Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Line element

From Wikipedia, the free encyclopedia
Line segment of infinitesimally small length
This article is about lines in mathematics. For Long Interspersed Nuclear Elements in DNA, seeRetrotransposon § LINEs.

Ingeometry, theline element orlength element can be informally thought of as a line segment associated with aninfinitesimaldisplacement vector in ametric space. The length of the line element, which may be thought of as a differentialarc length, is a function of themetric tensor and is denoted byds{\displaystyle ds}.

Line elements are used inphysics, especially in theories ofgravitation (most notablygeneral relativity) wherespacetime is modelled as a curvedpseudo-Riemannian manifold with an appropriatemetric tensor.[1]

General formulation

[edit]
For notation used, seeRicci calculus andEinstein notation.

Definition of the line element and arc length

[edit]

Thecoordinate-independent definition of the square of the line elementds in ann-dimensionalRiemannian orpseudo-Riemannian manifold (in physics usually aLorentzian manifold) is the "square of the length" of an infinitesimal displacementdq{\displaystyle d\mathbf {q} }[2] (in pseudo-Riemannian manifolds possibly negative) whose square root should be used for computing curve length:ds2=dqdq=g(dq,dq){\displaystyle ds^{2}=d\mathbf {q} \cdot d\mathbf {q} =g(d\mathbf {q} ,d\mathbf {q} )} whereg is themetric tensor,· denotesinner product, anddq aninfinitesimaldisplacement on the (pseudo) Riemannian manifold. By parametrizing a curveq(λ){\displaystyle \mathbf {q} (\lambda )}, we can define thearc length of the curve length of the curve betweenq1=q(λ1){\displaystyle \mathbf {q} _{1}=\mathbf {q} (\lambda _{1})}, andq2=q(λ2){\displaystyle \mathbf {q} _{2}=\mathbf {q} (\lambda _{2})} as theintegral:[3]s=q1q2|ds2|=λ1λ2dλ|g(dqdλ,dqdλ)|=λ1λ2dλ|gijdqidλdqjdλ|.{\displaystyle s=\int _{\mathbf {q} _{1}}^{\mathbf {q} _{2}}{\sqrt {\left|ds^{2}\right|}}=\int _{\lambda _{1}}^{\lambda _{2}}d\lambda {\sqrt {\left|g\left({\frac {d\mathbf {q} }{d\lambda }},{\frac {d\mathbf {q} }{d\lambda }}\right)\right|}}=\int _{\lambda _{1}}^{\lambda _{2}}d\lambda {\sqrt {\left|g_{ij}{\frac {dq^{i}}{d\lambda }}{\frac {dq^{j}}{d\lambda }}\right|}}.}

To compute a sensible length of curves in pseudo Riemannian manifolds, it is best to assume that the infinitesimal displacements have the same sign everywhere. E.g. in physics the square of a line element along a timeline curve would (in the+++{\displaystyle -+++} signature convention) be negative and the negative square root of the square of the line element along the curve would measure the proper time passing for an observer moving along the curve.From this point of view, the metric also defines in addition to line element thesurface andvolume elements etc.

Identification of the square of the line element with the metric tensor

[edit]

Sincedq{\displaystyle d\mathbf {q} } is an arbitrary "square of the arc length",ds2{\displaystyle ds^{2}} completely defines the metric, and it is therefore usually best to consider the expression fords2{\displaystyle ds^{2}} as a definition of the metric tensor itself, written in a suggestive but non tensorial notation:ds2=g{\displaystyle ds^{2}=g} This identification of the square of arc lengthds2{\displaystyle ds^{2}} with the metric is even more easy to see inn-dimensional generalcurvilinear coordinatesq = (q1,q2,q3, ...,qn), where it is written as a symmetric rank 2 tensor[3][4] coinciding with the metric tensor:ds2=gijdqidqj=g.{\displaystyle ds^{2}=g_{ij}dq^{i}dq^{j}=g.}

Here theindicesi andj take values 1, 2, 3, ...,n andEinstein summation convention is used. Common examples of (pseudo-) Riemannian spaces includethree-dimensionalspace (no inclusion oftime coordinates), and indeedfour-dimensionalspacetime.

Line elements in Euclidean space

[edit]
Main article:Euclidean space
Vector line element dr (green) in3d Euclidean space, where λ is aparameter of the space curve (light green).

Following are examples of how the line elements are found from the metric.

Cartesian coordinates

[edit]

The simplest line element is inCartesian coordinates - in which case the metric tensor is just theKronecker delta:gij=δij{\displaystyle g_{ij}=\delta _{ij}}(herei, j = 1, 2, 3 for space) or inmatrix form (i denotes row,j denotes column):[gij]=(100010001){\displaystyle [g_{ij}]={\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}}}

The general curvilinear coordinates reduce to Cartesian coordinates:(q1,q2,q3)=(x,y,z)dr=(dx,dy,dz){\displaystyle (q^{1},q^{2},q^{3})=(x,y,z)\,\Rightarrow \,d\mathbf {r} =(dx,dy,dz)}sods2=gijdqidqj=dx2+dy2+dz2{\displaystyle ds^{2}=g_{ij}dq^{i}dq^{j}=dx^{2}+dy^{2}+dz^{2}}

Orthogonal curvilinear coordinates

[edit]

For allorthogonal coordinates the metric tensor is given by:[3][gij]=(h12000h22000h32){\displaystyle [g_{ij}]={\begin{pmatrix}h_{1}^{2}&0&0\\0&h_{2}^{2}&0\\0&0&h_{3}^{2}\end{pmatrix}}}wherehi=|rqi|{\displaystyle h_{i}=\left|{\frac {\partial \mathbf {r} }{\partial q^{i}}}\right|}

fori = 1, 2, 3 arescale factors, so the square of the line element is:ds2=h12(dq1)2+h22(dq2)2+h32(dq3)2{\displaystyle ds^{2}=h_{1}^{2}(dq^{1})^{2}+h_{2}^{2}(dq^{2})^{2}+h_{3}^{2}(dq^{3})^{2}}

Some examples of line elements in these coordinates are below.[2]

Coordinate system(q1,q2,q3)Metric tensorLine element
Cartesian(x,y,z)[gij]=(100010001){\displaystyle [g_{ij}]={\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\\\end{pmatrix}}}ds2=dx2+dy2+dz2{\displaystyle ds^{2}=dx^{2}+dy^{2}+dz^{2}}
Plane polars(r,θ)[gij]=(100r2){\displaystyle [g_{ij}]={\begin{pmatrix}1&0\\0&r^{2}\\\end{pmatrix}}}ds2=dr2+r2dθ2{\displaystyle ds^{2}=dr^{2}+r^{2}d\theta ^{2}}
Spherical polars(r,θ,φ)[gij]=(1000r2000r2sin2θ){\displaystyle [g_{ij}]={\begin{pmatrix}1&0&0\\0&r^{2}&0\\0&0&r^{2}\sin ^{2}\theta \\\end{pmatrix}}}ds2=dr2+r2dθ 2+r2sin2θdφ2{\displaystyle ds^{2}=dr^{2}+r^{2}d\theta \ ^{2}+r^{2}\sin ^{2}\theta d\varphi ^{2}}
Cylindrical polars(r,φ,z)[gij]=(1000r20001){\displaystyle [g_{ij}]={\begin{pmatrix}1&0&0\\0&r^{2}&0\\0&0&1\\\end{pmatrix}}}ds2=dr2+r2dφ2+dz2{\displaystyle ds^{2}=dr^{2}+r^{2}d\varphi ^{2}+dz^{2}}

General curvilinear coordinates

[edit]

Given an arbitrary basis{b^i}{\displaystyle \{{\hat {b}}_{i}\}} of a space of dimensionn{\displaystyle n}, the metric is defined as the inner product of the basis vectors.gij=b^i,b^j{\displaystyle g_{ij}=\langle {\hat {b}}_{i},{\hat {b}}_{j}\rangle }

Where1i,jn{\displaystyle 1\leq i,j\leq n} and the inner product is with respect to the ambient space (usually itsδij{\displaystyle \delta _{ij}})

In a coordinate basisb^i=xi{\displaystyle {\hat {b}}_{i}={\frac {\partial }{\partial x^{i}}}}

The coordinate basis is a special type of basis that is regularly used in differential geometry.

Line elements in 4d spacetime

[edit]

Minkowski spacetime

[edit]

TheMinkowski metric is:[5][1][gij]=±(1000010000100001){\displaystyle [g_{ij}]=\pm {\begin{pmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\\\end{pmatrix}}}where one sign or the other is chosen, both conventions are used. This applies only forflat spacetime. The coordinates are given by the4-position:x=(x0,x1,x2,x3)=(ct,r)dx=(cdt,dr){\displaystyle \mathbf {x} =(x^{0},x^{1},x^{2},x^{3})=(ct,\mathbf {r} )\,\Rightarrow \,d\mathbf {x} =(cdt,d\mathbf {r} )}

so the line element is:ds2=±(c2dt2drdr).{\displaystyle ds^{2}=\pm (c^{2}dt^{2}-d\mathbf {r} \cdot d\mathbf {r} ).}

Schwarzschild coordinates

[edit]

InSchwarzschild coordinates coordinates are(t,r,θ,ϕ){\displaystyle \left(t,r,\theta ,\phi \right)}, being the general metric of the form:[gij]=(a(r)20000b(r)20000r20000r2sin2θ){\displaystyle [g_{ij}]={\begin{pmatrix}-a(r)^{2}&0&0&0\\0&b(r)^{2}&0&0\\0&0&r^{2}&0\\0&0&0&r^{2}\sin ^{2}\theta \\\end{pmatrix}}}

(note the similitudes with the metric in 3D spherical polar coordinates).

so the line element is:ds2=a(r)2dt2+b(r)2dr2+r2dθ2+r2sin2θdϕ2.{\displaystyle ds^{2}=-a(r)^{2}\,dt^{2}+b(r)^{2}\,dr^{2}+r^{2}\,d\theta ^{2}+r^{2}\sin ^{2}\theta \,d\phi ^{2}.}

General spacetime

[edit]

The coordinate-independent definition of the square of the line element ds inspacetime is:[1]ds2=dxdx=g(dx,dx){\displaystyle ds^{2}=d\mathbf {x} \cdot d\mathbf {x} =g(d\mathbf {x} ,d\mathbf {x} )}

In terms of coordinates:ds2=gαβdxαdxβ{\displaystyle ds^{2}=g_{\alpha \beta }dx^{\alpha }dx^{\beta }}where for this case the indicesα andβ run over 0, 1, 2, 3 for spacetime.

This is thespacetime interval - the measure of separation between two arbitrarily closeevents inspacetime. Inspecial relativity it is invariant underLorentz transformations. Ingeneral relativity it is invariant under arbitraryinvertibledifferentiablecoordinate transformations.

See also

[edit]

References

[edit]
  1. ^abcGravitation, J.A. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman & Co, 1973,ISBN 0-7167-0344-0
  2. ^abTensor Calculus, D.C. Kay, Schaum’s Outlines, McGraw Hill (USA), 1988,ISBN 0-07-033484-6
  3. ^abcVector Analysis (2nd Edition), M.R. Spiegel, S. Lipcshutz, D. Spellman, Schaum’s Outlines, McGraw Hill (USA), 2009,ISBN 978-0-07-161545-7
  4. ^An introduction to Tensor Analysis: For Engineers and Applied Scientists, J.R. Tyldesley, Longman, 1975,ISBN 0-582-44355-5
  5. ^Relativity DeMystified, D. McMahon, Mc Graw Hill (USA), 2006,ISBN 0-07-145545-0
Retrieved from "https://en.wikipedia.org/w/index.php?title=Line_element&oldid=1325490955"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp