Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Liquid state machine

From Wikipedia, the free encyclopedia
(Redirected fromLiquid-state machine)
Type of reservoir computer

Aliquid state machine (LSM) is a type ofreservoir computer that uses aspiking neural network. An LSM consists of a large collection of units (callednodes, orneurons). Each node receives time varying input from external sources (theinputs) as well as from other nodes. Nodes arerandomly connected to each other. Therecurrent nature of the connections turns the time varying input into aspatio-temporal pattern of activations in the network nodes. The spatio-temporal patterns of activation are read out bylinear discriminant units.

The soup of recurrently connected nodes will end up computing a large variety ofnonlinear functions on the input. Given alarge enough variety of such nonlinear functions, it is theoretically possible to obtain linear combinations (using the read out units) to perform whatever mathematical operation is needed to perform a certain task, such asspeech recognition orcomputer vision.

The wordliquid in the name comes from the analogy drawn to dropping a stone into a still body of water or other liquid. The falling stone will generateripples in the liquid. The input (motion of the falling stone) has been converted into a spatio-temporal pattern of liquid displacement (ripples).

LSMs have been put forward as a way to explain the operation ofbrains. LSMs are argued to be an improvement over the theory of artificial neural networks because:

  1. Circuits are not hard coded to perform a specific task.
  2. Continuous time inputs are handled "naturally".
  3. Computations on various time scales can be done using the same network.
  4. The same network can perform multiple computations.

Criticisms of LSMs as used incomputational neuroscience are that

  1. LSMs don't actually explain how the brain functions. At best they can replicate some parts of brain functionality.
  2. There is no guaranteed way to dissect a working network and figure out how or what computations are being performed.
  3. There is very little control over the process.

Universal function approximation

[edit]

If a reservoir hasfading memory andinput separability, with help of a readout, it can be proven the liquid state machine is a universal function approximator usingStone–Weierstrass theorem.[1]

See also

[edit]

Libraries

[edit]
  • LiquidC#: Implementation of topologically robust liquid state machine[2] with a neuronal network detector[1]

References

[edit]
  1. ^Maass, Wolfgang; Markram, Henry (2004), "On the Computational Power of Recurrent Circuits of Spiking Neurons",Journal of Computer and System Sciences,69 (4):593–616,doi:10.1016/j.jcss.2004.04.001
  2. ^Hananel, Hazan; Larry, M., Manevit (2012), "Topological constraints and robustness in liquid state machines",Expert Systems with Applications,39 (2):1597–1606,doi:10.1016/j.eswa.2011.06.052.{{citation}}: CS1 maint: multiple names: authors list (link)
Retrieved from "https://en.wikipedia.org/w/index.php?title=Liquid_state_machine&oldid=1337912331"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp