Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Antileukotriene

From Wikipedia, the free encyclopedia
(Redirected fromLeukotriene antagonist)
Medication class that inhibits leukotriene synthesis and/or activity
Antileukotrienes
Drug class
Class identifiers
SynonymsLeukotriene modifier; Leukotriene receptor antagonist
Mechanism of action • Enzyme inhibition
 • Receptor antagonism
Biological target • Enzymes:5-LOX;FLAP
 • Receptors:CysLTRs
Legal status
In Wikidata

Anantileukotriene, also known asleukotriene modifier andleukotriene receptor antagonist, is a medication which functions as aleukotriene-relatedenzyme inhibitor (arachidonate 5-lipoxygenase) or leukotrienereceptor antagonist (cysteinyl leukotriene receptors) and consequently opposes the function of these inflammatory mediators; leukotrienes are produced by theimmune system and serve to promotebronchoconstriction,inflammation,microvascular permeability, andmucus secretion inasthma andCOPD.[1] Leukotriene receptor antagonists are sometimes colloquially referred to asleukasts.

Leukotriene receptor antagonists, such asmontelukast,zafirlukast, andpranlukast,[2] and 5-lipoxygenase inhibitors, likezileuton andHypericum perforatum,[3][4][5][6] can be used to treat these diseases.[1] They are less effective thancorticosteroids for treating asthma,[7] but more effective for treating certainmast cell disorders.[8]

Approaches

[edit]

There are two main approaches to block the actions of leukotrienes.[1]

Inhibition of the 5-lipoxygenase pathway

[edit]
Main article:Arachidonate 5-lipoxygenase inhibitor

Drugs that inhibit the enzyme5-lipoxygenase will inhibit the synthetic pathway of leukotriene metabolism;[3][4] drugs such asMK-886 that block the5-lipoxygenase activating protein (FLAP) inhibit functioning of 5-lipoxygenase and may help in treatingatherosclerosis.[9]

Examples of 5-LOX inhibitors include drugs, such asmeclofenamate sodium[10] andzileuton.[10][3]

Some chemicals found in trace amounts in food, and some dietary supplements, also have been shown to inhibit 5-LOX, such asbaicalein,[10]caffeic acid,[10]curcumin,[10]hyperforin[4][5][6] andSt John's wort.[4][5][6]

Antagonism of cysteinyl-leukotriene type 1 receptors

[edit]

Agents such asmontelukast andzafirlukast block the actions of cysteinyl leukotrienes at theCysLT1 receptor on target cells such as bronchialsmooth muscle viareceptor antagonism.[citation needed]

These modifiers have been shown to improve asthma symptoms, reduce asthma exacerbations and limit markers of inflammation such aseosinophil counts in the peripheral blood andbronchoalveolar lavage fluid. This demonstrates that they have anti-inflammatory properties.[citation needed]

See also

[edit]

References

[edit]
  1. ^abcScott JP, Peters-Golden M (September 2013). "Antileukotriene agents for the treatment of lung disease".Am. J. Respir. Crit. Care Med.188 (5):538–544.doi:10.1164/rccm.201301-0023PP.PMID 23822826.
  2. ^Singh, Rakesh Kumar; Tandon, Ruchi; Dastidar, Sunanda Ghosh; Ray, Abhijit (2013). "A review on leukotrienes and their receptors with reference to asthma".Journal of Asthma.50 (9):922–931.doi:10.3109/02770903.2013.823447.ISSN 0277-0903.PMID 23859232.S2CID 11433313.
  3. ^abc"Zyflo (Zileuton tablets)"(PDF).United States Food and Drug Administration. Cornerstone Therapeutics Inc. June 2012. p. 1. Archived fromthe original(PDF) on December 13, 2014. Retrieved12 December 2014.Zileuton is a specific inhibitor of 5-lipoxygenase and thus inhibits leukotriene (LTB4, LTC4, LTD4, and LTE4) formation. Both the R(+) and S(-) enantiomers are pharmacologically active as 5-lipoxygenase inhibitors in in vitro systems. Leukotrienes are substances that induce numerous biological effects including augmentation of neutrophil and eosinophil migration, neutrophil and monocyte aggregation, leukocyte adhesion, increased capillary permeability, and smooth muscle contraction. These effects contribute to inflammation, edema, mucus secretion, and bronchoconstriction in the airways of asthmatic patients. Sulfido-peptide leukotrienes (LTC4, LTD4, LTE4, also known as the slow-releasing substances of anaphylaxis) and LTB4, a chemoattractant for neutrophils and eosinophils, can be measured in a number of biological fluids including bronchoalveolar lavage fluid (BALF) from asthmatic patients.
  4. ^abcd"Enzymes".Hyperforin (HMDB0030463).Human Metabolome Database. 3.6. University of Alberta. 30 June 2013. Retrieved12 December 2014.
  5. ^abcde Melo MS, Quintans Jde S, Araújo AA, Duarte MC, Bonjardim LR, Nogueira PC, Moraes VR, de Araújo-Júnior JX, Ribeiro EA, Quintans-Júnior LJ (2014)."A systematic review for anti-inflammatory property of Clusiaceae family: a preclinical approach".Evid Based Complement Alternat Med.2014 960258.doi:10.1155/2014/960258.PMC 4058220.PMID 24976853.These researches are according to an investigation of the effect of H. perforatum on the NF-κB inflammation factor, conducted by Bork et al. (1999), in which hyperforin provided a potent inhibition of TNFα-induced activation of NF-κB [58]. Another important activity for hyperforin is a dual inhibitor of cyclooxygenase-1 and 5-lipoxygenase [59]. Moreover, this species attenuated the expression of iNOS in periodontal tissue, which may contribute to the attenuation of the formation of nitrotyrosine, an indication of nitrosative stress [26]. In this context, a combination of several active constituents of Hypericum species is the carrier of their anti-inflammatory activity.
  6. ^abcWölfle U, Seelinger G, Schempp CM (February 2014)."Topical application of St. John's wort (Hypericum perforatum)".Planta Med.80 (2–3):109–20.doi:10.1055/s-0033-1351019.PMID 24214835.Anti-inflammatory mechanisms of hyperforin have been described as inhibition of cyclooxygenase-1 (but not COX-2) and 5-lipoxygenase at low concentrations of 0.3 μmol/L and 1.2 μmol/L, respectively [52], and of PGE2 production in vitro [53] and in vivo with superior efficiency (ED50 = 1 mg/kg) compared to indomethacin (5 mg/kg) [54]. Hyperforin turned out to be a novel type of 5-lipoxygenase inhibitor with high effectivity in vivo [55] and suppressed oxidative bursts in polymorphonuclear cells at 1.8 μmol/L in vitro [56]. Inhibition of IFN-γ production, strong downregulation of CXCR3 expression on activated T cells, and downregulation of matrix metalloproteinase 9 expression caused Cabrelle et al. [57] to test the effectivity of hyperforin in a rat model of experimental allergic encephalomyelitis (EAE). Hyperforin attenuated the symptoms significantly, and the authors discussed hyperforin as a putative therapeutic molecule for the treatment of autoimmune inflammatory diseases sustained by Th1 cells.
  7. ^Fanta CH (March 2009). "Asthma".N Engl J Med.360 (10):1002–14.doi:10.1056/NEJMra0804579.PMID 19264689.
  8. ^Frieri M (2015). "Mast Cell Activation Syndrome".Clin Rev Allergy Immunol.54 (3):353–365.doi:10.1007/s12016-015-8487-6.PMID 25944644.S2CID 5723622.
  9. ^Jawien, J.; Gajda, M.; Rudling, M.; Mateuszuk, L.; Olszanecki, R.; Guzik, T. J.; Cichocki, T.; Chlopicki, S.; Korbut, R. (March 2006). "Inhibition of five lipoxygenase activating protein (FLAP) by MK-886 decreases atherosclerosis in apoE/LDLR-double knockout mice".European Journal of Clinical Investigation.36 (3):141–146.doi:10.1111/j.1365-2362.2006.01606.x.PMID 16506957.S2CID 44897529.
  10. ^abcdeBishayee K, Khuda-Bukhsh AR (September 2013)."5-lipoxygenase antagonist therapy: a new approach towards targeted cancer chemotherapy".Acta Biochim. Biophys. Sin. (Shanghai).45 (9):709–719.doi:10.1093/abbs/gmt064.PMID 23752617.

External links

[edit]
Adrenergics,inhalants
Short-acting β2 agonists
Long-acting β2 agonists
Ultra-long-acting β2 agonists
Other
Glucocorticoids
Anticholinergics/
muscarinic antagonist
Mast cell stabilizers
Xanthines
Eicosanoid inhibition
Leukotriene antagonists
Arachidonate 5-lipoxygenase inhibitors
Thromboxane receptor antagonists
Non-xanthinePDE4 inhibitors
Others/unknown
Combination products
Receptor
(ligands)
BLTTooltip Leukotriene B4 receptor
BLT1Tooltip Leukotriene B4 receptor 1
BLT2Tooltip Leukotriene B4 receptor 2
CysLTTooltip Cysteinyl leukotriene receptor
CysLT1Tooltip Cysteinyl leukotriene receptor 1
CysLT2Tooltip Cysteinyl leukotriene receptor 2
CysLTETooltip Cysteinyl leukotriene receptor E
Enzyme
(inhibitors)
5-LOXTooltip Arachidonate 5-lipoxygenase
12-LOXTooltip Arachidonate 12-lipoxygenase
15-LOXTooltip Arachidonate 15-lipoxygenase
LTA4HTooltip Leukotriene A4 hydrolase
LTB4HTooltip Leukotriene B4 ω-hydroxylase
LTC4STooltip Leukotriene C4 synthase
LTC4HTooltip Leukotriene C4 hydrolase
LTD4Tooltip Leukotriene D4 hydrolase
Others
Retrieved from "https://en.wikipedia.org/w/index.php?title=Antileukotriene&oldid=1333376920"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp