Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

List of Johnson solids

This is a featured list. Click here for more information.
Page semi-protected
From Wikipedia, the free encyclopedia

In geometry, aconvex polyhedron whose faces areregular polygons is known as aJohnson solid, or sometimes as a Johnson–Zalgaller solid.[1] Some authors excludeuniform polyhedra (in whichall vertices are symmetric to each other) from the definition; uniform polyhedra includePlatonic andArchimedean solids as well asprisms andantiprisms.[2]The Johnson solids are named after American mathematicianNorman Johnson (1930–2017), who published a list of 92 non-uniform Johnson polyhedra in 1966. His conjecture that the list was complete and no other examples existed was proven by Russian-Israeli mathematicianVictor Zalgaller (1920–2020) in 1969.[3]

This article lists the 92 non-uniform Johnson solids, accompanied by images. They are listed alongside their basic elements (vertices,edges, andfaces), and their most importantgeneral characteristics, includingsymmetry groups (Cn{\displaystyle C_{n}},Dn{\displaystyle D_{n}},Cnv{\displaystyle C_{n\mathrm {v} }},Dnh{\displaystyle D_{n\mathrm {h} }},Dnd{\displaystyle D_{n\mathrm {d} }},Cs{\displaystyle C_{s}}),order,surface area, andvolume; an overview of these follows first, before presenting the complete list of non-uniform Johnson solids.

Characteristics

Every polyhedron has its owncharacteristics, includingsymmetry and measurement. An object is said to have symmetry if there is atransformation that maps it to itself. All of those transformations may be composed in agroup, alongside the group's number ofelements, known as theorder. In two-dimensional space, these transformations includerotating around the center of a polygon andreflecting an object around theperpendicular bisector of a polygon. The mensuration of polyhedra includes thesurface area andvolume. Anarea is a two-dimensional measurement calculated by the product of length and width; for a polyhedron, the surface area is the sum of the areas of all of its faces.[4] A volume is a measurement of a region in three-dimensional space.[5] The volume of a polyhedron may be ascertained in different ways: either through its base and height (like forpyramids andprisms), by slicing it off into pieces and summing their individual volumes, or by finding theroot of apolynomial representing the polyhedron.[6]

A polygon that is rotated symmetrically by360n{\textstyle {\frac {360^{\circ }}{n}}} is denoted byCn{\displaystyle C_{n}}, acyclic group of ordern{\displaystyle n}; combining this with the reflection symmetry results in the symmetry ofdihedral groupDn{\displaystyle D_{n}} of order2n{\displaystyle 2n}.[7] Inthree-dimensional symmetry point groups, the transformations preserving a polyhedron's symmetry include the rotation around the line passing through the base center, known as theaxis of symmetry, and the reflection relative to perpendicular planes passing through the bisector of a base, which is known as thepyramidal symmetryCnv{\displaystyle C_{n\mathrm {v} }} of order2n{\displaystyle 2n}. The transformation that preserves a polyhedron's symmetry by reflecting it across a horizontal plane is known as theprismatic symmetryDnh{\displaystyle D_{n\mathrm {h} }} of order4n{\displaystyle 4n}. Theantiprismatic symmetryDnd{\displaystyle D_{n\mathrm {d} }} of order4n{\displaystyle 4n} preserves the symmetry by rotating its half bottom and reflection across the horizontal plane.[8] The symmetry groupCnh{\displaystyle C_{n\mathrm {h} }} of order2n{\displaystyle 2n} preserves the symmetry by rotation around the axis of symmetry and reflection on the horizontal plane; the specific case preserving the symmetry by one full rotation isC1h{\displaystyle C_{1\mathrm {h} }} of order 2, often denoted asCs{\displaystyle C_{s}}.[9]

The solids

Seventeen Johnson solids may be categorized aselementary polyhedra, meaning they cannot be separated by a plane to create two small convex polyhedra with regular faces. The first six Johnson solids satisfy this criterion: theequilateral square pyramid,pentagonal pyramid,triangular cupola,square cupola,pentagonal cupola, andpentagonal rotunda. The criterion is also satisfied by eleven other Johnson solids, specifically thetridiminished icosahedron,parabidiminished rhombicosidodecahedron,tridiminished rhombicosidodecahedron,snub disphenoid,snub square antiprism,sphenocorona,sphenomegacorona,hebesphenomegacorona,disphenocingulum,bilunabirotunda, andtriangular hebesphenorotunda.[10] The rest of the Johnson solids are not elementary, and they are constructed using the first six Johnson solids together with Platonic and Archimedean solids in various processes.Augmentation involves attaching the Johnson solids onto one or more faces of polyhedra, whileelongation orgyroelongation involve joining them onto the bases of a prism or antiprism, respectively. Some others are constructed bydiminishment, the removal of one of the first six solids from one or more of a polyhedron's faces.[11]

The table below lists the 92 (non-uniform) Johnson solids. The table includes each solid's enumeration (denoted asJn{\displaystyle J_{n}}).[12] It also includes each solid'ssymmetry group and number of vertices, edges, and faces, as well as its surface area and volume when constructed with edge length 1. For simplicity, the table uses the quantityα=5+25{\displaystyle \alpha =5+2{\sqrt {5}}}.

Table of the 92 Johnson solids
Jn{\displaystyle J_{n}}Solid nameImageVerticesEdgesFacesSymmetry group andorder[13]Surface area, exact[14]Surface area,
approx.[14]
Volume, exact[14]Volume,
approx.[14]
1Square pyramid585C4v{\displaystyle C_{4v}} of order 81+3{\displaystyle 1+{\sqrt {3}}}2.732126{\displaystyle {\frac {\sqrt {2}}{6}}}0.2357
2Pentagonal pyramid6106C5v{\displaystyle C_{5v}} of order 101252(10+5+15α){\displaystyle {\frac {1}{2}}{\sqrt {{\frac {5}{2}}\left(10+{\sqrt {5}}+{\sqrt {15\alpha }}\right)}}}3.88555+524{\displaystyle {\frac {5+{\sqrt {5}}}{24}}}0.3015
3Triangular cupola9158C3v{\displaystyle C_{3v}} of order 63+532{\displaystyle 3+{\frac {5{\sqrt {3}}}{2}}}7.3301532{\displaystyle {\frac {5}{3{\sqrt {2}}}}}1.1785
4Square cupola122010C4v{\displaystyle C_{4v}} of order 87+22+3{\displaystyle 7+2{\sqrt {2}}+{\sqrt {3}}}11.56051+223{\displaystyle 1+{\frac {2{\sqrt {2}}}{3}}}1.9428
5Pentagonal cupola152512C5v{\displaystyle C_{5v}} of order 105+53+155α504{\displaystyle 5+{\frac {5{\sqrt {3}}+{\sqrt {155\alpha -50}}}{4}}}16.57985+456{\displaystyle {\frac {5+4{\sqrt {5}}}{6}}}2.3241
6Pentagonal rotunda203517C5v{\displaystyle C_{5v}} of order 1053+145α752{\displaystyle {\frac {5{\sqrt {3}}+{\sqrt {145\alpha -75}}}{2}}}22.347245+17512{\displaystyle {\frac {45+17{\sqrt {5}}}{12}}}6.9178
7Elongated triangular pyramid7127C3v{\displaystyle C_{3v}} of order 63+3{\displaystyle 3+{\sqrt {3}}}4.73212+3312{\displaystyle {\frac {{\sqrt {2}}+3{\sqrt {3}}}{12}}}0.5509
8Elongated square pyramid9169C4v{\displaystyle C_{4v}} of order 85+3{\displaystyle 5+{\sqrt {3}}}6.73211+26{\displaystyle 1+{\frac {\sqrt {2}}{6}}}1.2357
9Elongated pentagonal pyramid112011C5v{\displaystyle C_{5v}} of order 105+53+5α4{\displaystyle 5+{\frac {5{\sqrt {3}}+{\sqrt {5\alpha }}}{4}}}8.88555+5+65α24{\displaystyle {\frac {5+{\sqrt {5}}+6{\sqrt {5\alpha }}}{24}}}2.022
10Gyroelongated square pyramid92013C4v{\displaystyle C_{4v}} of order 81+33{\displaystyle 1+3{\sqrt {3}}}6.19622+24+326{\displaystyle {\frac {{\sqrt {2}}+2{\sqrt {4+3{\sqrt {2}}}}}{6}}}1.1927
11Gyroelongated pentagonal pyramid (diminished icosahedron)112516C5v{\displaystyle C_{5v}} of order 10153+5α4{\displaystyle {\frac {15{\sqrt {3}}+{\sqrt {5\alpha }}}{4}}}8.215725+9524{\displaystyle {\frac {25+9{\sqrt {5}}}{24}}}1.8802
12Triangular bipyramid596D3h{\displaystyle D_{3h}} of order 12332{\displaystyle {\frac {3{\sqrt {3}}}{2}}}2.598126{\displaystyle {\frac {\sqrt {2}}{6}}}0.2357
13Pentagonal bipyramid71510D5h{\displaystyle D_{5h}} of order 20532{\displaystyle {\frac {5{\sqrt {3}}}{2}}}4.33015+512{\displaystyle {\frac {5+{\sqrt {5}}}{12}}}0.6030
14Elongated triangular bipyramid8159D3h{\displaystyle D_{3h}} of order 123+332{\displaystyle 3+{\frac {3{\sqrt {3}}}{2}}}5.598126+34{\displaystyle {\frac {\sqrt {2}}{6}}+{\frac {\sqrt {3}}{4}}}0.6687
15Elongated square bipyramid102012D4h{\displaystyle D_{4h}} of order 164+23{\displaystyle 4+2{\sqrt {3}}}7.46411+23{\displaystyle 1+{\frac {\sqrt {2}}{3}}}1.4714
16Elongated pentagonal bipyramid122515D5h{\displaystyle D_{5h}} of order 205+523{\displaystyle 5+{\frac {5}{2}}{\sqrt {3}}}9.33015+5+35α12{\displaystyle {\frac {5+{\sqrt {5}}+3{\sqrt {5\alpha }}}{12}}}2.3235
17Gyroelongated square bipyramid102416D4d{\displaystyle D_{4d}} of order 1643{\displaystyle 4{\sqrt {3}}}6.92822+4+323{\displaystyle {\frac {{\sqrt {2}}+{\sqrt {4+3{\sqrt {2}}}}}{3}}}1.4284
18Elongated triangular cupola152714C3v{\displaystyle C_{3v}} of order 69+523{\displaystyle 9+{\frac {5}{2}}{\sqrt {3}}}13.330152+936{\displaystyle {\frac {5{\sqrt {2}}+9{\sqrt {3}}}{6}}}3.7766
19Elongated square cupola203618C4v{\displaystyle C_{4v}} of order 815+22+3{\displaystyle 15+2{\sqrt {2}}+{\sqrt {3}}}19.56053+823{\displaystyle 3+{\frac {8{\sqrt {2}}}{3}}}6.7712
20Elongated pentagonal cupola254522C5v{\displaystyle C_{5v}} of order 1015+53+10α+5α4{\displaystyle 15+{\frac {5{\sqrt {3}}+10{\sqrt {\alpha }}+{\sqrt {5\alpha }}}{4}}}26.57985+45+15α6{\displaystyle {\frac {5+4{\sqrt {5}}+15{\sqrt {\alpha }}}{6}}}10.0183
21Elongated pentagonal rotunda305527C5v{\displaystyle C_{5v}} of order 1010+53+5α+35α2{\displaystyle 10+{\frac {5{\sqrt {3}}+5{\sqrt {\alpha }}+3{\sqrt {5\alpha }}}{2}}}32.347245+175+30α12{\displaystyle {\frac {45+17{\sqrt {5}}+30{\sqrt {\alpha }}}{12}}}14.612
22Gyroelongated triangular cupola153320C3v{\displaystyle C_{3v}} of order 63+1123{\displaystyle 3+{\frac {11}{2}}{\sqrt {3}}}12.526313612+183+301+3{\displaystyle {\frac {1}{3}}{\sqrt {{\frac {61}{2}}+18{\sqrt {3}}+30{\sqrt {1+{\sqrt {3}}}}}}}3.5161
23Gyroelongated square cupola204426C4v{\displaystyle C_{4v}} of order 87+22+53{\displaystyle 7+2{\sqrt {2}}+5{\sqrt {3}}}18.48871+232+234+22+2146+1032{\displaystyle 1+{\frac {2}{3}}{\sqrt {2}}+{\frac {2}{3}}{\sqrt {4+2{\sqrt {2}}+2{\sqrt {146+103{\sqrt {2}}}}}}}6.2108
24Gyroelongated pentagonal cupola255532C5v{\displaystyle C_{5v}} of order 105+253+10α+5α4{\displaystyle 5+{\frac {25{\sqrt {3}}+10{\sqrt {\alpha }}+{\sqrt {5\alpha }}}{4}}}25.240056+235+562145α75252{\displaystyle {\frac {5}{6}}+{\frac {2}{3}}{\sqrt {5}}+{\frac {5}{6}}{\sqrt {2{\sqrt {145\alpha -75}}-2{\sqrt {5}}-2}}}9.0733
25Gyroelongated pentagonal rotunda306537C5v{\displaystyle C_{5v}} of order 10153+(α+5)α2{\displaystyle {\frac {15{\sqrt {3}}+\left(\alpha +{\sqrt {5}}\right){\sqrt {\alpha }}}{2}}}31.007545+175+102145α7525212{\displaystyle {\frac {45+17{\sqrt {5}}+10{\sqrt {2{\sqrt {145\alpha -75}}-2{\sqrt {5}}-2}}}{12}}}13.6671
26Gyrobifastigium8148D2d{\displaystyle D_{2d}} of order 84+3{\displaystyle 4+{\sqrt {3}}}5.732132{\displaystyle {\frac {\sqrt {3}}{2}}}0.8660
27Triangular orthobicupola122414D3h{\displaystyle D_{3h}} of order 126+23{\displaystyle 6+2{\sqrt {3}}}9.4641523{\displaystyle {\frac {5{\sqrt {2}}}{3}}}2.3570
28Square orthobicupola163218D4h{\displaystyle D_{4h}} of order 1610+23{\displaystyle 10+2{\sqrt {3}}}13.46412+423{\displaystyle 2+{\frac {4{\sqrt {2}}}{3}}}3.8856
29Square gyrobicupola163218D4d{\displaystyle D_{4d}} of order 16
30Pentagonal orthobicupola204022D5h{\displaystyle D_{5h}} of order 2010+75+5α+1015α2{\displaystyle 10+{\frac {\sqrt {75+5\alpha +10{\sqrt {15\alpha }}}}{2}}}17.77115+453{\displaystyle {\frac {5+4{\sqrt {5}}}{3}}}4.6481
31Pentagonal gyrobicupola204022D5d{\displaystyle D_{5d}} of order 20
32Pentagonal orthocupolarotunda255027C5v{\displaystyle C_{5v}} of order 105+675+245α+21015α4{\displaystyle 5+{\frac {\sqrt {675+245\alpha +210{\sqrt {15\alpha }}}}{4}}}23.538555+25512{\displaystyle {\frac {55+25{\sqrt {5}}}{12}}}9.2418
33Pentagonal gyrocupolarotunda255027C5v{\displaystyle C_{5v}} of order 105+1543+745α{\displaystyle 5+{\frac {15}{4}}{\sqrt {3}}+{\frac {7}{4}}{\sqrt {5\alpha }}}23.5385
34Pentagonal orthobirotunda306032D5h{\displaystyle D_{5h}} of order 2053+35α{\displaystyle 5{\sqrt {3}}+3{\sqrt {5\alpha }}}29.30645+1756{\displaystyle {\frac {45+17{\sqrt {5}}}{6}}}13.8355
35Elongated triangular orthobicupola183620D3h{\displaystyle D_{3h}} of order 1212+23{\displaystyle 12+2{\sqrt {3}}}15.4641523+332{\displaystyle {\frac {5{\sqrt {2}}}{3}}+{\frac {3{\sqrt {3}}}{2}}}4.9551
36Elongated triangular gyrobicupola183620D3d{\displaystyle D_{3d}} of order 12
37Elongated square gyrobicupola244826D4d{\displaystyle D_{4d}} of order 1618+23{\displaystyle 18+2{\sqrt {3}}}21.46414+1023{\displaystyle 4+{\frac {10{\sqrt {2}}}{3}}}8.714
38Elongated pentagonal orthobicupola306032D5h{\displaystyle D_{5h}} of order 2020+75+5α+1015α2{\displaystyle 20+{\frac {\sqrt {75+5\alpha +10{\sqrt {15\alpha }}}}{2}}}27.771110+85+15α6{\displaystyle {\frac {10+8{\sqrt {5}}+15{\sqrt {\alpha }}}{6}}}12.3423
39Elongated pentagonal gyrobicupola306032D5d{\displaystyle D_{5d}} of order 20
40Elongated pentagonal orthocupolarotunda357037C5v{\displaystyle C_{5v}} of order 1015+675+245α+21015α4{\displaystyle 15+{\frac {\sqrt {675+245\alpha +210{\sqrt {15\alpha }}}}{4}}}33.538555+255+30α12{\displaystyle {\frac {55+25{\sqrt {5}}+30{\sqrt {\alpha }}}{12}}}16.936
41Elongated pentagonal gyrocupolarotunda357037C5v{\displaystyle C_{5v}} of order 10
42Elongated pentagonal orthobirotunda408042D5h{\displaystyle D_{5h}} of order 2010+75+45α+3015α{\displaystyle 10+{\sqrt {75+45\alpha +30{\sqrt {15\alpha }}}}}39.30645+175+15α6{\displaystyle {\frac {45+17{\sqrt {5}}+15{\sqrt {\alpha }}}{6}}}21.5297
43Elongated pentagonal gyrobirotunda408042D5d{\displaystyle D_{5d}} of order 20
44Gyroelongated triangular bicupola184226D3{\displaystyle D_{3}} of order 66+53{\displaystyle 6+5{\sqrt {3}}}14.6603532+2+23{\displaystyle {\frac {5}{3}}{\sqrt {2}}+{\sqrt {2+2{\sqrt {3}}}}}4.6946
45Gyroelongated square bicupola245634D4{\displaystyle D_{4}} of order 810+63{\displaystyle 10+6{\sqrt {3}}}20.39232+432+234+22+2146+1032{\displaystyle 2+{\frac {4}{3}}{\sqrt {2}}+{\frac {2}{3}}{\sqrt {4+2{\sqrt {2}}+2{\sqrt {146+103{\sqrt {2}}}}}}}8.1536
46Gyroelongated pentagonal bicupola307042D5{\displaystyle D_{5}} of order 1010+1523+125α{\displaystyle 10+{\frac {15}{2}}{\sqrt {3}}+{\frac {1}{2}}{\sqrt {5\alpha }}}26.43135+453+562145α75α+3{\displaystyle {\frac {5+4{\sqrt {5}}}{3}}+{\frac {5}{6}}{\sqrt {2{\sqrt {145\alpha -75}}-\alpha +3}}}11.3974
47Gyroelongated pentagonal cupolarotunda358047C5{\displaystyle C_{5}} of order 55+74(53+5α){\displaystyle 5+{\frac {7}{4}}\left(5{\sqrt {3}}+{\sqrt {5\alpha }}\right)}32.198855+25512+562145α75α+3{\displaystyle {\frac {55+25{\sqrt {5}}}{12}}+{\frac {5}{6}}{\sqrt {2{\sqrt {145\alpha -75}}-\alpha +3}}}15.9911
48Gyroelongated pentagonal birotunda409052D5{\displaystyle D_{5}} of order 10103+35α{\displaystyle 10{\sqrt {3}}+3{\sqrt {5\alpha }}}37.966245+175+52145α75α+36{\displaystyle {\frac {45+17{\sqrt {5}}+5{\sqrt {2{\sqrt {145\alpha -75}}-\alpha +3}}}{6}}}20.5848
49Augmented triangular prism7138C2v{\displaystyle C_{2v}} of order 42+323{\displaystyle 2+{\frac {3}{2}}{\sqrt {3}}}4.598126+34{\displaystyle {\frac {\sqrt {2}}{6}}+{\frac {\sqrt {3}}{4}}}0.6687
50Biaugmented triangular prism81711C2v{\displaystyle C_{2v}} of order 41+523{\displaystyle 1+{\frac {5}{2}}{\sqrt {3}}}5.330159144+16{\displaystyle {\sqrt {{\frac {59}{144}}+{\frac {1}{\sqrt {6}}}}}}0.9044
51Triaugmented triangular prism92114D3h{\displaystyle D_{3h}} of order 12732{\displaystyle {\frac {7{\sqrt {3}}}{2}}}6.062222+34{\displaystyle {\frac {2{\sqrt {2}}+{\sqrt {3}}}{4}}}1.1401
52Augmented pentagonal prism111910C2v{\displaystyle C_{2v}} of order 44+3+125α{\displaystyle 4+{\sqrt {3}}+{\frac {1}{2}}{\sqrt {5\alpha }}}9.1731128+45α+1210α{\displaystyle {\frac {1}{12}}{\sqrt {8+45\alpha +12{\sqrt {10\alpha }}}}}1.9562
53Biaugmented pentagonal prism122313C2v{\displaystyle C_{2v}} of order 43+23+125α{\displaystyle 3+2{\sqrt {3}}+{\frac {1}{2}}{\sqrt {5\alpha }}}9.905111232+45α+2410α{\displaystyle {\frac {1}{12}}{\sqrt {32+45\alpha +24{\sqrt {10\alpha }}}}}2.1919
54Augmented hexagonal prism132211C2v{\displaystyle C_{2v}} of order 45+43{\displaystyle 5+4{\sqrt {3}}}11.928226+332{\displaystyle {\frac {\sqrt {2}}{6}}+{\frac {3{\sqrt {3}}}{2}}}2.8338
55Parabiaugmented hexagonal prism142614D2h{\displaystyle D_{2h}} of order 84+53{\displaystyle 4+5{\sqrt {3}}}12.660323+332{\displaystyle {\frac {\sqrt {2}}{3}}+{\frac {3{\sqrt {3}}}{2}}}3.0695
56Metabiaugmented hexagonal prism142614C2v{\displaystyle C_{2v}} of order 4
57Triaugmented hexagonal prism153017D3h{\displaystyle D_{3h}} of order 123+63{\displaystyle 3+6{\sqrt {3}}}13.392312+332{\displaystyle {\frac {1}{\sqrt {2}}}+{\frac {3{\sqrt {3}}}{2}}}3.3052
58Augmented dodecahedron213516C5v{\displaystyle C_{5v}} of order 1053+115α4{\displaystyle {\frac {5{\sqrt {3}}+11{\sqrt {5\alpha }}}{4}}}21.090395+43524{\displaystyle {\frac {95+43{\sqrt {5}}}{24}}}7.9646
59Parabiaugmented dodecahedron224020D5d{\displaystyle D_{5d}} of order 2052(3+5α){\displaystyle {\frac {5}{2}}\left({\sqrt {3}}+{\sqrt {5\alpha }}\right)}21.534925+1156{\displaystyle {\frac {25+11{\sqrt {5}}}{6}}}8.2661
60Metabiaugmented dodecahedron224020C2v{\displaystyle C_{2v}} of order 4
61Triaugmented dodecahedron234524C3v{\displaystyle C_{3v}} of order 634(53+35α){\displaystyle {\frac {3}{4}}\left(5{\sqrt {3}}+3{\sqrt {5\alpha }}\right)}21.979558(7+35){\displaystyle {\frac {5}{8}}\left(7+3{\sqrt {5}}\right)}8.5676
62Metabidiminished icosahedron102012C2v{\displaystyle C_{2v}} of order 453+5α2{\displaystyle {\frac {5{\sqrt {3}}+{\sqrt {5\alpha }}}{2}}}7.7711α6{\displaystyle {\frac {\alpha }{6}}}1.5787
63Tridiminished icosahedron9158C3v{\displaystyle C_{3v}} of order 653+35α4{\displaystyle {\frac {5{\sqrt {3}}+3{\sqrt {5\alpha }}}{4}}}7.326558+7524{\displaystyle {\frac {5}{8}}+{\frac {7{\sqrt {5}}}{24}}}1.2772
64Augmented tridiminished icosahedron101810C3v{\displaystyle C_{3v}} of order 673+35α4{\displaystyle {\frac {7{\sqrt {3}}+3{\sqrt {5\alpha }}}{4}}}8.192515+22+7524{\displaystyle {\frac {15+2{\sqrt {2}}+7{\sqrt {5}}}{24}}}1.3950
65Augmented truncated tetrahedron152714C3v{\displaystyle C_{3v}} of order 63+1323{\displaystyle 3+{\frac {13}{2}}{\sqrt {3}}}14.25831122{\displaystyle {\frac {11}{2{\sqrt {2}}}}}3.8891
66Augmented truncated cube284822C4v{\displaystyle C_{4v}} of order 815+102+33{\displaystyle 15+10{\sqrt {2}}+3{\sqrt {3}}}34.33838+1623{\displaystyle 8+{\frac {16{\sqrt {2}}}{3}}}15.5425
67Biaugmented truncated cube326030D4h{\displaystyle D_{4h}} of order 1618+82+43{\displaystyle 18+8{\sqrt {2}}+4{\sqrt {3}}}36.24199+62{\displaystyle 9+6{\sqrt {2}}}17.4853
68Augmented truncated dodecahedron6510542C5v{\displaystyle C_{5v}} of order 105+253+110α+5α4{\displaystyle 5+{\frac {25{\sqrt {3}}+110{\sqrt {\alpha }}+{\sqrt {5\alpha }}}{4}}}102.182150512+8154{\displaystyle {\frac {505}{12}}+{\frac {81{\sqrt {5}}}{4}}}87.3637
69Parabiaugmented truncated dodecahedron7012052D5d{\displaystyle D_{5d}} of order 2010+25α+153+5α2{\displaystyle 10+25{\sqrt {\alpha }}+{\frac {15{\sqrt {3}}+{\sqrt {5\alpha }}}{2}}}103.3734515+251512{\displaystyle {\frac {515+251{\sqrt {5}}}{12}}}89.6878
70Metabiaugmented truncated dodecahedron7012052C2v{\displaystyle C_{2v}} of order 4
71Triaugmented truncated dodecahedron7513562C3v{\displaystyle C_{3v}} of order 615+353+90α+35α4{\displaystyle 15+{\frac {35{\sqrt {3}}+90{\sqrt {\alpha }}+3{\sqrt {5\alpha }}}{4}}}104.5648712(75+375){\displaystyle {\frac {7}{12}}\left(75+37{\sqrt {5}}\right)}92.0118
72Gyrate rhombicosidodecahedron6012062C5v{\displaystyle C_{5v}} of order 1030+53+35α{\displaystyle 30+5{\sqrt {3}}+3{\sqrt {5\alpha }}}59.30620+2953{\displaystyle 20+{\frac {29{\sqrt {5}}}{3}}}41.6153
73Parabigyrate rhombicosidodecahedron6012062D5d{\displaystyle D_{5d}} of order 20
74Metabigyrate rhombicosidodecahedron6012062C2v{\displaystyle C_{2v}} of order 4
75Trigyrate rhombicosidodecahedron6012062C3v{\displaystyle C_{3v}} of order 6
76Diminished rhombicosidodecahedron5510552C5v{\displaystyle C_{5v}} of order 1025+153+10α+115α4{\displaystyle 25+{\frac {15{\sqrt {3}}+10{\sqrt {\alpha }}+11{\sqrt {5\alpha }}}{4}}}58.11471156+95{\displaystyle {\frac {115}{6}}+9{\sqrt {5}}}39.2913
77Paragyrate diminished rhombicosidodecahedron5510552C5v{\displaystyle C_{5v}} of order 10
78Metagyrate diminished rhombicosidodecahedron5510552Cs{\displaystyle C_{s}} of order 2
79Bigyrate diminished rhombicosidodecahedron5510552Cs{\displaystyle C_{s}} of order 2
80Parabidiminished rhombicosidodecahedron509042D5d{\displaystyle D_{5d}} of order 2020+52(3+2α+5α){\displaystyle 20+{\frac {5}{2}}\left({\sqrt {3}}+2{\sqrt {\alpha }}+{\sqrt {5\alpha }}\right)}56.923355+2553{\displaystyle {\frac {55+25{\sqrt {5}}}{3}}}36.9672
81Metabidiminished rhombicosidodecahedron509042C2v{\displaystyle C_{2v}} of order 4
82Gyrate bidiminished rhombicosidodecahedron509042Cs{\displaystyle C_{s}} of order 2
83Tridiminished rhombicosidodecahedron457532C3v{\displaystyle C_{3v}} of order 615+53+30α+95α4{\displaystyle 15+{\frac {5{\sqrt {3}}+30{\sqrt {\alpha }}+9{\sqrt {5\alpha }}}{4}}}55.732352+2353{\displaystyle {\frac {35}{2}}+{\frac {23{\sqrt {5}}}{3}}}34.6432
84Snub disphenoid81812D2d{\displaystyle D_{2d}} of order 833{\displaystyle 3{\sqrt {3}}}5.1962 0.8595
85Snub square antiprism164026D4d{\displaystyle D_{4d}} of order 162+63{\displaystyle 2+6{\sqrt {3}}}12.3923 3.6012
86Sphenocorona102214C2v{\displaystyle C_{2v}} of order 42+33{\displaystyle 2+3{\sqrt {3}}}7.1962121+332+13+36{\displaystyle {\frac {1}{2}}{\sqrt {1+3{\sqrt {\frac {3}{2}}}+{\sqrt {13+3{\sqrt {6}}}}}}}1.5154
87Augmented sphenocorona112617Cs{\displaystyle C_{s}} of order 21+43{\displaystyle 1+4{\sqrt {3}}}7.9282121+332+13+36+132{\displaystyle {\frac {1}{2}}{\sqrt {1+3{\sqrt {\frac {3}{2}}}+{\sqrt {13+3{\sqrt {6}}}}}}+{\frac {1}{3{\sqrt {2}}}}}1.7511
88Sphenomegacorona122818C2v{\displaystyle C_{2v}} of order 42+43{\displaystyle 2+4{\sqrt {3}}}8.9282 1.9481
89Hebesphenomegacorona143321C2v{\displaystyle C_{2v}} of order 43+923{\displaystyle 3+{\frac {9}{2}}{\sqrt {3}}}10.7942 2.9129
90Disphenocingulum163824D2d{\displaystyle D_{2d}} of order 84+53{\displaystyle 4+5{\sqrt {3}}}12.6603 3.7776
91Bilunabirotunda142614D2h{\displaystyle D_{2h}} of order 82+23+5α{\displaystyle 2+2{\sqrt {3}}+{\sqrt {5\alpha }}}12.34617+9512{\displaystyle {\frac {17+9{\sqrt {5}}}{12}}}3.0937
92Triangular hebesphenorotunda183620C3v{\displaystyle C_{3v}} of order 63+193+35α4{\displaystyle 3+{\frac {19{\sqrt {3}}+3{\sqrt {5\alpha }}}{4}}}16.388752+756{\displaystyle {\frac {5}{2}}+{\frac {7{\sqrt {5}}}{6}}}5.1087

References

  1. ^Araki, Horiyama & Uehara (2015).
  2. ^
  3. ^
  4. ^Walsh (2014), p. 284.
  5. ^Parker (1997), p. 264.
  6. ^
  7. ^
  8. ^Flusser, Suk & Zitofa (2017), p. 126.
  9. ^
  10. ^
  11. ^
  12. ^Uehara (2020), p. 62.
  13. ^Johnson (1966).
  14. ^abcdBerman (1971).

Bibliography

External links

Pyramids,cupolae androtundae
Modifiedpyramids
Modifiedcupolae androtundae
Augmentedprisms
ModifiedPlatonic solids
ModifiedArchimedean solids
Otherelementary solids
(See alsoList of Johnson solids, a sortable table)
Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_Johnson_solids&oldid=1338108446"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp