Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Limit set

From Wikipedia, the free encyclopedia
State of a dynamic system after an infinitely long time
This article is about the notion of a limit set in the area of dynamical systems. For the notion of a limit in set theory, seeSet-theoretic limit.
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Limit set" – news ·newspapers ·books ·scholar ·JSTOR
(June 2020) (Learn how and when to remove this message)

Inmathematics, especially in the study ofdynamical systems, alimit set is the state a dynamical system reaches after an infinite amount of time has passed, by either going forward or backwards in time. Limit sets are important because they can be used to understand the long term behavior of a dynamical system. A system that has reached its limiting set is said to be atequilibrium.

Types

[edit]

In general, limits sets can be very complicated as in the case ofstrange attractors, but for 2-dimensional dynamical systems thePoincaré–Bendixson theorem provides a simple characterization of all nonempty, compactω{\displaystyle \omega }-limit sets that contain at most finitely many fixed points as a fixed point, a periodic orbit, or a union of fixed points andhomoclinic orheteroclinic orbits connecting those fixed points.

Definition for iterated functions

[edit]

LetX{\displaystyle X} be ametric space, and letf:XX{\displaystyle f:X\rightarrow X} be acontinuous function. Theω{\displaystyle \omega }-limit set ofxX{\displaystyle x\in X}, denoted byω(x,f){\displaystyle \omega (x,f)}, is the set of cluster points of the forward orbit{fn(x)}nN{\displaystyle \{f^{n}(x)\}_{n\in \mathbb {N} }} of theiterated functionf{\displaystyle f}.[1] Hence,yω(x,f){\displaystyle y\in \omega (x,f)}if and only if there is a strictly increasing sequence of natural numbers{nk}kN{\displaystyle \{n_{k}\}_{k\in \mathbb {N} }} such thatfnk(x)y{\displaystyle f^{n_{k}}(x)\rightarrow y} ask{\displaystyle k\rightarrow \infty }. Another way to express this is

ω(x,f)=nN{fk(x):k>n}¯,{\displaystyle \omega (x,f)=\bigcap _{n\in \mathbb {N} }{\overline {\{f^{k}(x):k>n\}}},}

whereS¯{\displaystyle {\overline {S}}} denotes theclosure of setS{\displaystyle S}. The points in the limit set are non-wandering (but may not berecurrent points). This may also be formulated as the outer limit (limsup) of a sequence of sets, such that

ω(x,f)=n=1k=n{fk(x)}¯.{\displaystyle \omega (x,f)=\bigcap _{n=1}^{\infty }{\overline {\bigcup _{k=n}^{\infty }\{f^{k}(x)\}}}.}

Iff{\displaystyle f} is ahomeomorphism (that is, a bicontinuous bijection), then theα{\displaystyle \alpha }-limit set is defined in a similar fashion, but for the backward orbit;i.e.α(x,f)=ω(x,f1){\displaystyle \alpha (x,f)=\omega (x,f^{-1})}.

Both sets aref{\displaystyle f}-invariant, and ifX{\displaystyle X} iscompact, they are compact and nonempty.

Definition for flows

[edit]

Given areal dynamical system(T,X,φ){\displaystyle (T,X,\varphi )} withflowφ:R×XX{\displaystyle \varphi :\mathbb {R} \times X\to X}, a pointx{\displaystyle x}, we call a pointy{\displaystyle y} anω{\displaystyle \omega }-limit point ofx{\displaystyle x} if there exists a sequence(tn)nN{\displaystyle (t_{n})_{n\in \mathbb {N} }} inR{\displaystyle \mathbb {R} } so that

limntn={\displaystyle \lim _{n\to \infty }t_{n}=\infty }
limnφ(tn,x)=y{\displaystyle \lim _{n\to \infty }\varphi (t_{n},x)=y}.

For anorbitγ{\displaystyle \gamma } of(T,X,φ){\displaystyle (T,X,\varphi )}, we say thaty{\displaystyle y} is anω{\displaystyle \omega }-limit point ofγ{\displaystyle \gamma }, if it is anω{\displaystyle \omega }-limit point of some point on the orbit.

Analogously we cally{\displaystyle y} anα{\displaystyle \alpha }-limit point ofx{\displaystyle x} if there exists a sequence(tn)nN{\displaystyle (t_{n})_{n\in \mathbb {N} }} inR{\displaystyle \mathbb {R} } so that

limntn={\displaystyle \lim _{n\to \infty }t_{n}=-\infty }
limnφ(tn,x)=y{\displaystyle \lim _{n\to \infty }\varphi (t_{n},x)=y}.

For anorbitγ{\displaystyle \gamma } of(T,X,φ){\displaystyle (T,X,\varphi )}, we say thaty{\displaystyle y} is anα{\displaystyle \alpha }-limit point ofγ{\displaystyle \gamma }, if it is anα{\displaystyle \alpha }-limit point of some point on the orbit.

The set of allω{\displaystyle \omega }-limit points (α{\displaystyle \alpha }-limit points) for a given orbitγ{\displaystyle \gamma } is calledω{\displaystyle \omega }-limit set (α{\displaystyle \alpha }-limit set) forγ{\displaystyle \gamma } and denotedlimωγ{\displaystyle \lim _{\omega }\gamma } (limαγ{\displaystyle \lim _{\alpha }\gamma }).

If theω{\displaystyle \omega }-limit set (α{\displaystyle \alpha }-limit set) is disjoint from the orbitγ{\displaystyle \gamma }, that islimωγγ={\displaystyle \lim _{\omega }\gamma \cap \gamma =\varnothing } (limαγγ={\displaystyle \lim _{\alpha }\gamma \cap \gamma =\varnothing }), we calllimωγ{\displaystyle \lim _{\omega }\gamma } (limαγ{\displaystyle \lim _{\alpha }\gamma }) aω-limit cycle (α-limit cycle).

Alternatively the limit sets can be defined as

limωγ:=sR{φ(x,t):t>s}¯{\displaystyle \lim _{\omega }\gamma :=\bigcap _{s\in \mathbb {R} }{\overline {\{\varphi (x,t):t>s\}}}}

and

limαγ:=sR{φ(x,t):t<s}¯.{\displaystyle \lim _{\alpha }\gamma :=\bigcap _{s\in \mathbb {R} }{\overline {\{\varphi (x,t):t<s\}}}.}

Examples

[edit]

Properties

[edit]

See also

[edit]

References

[edit]
  1. ^Alligood, Kathleen T.; Sauer, Tim D.; Yorke, James A. (1996).Chaos, an introduction to dynamical systems. Springer.

Further reading

[edit]


This article incorporates material from Omega-limit set onPlanetMath, which is licensed under theCreative Commons Attribution/Share-Alike License.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Limit_set&oldid=1295173207"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp