({\frac {\sin t}{t}}\right)^{2}}\right|\,dt-1}1983[OEIS 81]?
Erdős–Tenenbaum–Ford constantδ{\displaystyle \delta }0.08607 13320 55934 20688[OEIS 82]11+loglog2log2{\displaystyle 1-{\frac {1+\log \log 2}{\log 2}}}1984???
Conway's constant[94]λ{\displaystyle \lambda }1.30357 72690 34296 39125[Mw 72][OEIS 83]Real root of the polynomial:

x71x692x68x67+2x66+2x65+x64x63x62x61x60x59+2x58+5x57+3x562x5510x543x532x52+6x51+6x50+x49+9x483x477x468x458x44+10x43+6x42+8x415x4012x39+7x387x37+7x36+x353x34+10x33+x326x312x3010x293x28+2x27+9x263x25+14x248x237x21+9x20+3x194x1810x177x16+12x15+7x14+2x1312x124x112x10+5x9+x77x6+7x54x4+12x36x2+3x6 = 0{\displaystyle {\begin{smallmatrix}x^{71}-x^{69}-2x^{68}-x^{67}+2x^{66}+2x^{65}+x^{64}-x^{63}-x^{62}-x^{61}-x^{60}\\-x^{59}+2x^{58}+5x^{57}+3x^{56}-2x^{55}-10x^{54}-3x^{53}-2x^{52}+6x^{51}+6x^{50}\\+x^{49}+9x^{48}-3x^{47}-7x^{46}-8x^{45}-8x^{44}+10x^{43}+6x^{42}+8x^{41}-5x^{40}\\-12x^{39}+7x^{38}-7x^{37}+7x^{36}+x^{35}-3x^{34}+10x^{33}+x^{32}-6x^{31}-2x^{30}\\-10x^{29}-3x^{28}+2x^{27}+9x^{26}-3x^{25}+14x^{24}-8x^{23}-7x^{21}+9x^{20}\\+3x^{19}\!-4x^{18}\!-10x^{17}\!-7x^{16}\!+12x^{15}\!+7x^{14}\!+2x^{13}\!-12x^{12}\!-4x^{11}\!-2x^{10}\\+5x^{9}+x^{7}-7x^{6}+7x^{5}-4x^{4}+12x^{3}-6x^{2}+3x-6\ =\ 0\quad \quad \quad \end{smallmatrix}}}

1987
Hafner–Sarnak–McCurley constant[95]σ{\displaystyle \sigma }0.35323 63718 54995 98454[Mw 73][OEIS 84]p prime(1(1n1(11pn))2){\displaystyle \prod _{p{\text{ prime}}}{\left(1-\left(1-\prod _{n\geq 1}\left(1-{\frac {1}{p^{n}}}\right)\right)^{2}\right)}\!}1991[OEIS 84]???
Backhouse's constant[96]B{\displaystyle B}1.45607 49485 82689 67139[Mw 74][OEIS 85]limk|qk+1qk|where:Q(x)=1P(x)=k=1qkxk{\displaystyle \lim _{k\to \infty }\left|{\frac {q_{k+1}}{q_{k}}}\right\vert \quad \scriptstyle {\text{where:}}\displaystyle \;\;Q(x)={\frac {1}{P(x)}}=\!\sum _{k=1}^{\infty }q_{k}x^{k}}

P(x)=1+k=1pkxk=1+2x+3x2+5x3+{\displaystyle P(x)=1+\sum _{k=1}^{\infty }{p_{k}x^{k}}=1+2x+3x^{2}+5x^{3}+\cdots }wherepk is thekth prime number

1995???
Viswanath constant[97]V{\displaystyle V}1.13198 82487 943[Mw 75][OEIS 86]limn|fn|1n{\displaystyle \lim _{n\to \infty }|f_{n}|^{\frac {1}{n}}}      wherefn =fn−1 ±fn−2, where the signs + or − are chosenat random with equal probability 1/21997???
Komornik–Loreti constant[98]q{\displaystyle q}1.78723 16501 82965 93301[Mw 76][OEIS 87]Real numberq{\displaystyle q} such that1=k=1tkqk{\displaystyle 1=\sum _{k=1}^{\infty }{\frac {t_{k}}{q^{k}}}}, orn=0(11q2n)+q2q1=0{\displaystyle \prod _{n=0}^{\infty }\left(1-{\frac {1}{q^{2^{n}}}}\right)+{\frac {q-2}{q-1}}=0}

wheretk is thekth term of theThue–Morse sequence

1998?
Embree–Trefethen constantβ{\displaystyle \beta ^{\star }}0.702581999???
Heath-Brown–Moroz constant[99]C{\displaystyle C}0.00131 76411 54853 17810[Mw 77][OEIS 88]p prime(11p)7(1+7p+1p2){\displaystyle \prod _{p{\text{ prime}}}\left(1-{\frac {1}{p}}\right)^{7}\left(1+{\frac {7p+1}{p^{2}}}\right)}1999[OEIS 88]???
MRB constant[100][101][102]S{\displaystyle S}0.18785 96424 62067 12024[Mw 78][Ow 1][OEIS 89]n=1(1)n(n1/n1)=11+2233+{\displaystyle \sum _{n=1}^{\infty }(-1)^{n}(n^{1/n}-1)=-{\sqrt[{1}]{1}}+{\sqrt[{2}]{2}}-{\sqrt[{3}]{3}}+\cdots }1999???
Prime constant[103]ρ{\displaystyle \rho }0.41468 25098 51111 66024[OEIS 90]p prime12p=14+18+132+{\displaystyle \sum _{p{\text{ prime}}}{\frac {1}{2^{p}}}={\frac {1}{4}}+{\frac {1}{8}}+{\frac {1}{32}}+\cdots }1999[OEIS 90]??
Somos' quadratic recurrence constant[104]σ{\displaystyle \sigma }1.66168 79496 33594 12129[Mw 79][OEIS 91]n=1n1/2n=123=11/221/431/8{\displaystyle \prod _{n=1}^{\infty }n^{{1/2}^{n}}={\sqrt {1{\sqrt {2{\sqrt {3\cdots }}}}}}=1^{1/2}\;2^{1/4}\;3^{1/8}\cdots }1999[Mw 79]???
Foias constant[105]α{\displaystyle \alpha }1.18745 23511 26501 05459[Mw 80][OEIS 92]xn+1=(1+1xn)n for n=1,2,3,{\displaystyle x_{n+1}=\left(1+{\frac {1}{x_{n}}}\right)^{n}{\text{ for }}n=1,2,3,\ldots }

Foias constant is the unique real number such that ifx1 = α then the sequence diverges to infinity.

2000???
Logarithmic capacity of the unit disk[106][107]0.59017 02995 08048 11302[Mw 81][OEIS 93]Γ(14)24π3/2=ϖπ2{\displaystyle {\frac {\Gamma ({\tfrac {1}{4}})^{2}}{4\pi ^{3/2}}}={\frac {\varpi }{\pi {\sqrt {2}}}}} whereϖ{\displaystyle \varpi } is thelemniscate constant.Before 2003[OEIS 93]?
Taniguchi constant[82]CT{\displaystyle C_{T}}0.67823 44919 17391 97803[Mw 82][OEIS 94]p prime(13p3+2p4+1p51p6){\displaystyle \prod _{p{\text{ prime}}}\left(1-{\frac {3}{p^{3}}}+{\frac {2}{p^{4}}}+{\frac {1}{p^{5}}}-{\frac {1}{p^{6}}}\right)}Before 2005[82]???

Mathematical constants sorted by their representations as continued fractions

[edit]

The following list includes thecontinued fractions of some constants and is sorted by their representations. Continued fractions with more than 20 known terms have been truncated, with anellipsis to show that they continue. Rational numbers have two continued fractions; the version in this list is the shorter one. Decimal representations arerounded or padded to 10 places if the values are known.

NameSymbolSetDecimal expansionContinued fractionNotes
Zero0Z{\displaystyle \mathbb {Z} }0.00000 00000[0; ]
Golomb–Dickman constantλ{\displaystyle \lambda }0.62432 99885[0; 1, 1, 1, 1, 1, 22, 1, 2, 3, 1, 1, 11, 1, 1, 2, 22, 2, 6, 1, 1, …][OEIS 95]E. Weisstein noted that the continued fraction has an unusually large number of 1s.[Mw 83]
Cahen's constantC2{\displaystyle C_{2}}RA{\displaystyle \mathbb {R} \setminus \mathbb {A} }0.64341 05463[0; 1, 1, 1, 22, 32, 132, 1292, 252982, 4209841472, 2694251407415154862, …][OEIS 96]All terms are squares and truncated at 10 terms due to large size. Davison and Shallit used the continued fraction expansion to prove that the constant is transcendental.
Euler–Mascheroni constantγ{\displaystyle \gamma }0.57721 56649[108][0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, …][108][OEIS 97]Using the continued fraction expansion, it was shown that ifγ is rational, its denominator must exceed 10244663.
Firstcontinued fraction constantC1{\displaystyle C_{1}}RA{\displaystyle \mathbb {R} \setminus \mathbb {A} }0.69777 46579[0; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, …]Equal to the ratioI1(2)/I0(2){\displaystyle I_{1}(2)/I_{0}(2)} ofmodified Bessel functions of the first kind evaluated at 2.
Catalan's constantG{\displaystyle G}0.91596 55942[109][0; 1, 10, 1, 8, 1, 88, 4, 1, 1, 7, 22, 1, 2, 3, 26, 1, 11, 1, 10, 1, …][109][OEIS 98]Computed up to4851389025 terms by E. Weisstein.[Mw 84]
One half1/2Q{\displaystyle \mathbb {Q} }0.50000 00000[0; 2]
Prouhet–Thue–Morse constantτ{\displaystyle \tau }RA{\displaystyle \mathbb {R} \setminus \mathbb {A} }0.41245 40336[0; 2, 2, 2, 1, 4, 3, 5, 2, 1, 4, 2, 1, 5, 44, 1, 4, 1, 2, 4, 1, …][OEIS 99]Infinitely many partial quotients are 4 or 5, and infinitely many partial quotients are greater than or equal to 50.[110]
Copeland–Erdős constantCCE{\displaystyle {\mathcal {C}}_{CE}}RQ{\displaystyle \mathbb {R} \setminus \mathbb {Q} }0.23571 11317[0; 4, 4, 8, 16, 18, 5, 1, 1, 1, 1, 7, 1, 1, 6, 2, 9, 58, 1, 3, 4, …][OEIS 100]Computed up to1011597392 terms by E. Weisstein. He also noted that while theChampernowne constant continued fraction contains sporadic large terms, the continued fraction of the Copeland–Erdős Constant do not exhibit this property.[Mw 85]
Base 10Champernowne constantC10{\displaystyle C_{10}}RA{\displaystyle \mathbb {R} \setminus \mathbb {A} }0.12345 67891[0; 8, 9, 1, 149083, 1, 1, 1, 4, 1, 1, 1, 3, 4, 1, 1, 1, 15,4.57540×10165, 6, 1, …][OEIS 101]Champernowne constants in any base exhibit sporadic large numbers; the 40th term inC10{\displaystyle C_{10}} has 2504 digits.
One1N{\displaystyle \mathbb {N} }1.00000 00000[1; ]
Phi,Golden ratioφ{\displaystyle \varphi }A{\displaystyle \mathbb {A} }1.61803 39887[111][1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …][112]The convergents are ratios of successiveFibonacci numbers.
Brun's constantB2{\displaystyle B_{2}}1.90216 05831[1; 1, 9, 4, 1, 1, 8, 3, 4, 7, 1, 3, 3, 1, 2, 1, 1, 12, 4, 2, 1, …]Thenth roots of the denominators of thenth convergents are close toKhinchin's constant, suggesting thatB2{\displaystyle B_{2}} is irrational. If true, this will prove thetwin prime conjecture.[113]
Square root of 22{\displaystyle {\sqrt {2}}}A{\displaystyle \mathbb {A} }1.41421 35624[1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …]The convergents are ratios of successivePell numbers.
Two2N{\displaystyle \mathbb {N} }2.00000 00000[2; ]
Euler's numbere{\displaystyle e}RA{\displaystyle \mathbb {R} \setminus \mathbb {A} }2.71828 18285[114][2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, …][115][OEIS 102]The continued fraction expansion has the pattern [2; 1, 2, 1, 1, 4, 1, ..., 1, 2n, 1, ...].
Khinchin's constantK0{\displaystyle K_{0}}2.68545 20011[116][2; 1, 2, 5, 1, 1, 2, 1, 1, 3, 10, 2, 1, 3, 2, 24, 1, 3, 2, 3, 1, …][117][OEIS 103]Foralmost all real numbersx, the coefficients of the continued fraction ofx have a finitegeometric mean known as Khinchin's constant.
Three3N{\displaystyle \mathbb {N} }3.00000 00000[3; ]
Piπ{\displaystyle \pi }RA{\displaystyle \mathbb {R} \setminus \mathbb {A} }3.14159 26536[3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, …][OEIS 104]The first few convergents (3, 22/7, 333/106, 355/113, ...) are among the best-known and most widely used historical approximations ofπ.

Sequences of constants

[edit]
NameSymbolFormulaYearSet
Harmonic numberHn{\displaystyle H_{n}}k=1n1k{\displaystyle \sum _{k=1}^{n}{\frac {1}{k}}}AntiquityQ{\displaystyle \mathbb {Q} }
Gregory coefficientsGn{\displaystyle G_{n}}1n!01x(x1)(x2)(xn+1)dx=01(xn)dx{\displaystyle {\frac {1}{n!}}\int _{0}^{1}x(x-1)(x-2)\cdots (x-n+1)\,dx=\int _{0}^{1}{\binom {x}{n}}\,dx}1670Q{\displaystyle \mathbb {Q} }
Bernoulli numberBn±{\displaystyle B_{n}^{\pm }}t2(cotht2±1)=m=0Bm±tmm!{\displaystyle {\frac {t}{2}}\left(\operatorname {coth} {\frac {t}{2}}\pm 1\right)=\sum _{m=0}^{\infty }{\frac {B_{m}^{\pm {}}t^{m}}{m!}}}1689Q{\displaystyle \mathbb {Q} }
Hermite constants[Mw 86]γn{\displaystyle \gamma _{n}}For a lattice L in Euclidean spaceRn with unit covolume, i.e. vol(Rn/L) = 1, let λ1(L) denote the least length of a nonzero element of L. Then √γnn is the maximum of λ1(L) over all such lattices L.1822 to 1901R{\displaystyle \mathbb {R} }
Hafner–Sarnak–McCurley constant[118]D(n){\displaystyle D(n)}D(n)=k=1{1[1j=1n(1pkj)]2}{\displaystyle D(n)=\prod _{k=1}^{\infty }\left\{1-\left[1-\prod _{j=1}^{n}(1-p_{k}^{-j})\right]^{2}\right\}}1883[Mw 87]R{\displaystyle \mathbb {R} }
Stieltjes constantsγn{\displaystyle \gamma _{n}}(1)nn!2π02πenixζ(eix+1)dx.{\displaystyle {\frac {(-1)^{n}n!}{2\pi }}\int _{0}^{2\pi }e^{-nix}\zeta \left(e^{ix}+1\right)dx.}before 1894R{\displaystyle \mathbb {R} }
Favard constants[48][Mw 88]Kr{\displaystyle K_{r}}4πn=0((1)n2n+1)r+1=4π((1)0(r+1)1r+(1)1(r+1)3r+(1)2(r+1)5r+(1)3(r+1)7r+){\displaystyle {\frac {4}{\pi }}\sum _{n=0}^{\infty }\left({\frac {(-1)^{n}}{2n+1}}\right)^{\!r+1}={\frac {4}{\pi }}\left({\frac {(-1)^{0(r+1)}}{1^{r}}}+{\frac {(-1)^{1(r+1)}}{3^{r}}}+{\frac {(-1)^{2(r+1)}}{5^{r}}}+{\frac {(-1)^{3(r+1)}}{7^{r}}}+\cdots \right)}1902 to 1965R{\displaystyle \mathbb {R} }
Generalized Brun's Constant[56]Bn{\displaystyle B_{n}}p(1p+1p+n){\displaystyle {\sum \limits _{p}\left({\frac {1}{p}}+{\frac {1}{p+n}}\right)}} where the sum ranges over all primesp such thatp + n is also a prime1919[OEIS 45]R{\displaystyle \mathbb {R} }
Champernowne constants[67]Cb{\displaystyle C_{b}}Defined by concatenating representations of successive integers in base b.

Cb=n=1nb(k=1nlogb(k+1)){\displaystyle C_{b}=\sum _{n=1}^{\infty }{\frac {n}{b^{\left(\sum _{k=1}^{n}\lceil \log _{b}(k+1)\rceil \right)}}}}

1933RA{\displaystyle \mathbb {R} \setminus \mathbb {A} }
Lagrange numberL(n){\displaystyle L(n)}94mn2{\displaystyle {\sqrt {9-{\frac {4}{{m_{n}}^{2}}}}}} wheremn{\displaystyle m_{n}} is the nth smallest number such thatm2+x2+y2=3mxy{\displaystyle m^{2}+x^{2}+y^{2}=3mxy\,} has positive (x,y).before 1957A{\displaystyle \mathbb {A} }
Feller's coin-tossing constantsαk,βk{\displaystyle \alpha _{k},\beta _{k}}αk{\displaystyle \alpha _{k}} is the smallest positive real root ofxk+1=2k+1(x1),βk=2αkk+1kαk{\displaystyle x^{k+1}=2^{k+1}(x-1),\beta _{k}={\frac {2-\alpha _{k}}{k+1-k\alpha _{k}}}}1968A{\displaystyle \mathbb {A} }
Stoneham numberαb,c{\displaystyle \alpha _{b,c}}n=ck>11bnn=k=11bckck{\displaystyle \sum _{n=c^{k}>1}{\frac {1}{b^{n}n}}=\sum _{k=1}^{\infty }{\frac {1}{b^{c^{k}}c^{k}}}} where b,c are coprime integers.1973RA{\displaystyle \mathbb {R} \setminus \mathbb {A} }
Beraha constantsB(n){\displaystyle B(n)}2+2cos(2πn){\displaystyle 2+2\cos \left({\frac {2\pi }{n}}\right)}1974A{\displaystyle \mathbb {A} }
Chvátal–Sankoff constantsγk{\displaystyle \gamma _{k}}limnE[λn,k]n{\displaystyle \lim _{n\to \infty }{\frac {E[\lambda _{n,k}]}{n}}}1975R{\displaystyle \mathbb {R} }
Hyperharmonic numberHn(r){\displaystyle H_{n}^{(r)}}k=1nHk(r1){\displaystyle \sum _{k=1}^{n}H_{k}^{(r-1)}} andHn(0)=1n{\displaystyle H_{n}^{(0)}={\frac {1}{n}}}1995Q{\displaystyle \mathbb {Q} }
Gregory numberGx{\displaystyle G_{x}}n=0(1)n1(2n+1)x2n+1=arccot(x){\displaystyle \sum _{n=0}^{\infty }(-1)^{n}{\frac {1}{(2n+1)x^{2n+1}}}=\operatorname {arccot}(x)} for rational x greater than or equal to one.before 1996RA{\displaystyle \mathbb {R} \setminus \mathbb {A} }
Metallic meann+n2+42{\displaystyle {\frac {n+{\sqrt {n^{2}+4}}}{2}}}before 1998A{\displaystyle \mathbb {A} }

See also

[edit]

Notes

[edit]
  1. ^Bothi andi are roots of this equation, though neither root is truly "positive" nor more fundamental than the other as they are algebraically equivalent. The distinction between signs ofi andi is in some ways arbitrary, but a useful notational device. Seeimaginary unit for more information.

References

[edit]
  1. ^Weisstein, Eric W."Constant".mathworld.wolfram.com. Retrieved2020-08-08.
  2. ^abArndt & Haenel 2006, p. 167
  3. ^Hartl, Michael."100,000 digits of Tau".Tau Day. Retrieved22 January 2023.
  4. ^Calvin C Clawson (2001).Mathematical sorcery: revealing the secrets of numbers. Basic Books. p. IV.ISBN 978 0 7382 0496-3.
  5. ^Fowler and Robson, p. 368.Photograph, illustration, and description of theroot(2) tablet from the Yale Babylonian CollectionArchived 2012-08-13 at theWayback MachineHigh resolution photographs, descriptions, and analysis of theroot(2) tablet (YBC 7289) from the Yale Babylonian Collection
  6. ^Vijaya AV (2007).Figuring Out Mathematics. Dorling Kindcrsley (India) Pvt. Lid. p. 15.ISBN 978-81-317-0359-5.
  7. ^P A J Lewis (2008).Essential Mathematics 9. Ratna Sagar. p. 24.ISBN 9788183323673.
  8. ^Timothy Gowers; June Barrow-Green; Imre Leade (2007).The Princeton Companion to Mathematics. Princeton University Press. p. 316.ISBN 978-0-691-11880-2.
  9. ^Kapusta, Janos (2004),"The square, the circle, and the golden proportion: a new class of geometrical constructions"(PDF),Forma,19:293–313, archived fromthe original(PDF) on 2020-09-18, retrieved2022-01-28.
  10. ^Kim Plofker (2009),Mathematics in India, Princeton University Press,ISBN 978-0-691-12067-6, pp. 54–56.
  11. ^Plutarch. "718ef".Quaestiones convivales VIII.ii. Archived fromthe original on 2009-11-19. Retrieved2019-05-24.And therefore Plato himself dislikes Eudoxus, Archytas, and Menaechmus for endeavoring to bring down thedoubling the cube to mechanical operations
  12. ^Christensen, Thomas (2002),The Cambridge History of Western Music Theory, Cambridge University Press, p. 205,ISBN 978-0521686983
  13. ^Koshy, Thomas (2017).Fibonacci and Lucas Numbers with Applications (2 ed.). John Wiley & Sons.ISBN 9781118742174. Retrieved14 August 2018.
  14. ^Keith J. Devlin (1999).Mathematics: The New Golden Age. Columbia University Press. p. 66.ISBN 978-0-231-11638-1.
  15. ^Mireille Bousquet-Mélou.Two-dimensional self-avoiding walks(PDF). CNRS, LaBRI, Bordeaux, France.
  16. ^Hugo Duminil-Copin & Stanislav Smirnov (2011).The connective constant of the honeycomb lattice √ (2 + √ 2)(PDF). Université de Geneve.
  17. ^Richard J. Mathar (2013). "Circumscribed Regular Polygons".arXiv:1301.6293 [math.MG].
  18. ^E.Kasner y J.Newman. (2007).Mathematics and the Imagination. Conaculta. p. 77.ISBN 978-968-5374-20-0.
  19. ^O'Connor, J J; Robertson, E F."The numbere". MacTutor History of Mathematics.
  20. ^Annie Cuyt; Vigdis Brevik Petersen; Brigitte Verdonk; Haakon Waadeland; William B. Jones (2008).Handbook of Continued Fractions for Special Functions. Springer. p. 182.ISBN 978-1-4020-6948-2.
  21. ^Cajori, Florian (1991).A History of Mathematics (5th ed.). AMS Bookstore. p. 152.ISBN 0-8218-2102-4.
  22. ^O'Connor, J. J.; Robertson, E. F. (September 2001)."The number e". The MacTutor History of Mathematics archive. Retrieved2009-02-02.
  23. ^J. Coates; Martin J. Taylor (1991).L-Functions and Arithmetic. Cambridge University Press. p. 333.ISBN 978-0-521-38619-7.
  24. ^Robert Baillie (2013). "Summing The Curious Series of Kempner and Irwin".arXiv:0806.4410 [math.CA].
  25. ^Leonhard Euler (1749).Consideratio quarumdam serierum, quae singularibus proprietatibus sunt praeditae. p. 108.
  26. ^Annie Cuyt; Vigdis Brevik Petersen; Brigitte Verdonk; Haakon Waadelantl; William B. Jones. (2008).Handbook of Continued Fractions for Special Functions. Springer. p. 188.ISBN 978-1-4020-6948-2.
  27. ^Howard Curtis (2014).Orbital Mechanics for Engineering Students. Elsevier. p. 159.ISBN 978-0-08-097747-8.
  28. ^Johann Georg Soldner (1809).Théorie et tables d'une nouvelle fonction transcendante (in French). J. Lindauer, München. p. 42.
  29. ^Lorenzo Mascheroni (1792).Adnotationes ad calculum integralem Euleri (in Latin). Petrus Galeatius, Ticini. p. 17.
  30. ^Keith B. Oldham; Jan C. Myland; Jerome Spanier (2009).An Atlas of Functions: With Equator, the Atlas Function Calculator. Springer. p. 15.ISBN 978-0-387-48806-6.
  31. ^Nielsen, Mikkel Slot. (July 2016).Undergraduate convexity : problems and solutions. World Scientific. p. 162.ISBN 9789813146211.OCLC 951172848.
  32. ^Steven Finch (2014).Errata and Addenda to Mathematical Constants(PDF). Harvard.edu. Archived fromthe original(PDF) on 2016-03-16. Retrieved2013-12-17.
  33. ^Calvin C. Clawson (2003).Mathematical Traveler: Exploring the Grand History of Numbers. Perseus. p. 187.ISBN 978-0-7382-0835-0.
  34. ^Waldschmidt, Michel (2021)."Irrationality and transcendence of values of special functions"(PDF).
  35. ^Amoretti, F. (1855)."Sur la fraction continue [0,1,2,3,4,...]".Nouvelles annales de mathématiques.1 (14):40–44.
  36. ^L. J. Lloyd James Peter Kilford (2008).Modular Forms: A Classical and Computational Introduction. Imperial College Press. p. 107.ISBN 978-1-84816-213-6.
  37. ^Henri Cohen (2000).Number Theory: Volume II: Analytic and Modern Tools. Springer. p. 127.ISBN 978-0-387-49893-5.
  38. ^H. M. Srivastava; Choi Junesang (2001).Series Associated With the Zeta and Related Functions. Kluwer Academic Publishers. p. 30.ISBN 978-0-7923-7054-3.
  39. ^E. Catalan (1864).Mémoire sur la transformation des séries, et sur quelques intégrales définies, Comptes rendus hebdomadaires des séances de l'Académie des sciences 59. Kluwer Academic éditeurs. p. 618.
  40. ^James Stewart (2010).Single Variable Calculus: Concepts and Contexts. Brooks/Cole. p. 314.ISBN 978-0-495-55972-6.
  41. ^Julian Havil (2003).Gamma: Exploring Euler's Constant. Princeton University Press. p. 64.ISBN 9780691141336.
  42. ^Steven Finch (2014).Errata and Addenda to Mathematical Constants(PDF). Harvard.edu. p. 59. Archived fromthe original(PDF) on 2016-03-16. Retrieved2013-12-17.
  43. ^Osborne, George Abbott (1891).An Elementary Treatise on the Differential and Integral Calculus. Leach, Shewell, and Sanborn. pp. 250.
  44. ^Yann Bugeaud (2004).Series representations for some mathematical constants. Cambridge University Press. p. 72.ISBN 978-0-521-82329-6.
  45. ^David Wells (1997).The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books Ltd. p. 4.ISBN 9780141929408.
  46. ^Tijdeman, Robert (1976). "On the Gel'fond–Baker method and its applications". InFelix E. Browder (ed.).Mathematical Developments Arising from Hilbert Problems.Proceedings of Symposia in Pure Mathematics. Vol. XXVIII.1.American Mathematical Society. pp. 241–268.ISBN 0-8218-1428-1.Zbl 0341.10026.
  47. ^David Cohen (2006).Precalculus: With Unit Circle Trigonometry. Thomson Learning Inc. p. 328.ISBN 978-0-534-40230-3.
  48. ^abHelmut Brass; Knut Petras (2010).Quadrature Theory: The Theory of Numerical Integration on a Compact Interval. AMS. p. 274.ISBN 978-0-8218-5361-0.
  49. ^Ángulo áureo.
  50. ^Eric W. Weisstein (2002).CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 1356.ISBN 9781420035223.
  51. ^Richard E. Crandall; Carl B. Pomerance (2005).Prime Numbers: A Computational Perspective. Springer. p. 80.ISBN 978-0387-25282-7.
  52. ^Mauro Fiorentini.Nielsen – Ramanujan (costanti di).
  53. ^Steven Finch.Volumes of Hyperbolic 3-Manifolds(PDF). Harvard University. Archived fromthe original(PDF) on 2015-09-19.
  54. ^Lloyd N. Trefethen (2013).Approximation Theory and Approximation Practice. SIAM. p. 211.ISBN 978-1-611972-39-9.
  55. ^Agronomof, M. (1914). "Sur une suite récurrente".Mathesis.4:125–126.
  56. ^abThomas Koshy (2007).Elementary Number Theory with Applications. Elsevier. p. 119.ISBN 978-0-12-372-487-8.
  57. ^Ian Stewart (1996).Professor Stewart's Cabinet of Mathematical Curiosities. Birkhäuser Verlag.ISBN 978-1-84765-128-0.
  58. ^abcEric W. Weisstein (2003).CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 1688.ISBN 978-1-58488-347-0.
  59. ^Rees, DG (1987),Foundations of Statistics, CRC Press, p. 246,ISBN 0-412-28560-6,Why 95% confidence? Why not some otherconfidence level? The use of 95% is partly convention, but levels such as 90%, 98% and sometimes 99.9% are also used.
  60. ^"Engineering Statistics Handbook: Confidence Limits for the Mean". National Institute of Standards and Technology. Archived fromthe original on 5 February 2008. Retrieved4 February 2008.Although the choice of confidence coefficient is somewhat arbitrary, in practice 90%, 95%, and 99% intervals are often used, with 95% being the most commonly used.
  61. ^Olson, Eric T; Olson, Tammy Perry (2000),Real-Life Math: Statistics, Walch Publishing, p. 66,ISBN 0-8251-3863-9,While other stricter, or looser, limits may be chosen, the 95 percent interval is very often preferred by statisticians.
  62. ^Swift, MB (2009). "Comparison of Confidence Intervals for a Poisson Mean – Further Considerations".Communications in Statistics – Theory and Methods.38 (5):748–759.doi:10.1080/03610920802255856.S2CID 120748700.In modern applied practice, almost all confidence intervals are stated at the 95% level.
  63. ^Steven Finch (2014).Errata and Addenda to Mathematical Constants(PDF). Harvard.edu. p. 53. Archived fromthe original(PDF) on 2016-03-16. Retrieved2013-12-17.
  64. ^Eric W. Weisstein (2002).CRC Concise Encyclopedia of Mathematics. Crc Press. p. 1212.ISBN 9781420035223.
  65. ^Horst Alzer (2002)."Journal of Computational and Applied Mathematics, Volume 139, Issue 2"(PDF).Journal of Computational and Applied Mathematics.139 (2):215–230.doi:10.1016/S0377-0427(01)00426-5.
  66. ^ECKFORD COHEN (1962).SOME ASYMPTOTIC FORMULAS IN THE THEORY OF NUMBERS(PDF). University of Tennessee. p. 220.
  67. ^abMichael J. Dinneen; Bakhadyr Khoussainov; Prof. Andre Nies (2012).Computation, Physics and Beyond. Springer. p. 110.ISBN 978-3-642-27653-8.
  68. ^Pei-Chu Hu, Chung-Chun (2008).Distribution Theory of Algebraic Numbers. Hong Kong University. p. 246.ISBN 978-3-11-020536-7.
  69. ^Julian Havil (2003).Gamma: Exploring Euler's Constant. Princeton University Press. p. 161.ISBN 9780691141336.
  70. ^Aleksandr I͡Akovlevich Khinchin (1997).Continued Fractions. Courier Dover Publications. p. 66.ISBN 978-0-486-69630-0.
  71. ^Marek Wolf (2018). "Two arguments that the nontrivial zeros of the Riemann zeta function are irrational".Computational Methods in Science and Technology.24 (4):215–220.arXiv:1002.4171.doi:10.12921/cmst.2018.0000049.S2CID 115174293.
  72. ^Yann Bugeaud (2012).Distribution Modulo One and Diophantine Approximation. Cambridge University Press. p. 87.ISBN 978-0-521-11169-0.
  73. ^Laith Saadi (2004).Stealth Ciphers. Trafford Publishing. p. 160.ISBN 978-1-4120-2409-9.
  74. ^Annie Cuyt; Viadis Brevik Petersen; Brigitte Verdonk; William B. Jones (2008).Handbook of continued fractions for special functions. Springer Science. p. 190.ISBN 978-1-4020-6948-2.
  75. ^abAndras Bezdek (2003).Discrete Geometry. Marcel Dekkcr, Inc. p. 150.ISBN 978-0-8247-0968-6.
  76. ^Lowe, I. J. (1959-04-01)."Free Induction Decays of Rotating Solids".Physical Review Letters.2 (7):285–287.Bibcode:1959PhRvL...2..285L.doi:10.1103/PhysRevLett.2.285.ISSN 0031-9007.
  77. ^Paulo Ribenboim (2000).My Numbers, My Friends: Popular Lectures on Number Theory. Springer. p. 66.ISBN 978-0-387-98911-2.
  78. ^Michel A. Théra (2002).Constructive, Experimental, and Nonlinear Analysis. CMS-AMS. p. 77.ISBN 978-0-8218-2167-1.
  79. ^Steven Finch (2007).Continued Fraction Transformation(PDF). Harvard University. p. 7. Archived fromthe original(PDF) on 2016-04-19. Retrieved2015-02-28.
  80. ^Robin Whitty.Lieb's Square Ice Theorem(PDF).
  81. ^Ivan Niven.Averages of exponents in factoring integers(PDF).
  82. ^abcSteven Finch (2005).Class Number Theory(PDF). Harvard University. p. 8. Archived fromthe original(PDF) on 2016-04-19. Retrieved2014-04-15.
  83. ^Francisco J. Aragón Artacho; David H. Baileyy; Jonathan M. Borweinz; Peter B. Borwein (2012).Tools for visualizing real numbers(PDF). p. 33. Archived fromthe original(PDF) on 2017-02-20. Retrieved2014-01-20.
  84. ^Papierfalten(PDF). 1998.
  85. ^Gérard P. Michon (2005).Numerical Constants. Numericana.
  86. ^Kathleen T. Alligood (1996).Chaos: An Introduction to Dynamical Systems. Springer.ISBN 978-0-387-94677-1.
  87. ^David Darling (2004).The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes. Wiley & Sons inc. p. 63.ISBN 978-0-471-27047-8.
  88. ^Steven R. Finch (2003).Mathematical Constants. Cambridge University Press. p. 479.ISBN 978-3-540-67695-9.Schmutz.
  89. ^Eric W. Weisstein (2003).CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 151.ISBN 978-1-58488-347-0.
  90. ^Waldschmidt, M. "Nombres transcendants et fonctions sigma de Weierstrass."C. R. Math. Rep. Acad. Sci. Canada 1, 111-114, 1978/79.
  91. ^Dusko Letic; Nenad Cakic; Branko Davidovic; Ivana Berkovic.Orthogonal and diagonal dimension fluxes of hyperspherical function(PDF). Springer.
  92. ^K. T. Chau; Zheng Wang (201).Chaos in Electric Drive Systems: Analysis, Control and Application. John Wiley & Son. p. 7.ISBN 978-0-470-82633-1.{{cite book}}:ISBN / Date incompatibility (help)
  93. ^Steven R. Finch (2003).Mathematical Constants. Cambridge University Press. p. 238.ISBN 978-3-540-67695-9.
  94. ^Facts On File, Incorporated (1997).Mathematics Frontiers. Infobase. p. 46.ISBN 978-0-8160-5427-5.
  95. ^Steven R. Finch (2003).Mathematical Constants. Cambridge University Press. p. 110.ISBN 978-3-540-67695-9.
  96. ^Eric W. Weisstein (2003).CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 151.ISBN 978-1-58488-347-0.
  97. ^DIVAKAR VISWANATH (1999).RANDOM FIBONACCI SEQUENCES AND THE NUMBER 1.13198824...(PDF). MATHEMATICS OF COMPUTATION.
  98. ^Christoph Lanz.k-Automatic Reals(PDF). Technischen Universität Wien.
  99. ^J. B. Friedlander; A. Perelli; C. Viola; D.R. Heath-Brown; H.Iwaniec; J. Kaczorowski (2002).Analytic Number Theory. Springer. p. 29.ISBN 978-3-540-36363-7.
  100. ^Richard E. Crandall (2012).Unified algorithms for polylogarithm, L-series, and zeta variants(PDF). perfscipress.com. Archived from the original on 2013-04-30.
  101. ^RICHARD J. MATHAR (2010). "NUMERICAL EVALUATION OF THE OSCILLATORY INTEGRAL OVER exp(I pi x)x^1/x BETWEEN 1 AND INFINITY".arXiv:0912.3844 [math.CA].
  102. ^M.R.Burns (1999).Root constant. Marvin Ray Burns.
  103. ^Hardy, G. H. (2008).An introduction to the theory of numbers. E. M. Wright, D. R. Heath-Brown, Joseph H. Silverman (6th ed.). Oxford: Oxford University Press.ISBN 978-0-19-921985-8.OCLC 214305907.
  104. ^Jesus Guillera; Jonathan Sondow (2008). "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent".The Ramanujan Journal.16 (3):247–270.arXiv:math/0506319.doi:10.1007/s11139-007-9102-0.S2CID 119131640.
  105. ^Andrei Vernescu (2007).Gazeta Matemetica Seria a revista de cultur Matemetica Anul XXV(CIV)Nr. 1, Constante de tip Euler generalízate(PDF). p. 14.
  106. ^Steven Finch (2014).Electrical Capacitance(PDF). Harvard.edu. p. 1. Archived fromthe original(PDF) on 2016-04-19. Retrieved2015-10-12.
  107. ^Ransford, Thomas (2010). "Computation of logarithmic capacity".Computational Methods and Function Theory.10 (2):555–578.doi:10.1007/BF03321780.MR 2791324.
  108. ^abCuyt et al. 2008, p. 182.
  109. ^abBorwein et al. 2014, p. 190.
  110. ^Bugeaud, Yann; Queffélec, Martine (2013)."On Rational Approximation of the Binary Thue-Morse-Mahler Number".Journal of Integer Sequences.16 (13.2.3).
  111. ^Cuyt et al. 2008, p. 185.
  112. ^Cuyt et al. 2008, p. 186.
  113. ^Wolf, Marek (22 February 2010). "Remark on the irrationality of the Brun's constant".arXiv:1002.4174 [math.NT].
  114. ^Cuyt et al. 2008, p. 176.
  115. ^Cuyt et al. 2008, p. 179.
  116. ^Cuyt et al. 2008, p. 190.
  117. ^Cuyt et al. 2008, p. 191.
  118. ^Holger Hermanns; Roberto Segala (2000).Process Algebra and Probabilistic Methods. Springer-Verlag. p. 270.ISBN 978-3-540-67695-9.

Site MathWorld Wolfram.com

[edit]
  1. ^Weisstein, Eric W."Pi Formulas".MathWorld.
  2. ^Weisstein, Eric W."Pythagoras's Constant".MathWorld.
  3. ^Weisstein, Eric W."Theodorus's Constant".MathWorld.
  4. ^Weisstein, Eric W."Golden Ratio".MathWorld.
  5. ^Weisstein, Eric W."Silver Ratio".MathWorld.
  6. ^Weisstein, Eric W."Delian Constant".MathWorld.
  7. ^Weisstein, Eric W."Self-Avoiding Walk Connective Constant".MathWorld.
  8. ^Weisstein, Eric W."Polygon Inscribing".MathWorld.
  9. ^Weisstein, Eric W."Wallis's Constant".MathWorld.
  10. ^Weisstein, Eric W."e".MathWorld.
  11. ^Weisstein, Eric W."Natural Logarithm of 2".MathWorld.
  12. ^Weisstein, Eric W."Lemniscate Constant".MathWorld.
  13. ^Weisstein, Eric W."Euler–Mascheroni Constant".MathWorld.
  14. ^Weisstein, Eric W."Erdos-Borwein Constant".MathWorld.
  15. ^Weisstein, Eric W."Omega Constant".MathWorld.
  16. ^Weisstein, Eric W."Apéry's Constant".MathWorld.
  17. ^Weisstein, Eric W."Laplace Limit".MathWorld.
  18. ^Weisstein, Eric W."Soldner's Constant".MathWorld.
  19. ^Weisstein, Eric W."Gauss's Constant".MathWorld.
  20. ^Weisstein, Eric W."Hermite Constants".MathWorld.
  21. ^Weisstein, Eric W."Liouville's Constant".MathWorld.
  22. ^Weisstein, Eric W."Continued Fraction Constants".MathWorld.
  23. ^Weisstein, Eric W."Ramanujan Constant".MathWorld.
  24. ^Weisstein, Eric W."Glaisher-Kinkelin Constant".MathWorld.
  25. ^Weisstein, Eric W."Catalan's Constant".MathWorld.
  26. ^abWeisstein, Eric W."Dottie Number".MathWorld.
  27. ^Weisstein, Eric W."Mertens Constant".MathWorld.
  28. ^Weisstein, Eric W."Universal Parabolic Constant".MathWorld.
  29. ^Weisstein, Eric W."Cahen's Constant".MathWorld.
  30. ^Weisstein, Eric W."Gelfonds Constant".MathWorld.
  31. ^Weisstein, Eric W."Gelfond-Schneider Constant".MathWorld.
  32. ^Weisstein, Eric W."Favard Constants".MathWorld.
  33. ^Weisstein, Eric W."Golden Angle".MathWorld.
  34. ^Weisstein, Eric W."Sierpinski Constant".MathWorld.
  35. ^Weisstein, Eric W."Landau-Ramanujan Constant".MathWorld.
  36. ^Weisstein, Eric W."Nielsen-Ramanujan Constants".MathWorld.
  37. ^Weisstein, Eric W."Gieseking's Constant".MathWorld.
  38. ^Weisstein, Eric W."Bernstein's Constant".MathWorld.
  39. ^Weisstein, Eric W."Tribonacci Constant".MathWorld.
  40. ^Weisstein, Eric W."Brun's Constant".MathWorld.
  41. ^Weisstein, Eric W."Twin Primes Constant".MathWorld.
  42. ^Weisstein, Eric W."Plastic Constant".MathWorld.
  43. ^Weisstein, Eric W."Bloch Constant".MathWorld.
  44. ^Weisstein, Eric W."Confidence Interval".MathWorld.
  45. ^Weisstein, Eric W."Landau Constant".MathWorld.
  46. ^Weisstein, Eric W."Thue-Morse Constant".MathWorld.
  47. ^Weisstein, Eric W."Golomb–Dickman Constant".MathWorld.
  48. ^abWeisstein, Eric W."Lebesgue Constants".MathWorld.
  49. ^Weisstein, Eric W."Feller–Tornier Constant".MathWorld.
  50. ^Weisstein, Eric W."Champernowne Constant".MathWorld.
  51. ^Weisstein, Eric W."Salem Constants".MathWorld.
  52. ^Weisstein, Eric W."Khinchin's Constant".MathWorld.
  53. ^Weisstein, Eric W."Levy Constant".MathWorld.
  54. ^Weisstein, Eric W."Levy Constant".MathWorld.
  55. ^Weisstein, Eric W."Copeland–Erdos Constant".MathWorld.
  56. ^Weisstein, Eric W."Mills Constant".MathWorld.
  57. ^Weisstein, Eric W."Gompertz Constant".MathWorld.
  58. ^Weisstein, Eric W."Artin's Constant".MathWorld.
  59. ^Weisstein, Eric W."Porter's Constant".MathWorld.
  60. ^Weisstein, Eric W."Lochs' Constant".MathWorld.
  61. ^Weisstein, Eric W."Liebs Square Ice Constant".MathWorld.
  62. ^Weisstein, Eric W."Niven's Constant".MathWorld.
  63. ^Weisstein, Eric W."Stephen's Constant".MathWorld.
  64. ^Weisstein, Eric W."Paper Folding Constant".MathWorld.
  65. ^Weisstein, Eric W."Reciprocal Fibonacci Constant".MathWorld.
  66. ^abWeisstein, Eric W."Feigenbaum Constant".MathWorld.
  67. ^Weisstein, Eric W."Chaitin's Constant".MathWorld.
  68. ^Weisstein, Eric W."Robbins Constant".MathWorld.
  69. ^Weisstein, Eric W."Weierstrass Constant".MathWorld.
  70. ^Weisstein, Eric W."Fransen-Robinson Constant".MathWorld.
  71. ^Weisstein, Eric W."du Bois-Reymond Constants".MathWorld.
  72. ^Weisstein, Eric W."Conway's Constant".MathWorld.
  73. ^Weisstein, Eric W."Hafner-Sarnak-McCurley Constant".MathWorld.
  74. ^Weisstein, Eric W."Backhouse's Constant".MathWorld.
  75. ^Weisstein, Eric W."Random Fibonacci Sequence".MathWorld.
  76. ^Weisstein, Eric W."Komornik-Loreti Constant".MathWorld.
  77. ^Weisstein, Eric W."Heath-Brown-Moroz Constant".MathWorld.
  78. ^Weisstein, Eric W."MRB Constant".MathWorld.
  79. ^abWeisstein, Eric W."Somos's Quadratic Recurrence Constant".MathWorld.
  80. ^Weisstein, Eric W."Foias Constant".MathWorld.
  81. ^Weisstein, Eric W."Logarithmic Capacity".MathWorld.
  82. ^Weisstein, Eric W."Taniguchis Constant".MathWorld.
  83. ^Weisstein, Eric W."Golomb-Dickman Constant Continued Fraction".MathWorld.
  84. ^Weisstein, Eric W."Catalan's Constant Continued Fraction".MathWorld.
  85. ^Weisstein, Eric W."Copeland–Erdős Constant Continued Fraction".MathWorld.
  86. ^"Hermite Constants".
  87. ^Weisstein, Eric W."Relatively Prime".MathWorld.
  88. ^"Favard Constants".

Site OEIS.org

[edit]
  1. ^OEISA000796
  2. ^OEISA019692
  3. ^OEISA002193
  4. ^OEISA002194
  5. ^OEISA002163
  6. ^OEISA001622
  7. ^OEISA014176
  8. ^OEISA002580
  9. ^OEISA002581
  10. ^OEISA010774
  11. ^OEISA092526
  12. ^abOEISA179260
  13. ^abOEISA085365
  14. ^OEISA007493
  15. ^OEISA001113
  16. ^OEISA002162
  17. ^OEISA062539
  18. ^OEISA001620
  19. ^OEISA065442
  20. ^OEISA030178
  21. ^abOEISA002117
  22. ^OEISA033259
  23. ^abOEISA070769
  24. ^OEISA014549
  25. ^OEISA246724
  26. ^OEISA012245
  27. ^OEISA052119
  28. ^OEISA060295
  29. ^abOEISA074962
  30. ^OEISA006752
  31. ^OEISA003957
  32. ^OEISA077761
  33. ^OEISA103710
  34. ^OEISA118227
  35. ^OEISA039661
  36. ^abOEISA007507
  37. ^OEISA111003
  38. ^OEISA131988
  39. ^OEISA062089
  40. ^abOEISA064533
  41. ^OEISA072691
  42. ^OEISA143298
  43. ^OEISA073001
  44. ^OEISA058265
  45. ^abcOEISA065421
  46. ^OEISA005597
  47. ^abOEISA060006
  48. ^abOEISA085508
  49. ^OEISA220510
  50. ^OEISA081760
  51. ^abOEISA014571
  52. ^OEISA084945
  53. ^OEISA243277
  54. ^OEISA065493
  55. ^OEISA033307
  56. ^abOEISA073011
  57. ^OEISA002210
  58. ^OEISA100199
  59. ^OEISA086702
  60. ^abOEISA033308
  61. ^OEISA051021
  62. ^abOEISA073003
  63. ^OEISA163973
  64. ^OEISA163973
  65. ^OEISA195696
  66. ^abOEISA005596
  67. ^abOEISA086237
  68. ^OEISA086819
  69. ^abOEISA243309
  70. ^OEISA118273
  71. ^OEISA033150
  72. ^abOEISA065478
  73. ^abOEISA143347
  74. ^abOEISA079586
  75. ^OEISA006890
  76. ^OEISA100264
  77. ^abOEISA073012
  78. ^OEISA094692
  79. ^OEISA058655
  80. ^OEISA006891
  81. ^abOEISA062546
  82. ^OEISA074738
  83. ^OEISA014715
  84. ^abOEISA085849
  85. ^OEISA072508
  86. ^OEISA078416
  87. ^OEISA055060
  88. ^abOEISA118228
  89. ^OEISA037077
  90. ^abOEISA051006
  91. ^OEISA112302
  92. ^OEISA085848
  93. ^abOEISA249205
  94. ^OEISA175639
  95. ^OEISA225336
  96. ^OEISA006280
  97. ^OEISA002852
  98. ^OEISA014538
  99. ^OEISA014572
  100. ^OEISA030168
  101. ^OEISA030167
  102. ^OEISA003417
  103. ^OEISA002211
  104. ^OEISA001203

Site OEIS Wiki

[edit]
  1. ^MRB constant

Bibliography

[edit]

Further reading

[edit]

External links

[edit]
Lists ofUnicode andLaTeX mathematical symbols
Lists ofUnicode symbols
General
Alphanumeric
Arrows andGeometric Shapes
Operators
Supplemental Math Operators
Miscellaneous
Typographical conventions and notations
Language
Letters
Notation
Meanings of symbols
Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_mathematical_constants&oldid=1322521866"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp