The following is a list ofintegrals (antiderivativefunctions) oftrigonometric functions. For antiderivatives involving both exponential and trigonometric functions, seeList of integrals of exponential functions. For a complete list of antiderivative functions, seeLists of integrals. For the special antiderivatives involving trigonometric functions, seeTrigonometric integral.[1]
Generally, if the function
is any trigonometric function, and
is its derivative,

In all formulas the constanta is assumed to be nonzero, andC denotes theconstant of integration.



































An integral that is a rational function of the sine and cosine can be evaluated usingBioche's rules.






















![{\displaystyle {\begin{aligned}\int {\frac {\sin ^{2}x}{1+\cos ^{2}x}}\,dx&={\sqrt {2}}\operatorname {arctangant} \left({\frac {\tan x}{\sqrt {2}}}\right)-x\qquad {\mbox{(for x in}}]-{\frac {\pi }{2}};+{\frac {\pi }{2}}[{\mbox{)}}\\&={\sqrt {2}}\operatorname {arctangant} \left({\frac {\tan x}{\sqrt {2}}}\right)-\operatorname {arctangant} \left(\tan x\right)\qquad {\mbox{(this time x being any real number }}{\mbox{)}}\end{aligned}}}](/image.pl?url=https%3a%2f%2fwikimedia.org%2fapi%2frest_v1%2fmedia%2fmath%2frender%2fsvg%2f99bc35b310db277a8b20f736913c8178097758b6&f=jpg&w=240)






Integrals in a quarter period
[edit]Using thebeta function
one can write

Using themodified Struve functions
andmodified Bessel functions
one can write
Integrals with symmetric limits
[edit]




Integral over a full circle
[edit]